GSA ROCKY MOUNTAIN/CORDILLERAN JOINT SECTION MEETING 15–17 May Double Tree by Hilton Hotel and Conference Center, Flagstaff, Arizona, USA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CENTRAL ARIZONA SALINITY STUDY --- PHASE I Technical Appendix C HYDROLOGIC REPORT on the PHOENIX
CENTRAL ARIZONA SALINITY STUDY --- PHASE I Technical Appendix C HYDROLOGIC REPORT ON THE PHOENIX AMA Prepared for: United States Department of Interior Bureau of Reclamation Prepared by: Brown and Caldwell 201 East Washington Street, Suite 500 Phoenix, Arizona 85004 Brown and Caldwell Project No. 23481.001 C-1 TABLE OF CONTENTS PAGE TABLE OF CONTENTS ................................................................................................................ 2 LIST OF TABLES .......................................................................................................................... 3 LIST OF FIGURES ........................................................................................................................ 3 1.0 INTRODUCTION .............................................................................................................. 4 2.0 PHYSICAL SETTING ....................................................................................................... 5 3.0 GENERALIZED GEOLOGY ............................................................................................ 6 3.1 BEDROCK GEOLOGY ......................................................................................... 6 3.2 BASIN GEOLOGY ................................................................................................ 6 4.0 HYDROGEOLOGIC CONDITIONS ................................................................................ 9 4.1 GROUNDWATER OCCURRENCE .................................................................... -
Stratigraphy of the Tuerto and Ancha Formations (Upper Santa Fe Group), Hagan and Santa Fe Embayments, North-Central New Mexico
NMBMMR 454B STRATIGRAPHY OF THE TUERTO AND ANCHA FORMATIONS (UPPER SANTA FE GROUP), HAGAN AND SANTA FE EMBAYMENTS, NORTH-CENTRAL NEW MEXICO DANIEL J. KONING 14193 Henderson Dr., Rancho Cucamonga, CA 91739 SEAN D. CONNELL N.M. Bureau of Mines and Mineral Resources-Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave., SE, Albuquerque, NM 87106 FRANK J. PAZZAGLIA Lehigh University, Department of Earth and Environmental Sciences, 31 Williams Dr., Bethlehem, PA 18015 WILLIAM C. MCINTOSH New Mexico Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 INTRODUCTION which we correlate to most of their type section. The upper quarter of their type Ancha section contains Geologic studies and 40Ar/39Ar dating of basalt flows and basaltic tephra of the Cerros del Rio subhorizontally bedded strata of the upper Santa Fe volcanic field, which was emplaced between 2.8 and Group in the vicinity of the Santa Fe and Hagan 1.4 Ma (David Sawyer, personal commun., 2001), embayments (Fig. 1) indicate that revision of the with the most voluminous activity occurring between Ancha and Tuerto formations are necessary. The 2.3-2.8 Ma (Woldegabriel et al., 1996; Bachman and Ancha and Tuerto formations are included in the Mehnert, 1978; Sawyer et al., 2001). Beneath the youngest strata of the Santa Fe Group, as defined by upper volcanic flows and volcaniclastics is 12-17(?) Spiegel and Baldwin (1963), and consist of broad, m of strata, containing 1-5% quartzite clasts, that is thin alluvial aprons of Plio-Pleistocene age derived similar to a Pliocene deposit (unit Ta) mapped by from local uplands along the eastern margins of the Dethier (1997) that interfingers with Pliocene basalt Albuquerque and Española basins, Rio Grande rift, tephra of the Cerros del Rio volcanic field. -
Department of the Interior U.S
DEPARTMENT OF THE INTERIOR U.S. FISH AND WILDLIFE SERVICE REGION 2 DIVISION OF ENVIRONMENTAL CONTAMINANTS CONTAMINANTS IN BIGHORN SHEEP ON THE KOFA NATIONAL WIL DLIFE REFUGE, 2000-2001 By Carrie H. Marr, Anthony L. Velasco1, and Ron Kearns2 U.S. Fish and Wildlife Service Arizona Ecological Services Office 2321 W. Royal Palm Road, Suite 103 Phoenix, Arizona 85021 August 2004 2 ABSTRACT Soils of abandoned mines on the Kofa National Wildlife Refuge (KNWR) are contaminated with arsenic, barium, mercury, manganese, lead, and zinc. Previous studies have shown that trace element and metal concentrations in bats were elevated above threshold concentrations. High trace element and metal concentrations in bats suggested that bighorn sheep also may be exposed to these contaminants when using abandoned mines as resting areas. We found evidence of bighorn sheep use, bighorn sheep carcasses, and scat in several abandoned mines. To determine whether bighorn sheep are exposed to, and are accumulating hazardous levels of metals while using abandoned mines, we collected soil samples, as well as scat and bone samples when available. We compared mine soil concentrations to Arizona non-residential clean up levels. Hazard quotients were elevated in several mines and elevated for manganese in one Sheep Tank Mine sample. We analyzed bighorn sheep tissues for trace elements. We obtained blood, liver, and bone samples from hunter-harvested bighorn in 2000 and 2001. Arizona Game and Fish Department also collected blood from bighorn during a translocation operation in 2001. Iron and magnesium were elevated in tissues compared to reference literature concentrations in other species. Most often, domestic sheep baseline levels were used for comparison because of limited available data for bighorn sheep. -
The Proterozoic History of the Idaho Springs-Ralston Shear Zone: Evidence for a Widespread Ca
THE PROTEROZOIC HISTORY OF THE IDAHO SPRINGS-RALSTON SHEAR ZONE: EVIDENCE FOR A WIDESPREAD CA. 1.4 GA OROGENIC EVENT IN CENTRAL COLORADO by Madison Lytle A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date _____________________________ Signed: __________________________________ Madison Lytle Signed: __________________________________ Dr. Yvette D. Kuiper Thesis Advisor Golden, Colorado Date _____________________________ Signed: _________________________________ Dr. M. Stephen Enders Department Head Department of Geology and Geological Engineering ii ABSTRACT The Idaho Springs-Ralston shear zone (IRSZ) is one of several Proterozoic NE-trending zones within the central-eastern Colorado Front Range. The zone is composed of multiple mylonitic strands of a few meters to several kilometers in width and is mapped from ~16 km NNW of Denver, CO to ~26 km to the SW (near Idaho Springs, CO). The IRSZ and other NE-trending zones have previously been interpreted as ~1.45 Ga reactivated shear zones, following a pre-existing crustal-scale weakness, such as a suture zone that formed at ~1.7 Ga. The interpreted suture zone was based on the presence of tectonic mélange at the St. Louis Lake shear zone, ~40 km NNW of the IRSZ, suggesting the presence of a subduction zone. New field data suggest that the IRSZ is not as extensive as previously interpreted. Additionally, a lack of pinch outs and offset of major units, as well as similar deformation histories and metamorphic conditions on either side suggest that the IRSZ did not form as a continental suture zone. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
The Maricopa County Wildlife Connectivity Assessment: Report on Stakeholder Input January 2012
The Maricopa County Wildlife Connectivity Assessment: Report on Stakeholder Input January 2012 (Photographs: Arizona Game and Fish Department) Arizona Game and Fish Department In partnership with the Arizona Wildlife Linkages Workgroup TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................................ i RECOMMENDED CITATION ........................................................................................................ ii ACKNOWLEDGMENTS ................................................................................................................. ii EXECUTIVE SUMMARY ................................................................................................................ iii DEFINITIONS ................................................................................................................................ iv BACKGROUND ................................................................................................................................ 1 THE MARICOPA COUNTY WILDLIFE CONNECTIVITY ASSESSMENT ................................... 8 HOW TO USE THIS REPORT AND ASSOCIATED GIS DATA ................................................... 10 METHODS ..................................................................................................................................... 12 MASTER LIST OF WILDLIFE LINKAGES AND HABITAT BLOCKSAND BARRIERS ................ 16 REFERENCE MAPS ....................................................................................................................... -
Animated Tectonic Reconstruction of the Lower Colorado River Region: Implications for Late Miocene to Present Deformation Scott E
Animated tectonic reconstruction of the Lower Colorado River region: implications for Late Miocene to Present deformation Scott E. K. Bennett,1 Michael H. Darin,2 Rebecca J. Dorsey,3 Lisa A. Skinner,2 Paul J. Umhoefer,2 and Michael E. Oskin4 1U.S. Geological Survey, 2Northern Arizona University, 3University of Oregon, 4University of California, Davis Introduction of upper crustal structures that accommodated Although the majority of late Miocene to present intracontinental strain and improves our understanding Pacic–North America plate boundary strain has been of the processes that promoted localized or diuse strain accommodated by faults of the San Andreas and Gulf during reorganization of the Pacic–North America of California systems, growing evidence of dextral shear plate boundary. east of the San Andreas Fault indicates that a component Map-view translations of crustal blocks inuence of plate boundary deformation occurred in the lower the relative motions of adjacent blocks, an approach Colorado River (LoCR) region. Large-scale tectonic adhered to in global plate-circuit models (Atwater and reconstructions across the Gulf of California and Salton Stock, 1998; 2013). us, a synthesis of the magnitude Trough (GCAST) region (Fig. 1), a ~500 km-wide and timing of horizontal strain across a broad zone zone of deformation that aected the western margin of distributed deformation can provide insight into of North America, provide important constraints on processes of strain partitioning and potential kinematic the location, timing, style, and magnitude of crustal links between adjacent structural domains. Furthermore, deformation in the LoCR region (Fig. 2). Characterizing it can help prioritize and guide future work by Miocene to present deformation in the LoCR region identifying gaps in our understanding of plate boundary is important to resolve the presence and kinematics deformation and provide a degree of predictability Figure 1. -
Geologic Summary of the Abiquiu Quadrangle, North-Central New Mexico Florian Maldonado and Daniel P
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/58 Geologic summary of the Abiquiu quadrangle, north-central New Mexico Florian Maldonado and Daniel P. Miggins, 2007, pp. 182-187 in: Geology of the Jemez Region II, Kues, Barry S., Kelley, Shari A., Lueth, Virgil W.; [eds.], New Mexico Geological Society 58th Annual Fall Field Conference Guidebook, 499 p. This is one of many related papers that were included in the 2007 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. -
Aquatic Ecomap Team to Develop the Framework, Process Comments, and Develop a Plan Forrevision.These Scientistsare
_i__¸_._. V_!_i Depa_"tment of e_a IC_ .-,4_:..._.A_..:,_,,_gricu 1t u_'e ServiceFo os Framewerku of Aquatim c North Centrai EC@J@g_CaJ U_itS _ N@_th Forest Experiment s [] Station A_er_ca {Nearct_c Z@_e_ General Technical Report NC-17'6 James R. Maxwell, Clayton J. Edwards, Mark E. Jensen, Steven J. Paustian, Harry Parrott, and Donley M. Hitl 8 • _ ...... "'::'":' i:. "S" " : ":','1 _ . / REG I0 NS':_; '"::;:s_:::."_--. .---..:-:!.!:::!:.::_:. ..... •. :.,.:,: .,. -,::.:, .......,.-,.-4S:ifi -.- i::ti/;:.:_: """.::""-:.: .... "':::.:.';.i" . :':" "':":": -. -._ . •....:...{: • . ...:" ZON • .- "." . .. • " . "'...:.:. • .....:....:....:_..-:..:):. -.-. ..... ,:.':::'.':: . .., .... '"_::.--..:.:i i ''_{:;ti}{i_:/.... sub " ,Lri_;gi, • Riverine GroundWater II II _ II I III II I II ],.r ', _ _r',_-- ACFA_OV_rLEDGI_NTS The authors wish to thank the many scientistswho commented on the draftsof thispaper during itspreparation. Their comments dramatically improved the qualiW of the product. These scientistsare listedin Appen- dix F. Specialthanks are offeredto 10 of these scientists,who met with the Aquatic Ecomap team to develop the framework, process comments, and develop a plan forrevision.These scientistsare: Patrick Bourgeron, The Nature Conservancy, Boulder, CO (geoclimatic) James Deacon, Universityof Nevada, Las Vegas, NV (zoogeography) Iris Goodman, Environmental Protection Agency, Las Vegas, NV (ground water) Gordon Grant, Forest Service, Corvallis, OR [riverine) Richard Lillie, Wisconsin Department of Natural Resources, Winona, WI (lacustrine) W.L. Minckley, Arizona State University, Tempe, AZ (zoogeography) Kerry Overton, Forest Service, Boise, [D (riverine) Nick Schmal, Forest Service, Laramie, WY (riverine, lacustrine) Steven Walsh, Fish and Wildlife Service, Gainesville, FL (zoogeography) Mike Wireman, Environmental Protection Agency, Denver, CO (ground water) We wish to especially acknowledge the contributions of Mike Wireman and Iris Goodman of the Environmental Protection Agency. -
Appendix / Attachment 1A
ATTACHMENT 1A (Supplemental Documentation to the: Mogollon Rim Water Resource, Management Study Report of Findings) Geology and Structural Controls of Groundwater, Mogollon Rim Water Resources Management Study by Gaeaorama, Inc., July, 2006 GEOLOGY AND STRUCTURAL CONTROLS OF GROUNDWATER, MOGOLLON RIM WATER RESOURCES MANAGEMENT STUDY Prepared for the Bureau of Reclamation GÆAORAMA, INC. Blanding, Utah DRAFT FOR REVIEW 22 July 2006 CONTENTS page Executive Summary…………………………………………………………………………….. 1 MRWRMS ii 1/18/11 Introduction……………………………………………………………………………………... 2 GIS database……………………………………………………………………………………. 5 Faults and fault systems………………………………………………………………………… 6 Proterozoic faults…………………………………………………………………………… 6 Re-activated Proterozoic faults……………………………………………………………... 6 Post-Paleozoic faults of likely Proterozoic inheritance…………………………………….. 7 Tertiary fault systems……………………………………………………………………….. 8 Verde graben system……………………………………………………………………. 8 East- to northeast-trending system……………………………………………………… 9 North-trending system…………………………………………………………………...9 Regional disposition of Paleozoic strata………………………………………………………. 10 Mogollon Rim Formation – distribution and implications……………………………………..10 Relation of springs to faults…………………………………………………………………… 11 Fossil Springs……………………………………………………………………………… 13 Tonto Bridge Spring………………………………………………………………………..14 Webber Spring and Flowing Spring………………………………………………………..15 Cold Spring………………………………………………………………………………... 16 Fossil Canyon-Strawberry-Pine area…………………………………………………………...17 Speculations on aquifer systems………………………………………………………………. -
A Bibliography of Geomorphometry, the Quantitative Representation of Topography Supplement 1.0
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Bibliography of Geomorphometry, the Quantitative Representation of Topography Supplement 1.0 By RICHARD J. PIKE l Provides over 450 additions and corrections to the 1993 Bibliography of Geomorphometry and a brief update of recent advances OPEN-FILE REPORT 95-046 1995 This report is preliminary and has not been reviewed for conformity with US. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US. Government 'MENLO PARK, CA 94025 A Bibliography of Geomorphometry, the Quantitative Representation of Topography Supplement 1.0 by Richard J. Pike Abstract This report adds over 450 entries (and makes several corrections) to the 1993 literature review of topographic quantification (geomorphometry), briefly reviews recent advances in the field, and describes four new applications of morphometry: landscape ecology, wind-energy prospecting, soil surveys, and image understanding. his is the first update of a bibliography discipline. Finally, four areas related to and introductory essay on morphometry have been identified since the Tgeomorphometry (or simply release of Pike (1993): landscape ecology, wind- morphometry), the numerical characterization energy prospecting, soil surveys, and image of topographic form (Pike, 1993). The understanding. supplement continues my drawing together the diverse and scattered literature on the subject and making it accessible to the research community. The need for such an effort remains Four New Applications evident from the rapidly growing use of square- grid digital elevation models (OEM's) to Significant additions to geomorphometry express topography for many different include papers appearing over the last few applications. -
Of Our Favorite Things
TALON AGENTS: THE MAJESTIC ARTIST ROBERT SHIELDS: AUGUST 1909: WILDLIFE ECOLOGY BIRDS OF CAVE CREEK CANYON NOPE. HE’S NOT ALL MIME IS BORN IN THE WHITE MOUNTAINS AUGUST 2009 ESCAPE. EXPLORE. EXPERIENCE BEST ofAZ of our favorite things 100featuring BRANDON WEBB & ROGER CLYNE plus DIERKS BENTLEY: The Coolest Dude in Country Music and A Pulitzer Winner and a Camera Went Into the Catalinas … contents 08.09 features 14 BEST OF AZ Our first-ever guide to the best of everything in Arizona, from eco-friendly accommodations to secret hide- aways and margaritas. The latter, by the way, come courtesy of Roger Clyne, the Tempe-based rock star. Cy Young Award-winner Brandon Webb pitched in on this piece as well, and so did NFL referee Ed Hochuli. Grand Canyon Some of the choices you’ll agree with. Others, prob - National Park ably not. Either way, this is our take on the “Best of Flagstaff Arizona.” EDITED BY KELLY KRAMER Sedona Springerville 36 A PULITZER WINNER AND A Camp Verde Globe CAMERA WENT INTO THE CATALINAS ... PHOENIX It sounds like a joke, doesn’t it? It’s not. We just wrote departments that to get your attention. When it comes to photography, 2 EDITOR’S LETTER 3 CONTRIBUTORS 4 LETTERS TO THE EDITOR Santa Catalina Jack Dykinga is dead serious. That’s why he has a Pulitzer Mountains sitting on his mantel. Or maybe it’s shoved in a drawer — 5 THE JOURNAL www.arizonahighways.com People, places and things from around the state, that’s more Jack’s style.