THE LIFE of the RBC and the PLATELET CLINICAL PATHOLOGY/NURSING Brandy Sprunger-Helewa, CVT, RVT, AAS, VTS (ECC)

Total Page:16

File Type:pdf, Size:1020Kb

THE LIFE of the RBC and the PLATELET CLINICAL PATHOLOGY/NURSING Brandy Sprunger-Helewa, CVT, RVT, AAS, VTS (ECC) THE LIFE OF THE RBC AND THE PLATELET CLINICAL PATHOLOGY/NURSING Brandy Sprunger-Helewa, CVT, RVT, AAS, VTS (ECC) Erythrocytes and platelets both begin their lives as hematocytoblasts, or stem cells, within the bone marrow. From there and within the bone marrow, they become ever-maturing erythroblasts and platelets until they are released into circulation. Once there, erythrocytes become denucleated, mature red blood cells. Platelets are actually fragments of large nucleated megakaryocytes; anywhere from 1,000–3,000 platelets are formed from one megakaryocyte. Once fragmented, platelets become capable of providing primary hemostasis when an injury occurs to the blood vessels, and are also nonnucleated. Because erythrocytes and platelets do not contain a nucleus, they cannot divide to create replacements of themselves, nor can they create proteins to repair themselves when damaged. This is why erythrocytes only have a lifespan of 120 days, while platelets only live for about ten days. Were erythrocytes to contain mitochondria, they would use up all of the oxygen that they were designed to carry to peripheral tissues. For energy, erythrocytes anaerobically metabolize glucose within the plasma, as do platelets. This is why red cells and plasma or serum must be separated after being spun down in a centrifuge; blood glucose levels would be falsely decreased if we did not. One drop of blood contains 260 million red blood cells and 7.5–15 million platelets. Erythrocytes are biconcave, which allows them to stack, bend, and fold into small capillaries, carrying oxygen to the most peripheral parts of the body. The total surface area of all the erythrocytes in the body is about 3,800 square meters; that’s almost as big as a football field, and is 2,000 times the surface area of the body itself! It takes 20 seconds for a red cell to make a complete circuit around the body, and it will do this 75,000 times during its life time. Platelets, on the other hand, are biconvex, and become more spherical in shape when being used to produce a clot. Platelets also develop long tendrils that allow them to hang on to each other, making the clot stronger. Humans create over 100 billion platelets in just one day, making them the most proliferative blood cell type in the body. Erythrocytes Each erythrocyte contains about 280 million hemoglobin molecules, and each of these has four “corners” that contain a heme molecule. This heme molecule is essentially a ring around an iron core, which is what facilitates the binding of oxygen. Heme and iron is what gives red blood cells their “red” hue. Not all of the oxygen in the body is attached to erythrocytes; only about 98% of it is. The rest is dissolved in plasma waiting to be picked up and transported by the red blood cells. This is why the use of a pulse oximeter does not give an accurate indication of total body oxygenation. Pulse oximeters are only telling you how many erythrocytes are transporting oxygen, not how much oxygen is dissolved in plasma. It is in the capillaries that the erythrocytes must stack, bend, and twist to be able to move along the capillary beds to deliver the oxygen to the tissues. Once the oxygen is delivered, carbon dioxide quickly attaches to the empty hemoglobin. Hypoxia and hypotension stimulate red cell production by sending messages to the nephrons in the renal cortex of the kidneys to release erythropoietin. Erythropoeitin stimulates the bone marrow to increase proerythroblast numbers while also decreasing the amount of time it takes for an erythrocyte to mature. As hypoxia or hypotension improve, the nephron receives the negative feedback and reduces the amount of erythropoietin released, slowing down production. There are many things that can affect erythrocyte life span, either directly or indirectly. These can include parasites, infectious diseases, illnesses or neoplasias, drugs, and toxins. Some affect the erythrocyte’s ability to carry oxygen while others destroy the shape of the cell itself. Still others may demolish the erythrocyte in its entirety. A list of the common causes for anemia are listed in Table 1. Hemangiosarcomas of the heart, liver, or spleen as well as disseminated intravascular coagulation (DIC) and vasculitis cause shearing injuries to the red blood cells seen as schistocytes and acanthocytes on blood smears. Rough blood vessels damage the smooth surface of erythrocytes as they pass by, tearing off pieces of the membranes. These pieces are unable to hold hemoglobin, and, thus, cannot carry oxygen. Immune mediated hemolytic anemia (IMHA) is a very common cause of both intravascular and extravascular red cell hemolysis. Red cells are inappropriately tagged with antibodies that the immune system deems as foreign and then sets about destroying the cells. Many abnormalities of the erythrocytes can be seen when evaluating a blood smear and can help determine the source or cause of the changes themselves. In IMHA and many of the toxins, a regenerative anemia will be present and demonstrated by spherocytosis, polychromasia, anisocytosis, reticulocytosis, and nucleated red blood cells. In neoplasias, particularly of the bone marrow, a nonregenerative anemia will be present. A microcytosis and hypochromasia is present in iron deficiency and zinc toxicity. Howell Jolly bodies are remnants of nuclear material that were not completely cleared from the erythrocyte, and can be seen in patients with anemias or who have a history of splenectomy. Echinocytes are seen in Type B snake envenomation, and are sometimes confused with crenation seen in poor slide creation or blood sampling techniques. Nucleated red blood cells can also be a poor prognostic indicator in heatstroke patients. Other erythrocyte changes in patients can include iatrogenic anemia caused by frequent blood draws or accidental disconnection of IV fluid lines from catheters. Heatstroke injures red blood cells through direct thermal damage; this occurs at temperatures over 107°F (42°C) and worsens when elevated temperatures are prolonged. As red cells age, they become stiff and have more trouble moving through the capillaries. Once this happens, or when red cells become damaged, 90% of them are phagocytized within the spleen, liver, and lymph nodes. Ten percent of the red cells are removed by macrophages. Hemoglobin is then broken down into heme and globulins. The globulins are further broken down into amino acids where they are picked up and used by other cells to produce new proteins. Heme is metabolized into bilirubin and then combines with albumin. This bound bilirubin travels to the liver where it combines with glucuronic acid and becomes conjugated bilirubin. It is then secreted into the small intestines with bile and travels to the large intestines where bacteria break it down into urobilinogen. Most urobilinogen is excreted in feces, but some is reabsorbed by the colon and is excreted in the urine, making urine yellow in color. Platelets Despite their small size, platelets have a very important job to do, which is to help prevent hemorrhage from every single blood vessel and capillary in the body—they are there to keep the erythrocytes in their place! The moment a tear occurs in a vessel is the moment that platelets take action, by being attracted to the exposed collagen of the vessel wall. Once the platelets attach to the rent in the wall (primary hemostasis), they change shape, create long tendrils to hold on to each other, and secrete proteins that signal the instigation of the coagulation cascade (secondary hemostasis). The completion of secondary hemostasis will shore up this platelet plug and make it stronger. There are many things that can affect primary hemostasis, beginning with the number of platelets available in circulation. Patients with low platelet counts are termed thrombocytopenic, while patients with high platelet counts are termed as having thrombocytosis. Thrombocytosis can be seen in inflammatory processes like Systemic Inflammatory Response Syndrome (SIRS) and sepsis as well as DIC. High platelet counts are also common in patients who have had a splenectomy, Cushing’s disease, or certain types of myleoproliferative neoplasias. Occasionally, a primary thrombocytosis is hereditary in nature. Patients with high platelet counts are at high risk for a thromboembolic event, most commonly leading to a “saddle thrombus” or pulmonary thromboembolisms. These are also seen in patients with Cushing’s disease, IMHA, or hypertrophic cardiomyopathy, as these patients are often hypercoaguable to begin with. Thrombocytopenia can be further categorized into decreased production, increased consumption, increased destruction or sequestration of platelets into the spleen secondary to certain types of neoplasia (most commonly hemangiosarcoma). Decreased production can be due to a decrease in thrombopoietin, a hormone released by the kidneys and liver that stimulates the bone marrow to release and fractionate megakaryocytes. The bone marrow also may be unresponsive to thrombopoietin. Platelets can be consumed at a faster rate that they are being created in some infectious diseases (like Ehrlichiosis) or if there is a large acute hemorrhage. Thrombocytopenia due to increased destruction is most commonly seen in immune mediated illnesses like IMHA and immune mediated thrombocytopenia (immune-mediated thrombocytopenia [IMT] or idiopathic thrombocytopenic purpura [ITP]). Spontaneous bleeding occurs when platelet counts fall below 30–50,000/mm3. Thrombocytopenic patients often present with petechia, ecchymosis, epistaxis, melena, or hematochezia. The most common causes for thrombocytopenia and thrombocytosis are listed in Table 2. There are many other things that can affect platelet function and subsequent primary hemostasis. These include some drugs, toxins, and disease processes like sepsis and DIC. Platelet counts can be easily performed using a standard blood smear, and are often done at the same time that erythrocyte morphology is evaluated. Care must be taken that a sample of EDTA anticoagulated blood is used to ensure there are no platelet clumps, which would falsely lower the platelet count.
Recommended publications
  • Recombinant Factors for Hemostasis
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Chemical & Biomolecular Engineering Theses, Chemical and Biomolecular Engineering, Dissertations, & Student Research Department of Summer 2010 Recombinant Factors for Hemostasis Jennifer Calcaterra University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemengtheses Part of the Biochemical and Biomolecular Engineering Commons Calcaterra, Jennifer, "Recombinant Factors for Hemostasis" (2010). Chemical & Biomolecular Engineering Theses, Dissertations, & Student Research. 5. https://digitalcommons.unl.edu/chemengtheses/5 This Article is brought to you for free and open access by the Chemical and Biomolecular Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Chemical & Biomolecular Engineering Theses, Dissertations, & Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Recombinant Factors for Hemostasis by Jennifer Calcaterra A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Interdepartmental Area of Engineering (Chemical & Biomolecular Engineering) Under the Supervision of Professor William H. Velander Lincoln, Nebraska August, 2010 Recombinant Factors for Hemostasis Jennifer Calcaterra, Ph.D. University of Nebraska, 2010 Adviser: William H. Velander Trauma deaths are a result of hemorrhage in 37% of civilians and 47% military personnel and are the primary cause of death for individuals under 44 years of age. Current techniques used to treat hemorrhage are inadequate for severe bleeding. Preliminary research indicates that fibrin sealants (FS) alone or in combination with a dressing may be more effective; however, it has not been economically feasible for widespread use because of prohibitive costs related to procuring the proteins.
    [Show full text]
  • Bioimpedance Monitoring System for Pervasive Biomedical Applications
    Bioimpedance monitoring system for pervasive biomedical applications Jaime Punter Villagrasa ADVERTIMENT . La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ( www.tdx.cat ) i a través del Dipòsit Digital de la UB ( diposit.ub.edu ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en ac tivitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposici ó des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB . No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora . ADVERTENCIA . La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR ( www.tdx.cat ) y a través del Repositorio Digital de la UB ( diposit.ub.edu ) ha sido auto rizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un si tio ajeno al servicio TDR o al Repositorio Digital de la UB .
    [Show full text]
  • Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease Bone Marrow (Stem Cell) Transplant
    Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease 1 Produced by St. Jude Children’s Research Hospital Departments of Hematology, Patient Education, and Biomedical Communications. Funds were provided by St. Jude Children’s Research Hospital, ALSAC, and a grant from the Plough Foundation. This document is not intended to take the place of the care and attention of your personal physician. Our goal is to promote active participation in your care and treatment by providing information and education. Questions about individual health concerns or specifi c treatment options should be discussed with your physician. For more general information on sickle cell disease, please visit our Web site at www.stjude.org/sicklecell. Copyright © 2009 St. Jude Children’s Research Hospital How did bone marrow (stem cell) transplants begin for children with sickle cell disease? Bone marrow (stem cell) transplants have been used for the treatment and cure of a variety of cancers, immune system diseases, and blood diseases for many years. Doctors in the United States and other countries have developed studies to treat children who have severe sickle cell disease with bone marrow (stem cell) transplants. How does a bone marrow (stem cell) transplant work? 2 In a person with sickle cell disease, the bone marrow produces red blood cells that contain hemoglobin S. This leads to the complications of sickle cell disease. • To prepare for a bone marrow (stem cell) transplant, strong medicines, called chemotherapy, are used to weaken or destroy the patient’s own bone marrow, stem cells, and infection fi ghting system.
    [Show full text]
  • How Do We Treat Life-Threatening Anemia in a Jehovah's Witness
    HOW DO I...? How do we treat life-threatening anemia in a Jehovah’s Witness patient? Joseph A. Posluszny Jr and Lena M. Napolitano he management of Jehovah’s Witness (JW) The refusal of allogeneic human blood and blood prod- patients with anemia and bleeding presents a ucts by Jehovah’s Witness (JW) patients complicates clinical dilemma as they do not accept alloge- the treatment of life-threatening anemia. For JW neic human blood or blood product transfu- patients, when hemoglobin (Hb) levels decrease Tsions.1,2 With increased understanding of the JW patient beyond traditional transfusion thresholds (<7 g/dL), beliefs and blood product limitations, the medical com- alternative methods to allogeneic blood transfusion can munity can better prepare for optimal treatment of severe be utilized to augment erythropoiesis and restore life-threatening anemia in JW patients. endogenous Hb levels. The use of erythropoietin- Lower hemoglobin (Hb) is associated with increased stimulating agents and intravenous iron has been mortality risk in JW patients. In a study of 300 patients shown to restore red blood cell and Hb levels in JW who refused blood transfusion, for every 1 g/dL decrease patients, although these effects may be significantly in Hb below 8 g/dL, the odds of death increased 2.5-fold delayed. When JW patients have evidence of life- (Fig. 1).3 A more recent single-center update of JW threatening anemia (Hb <5 g/dL), oxygen-carrying patients (n = 293) who declined blood transfusion capacity can be supplemented with the administration reported an overall mortality rate of 8.2%, with a twofold of Hb-based oxygen carriers (HBOCs).
    [Show full text]
  • Guidelines for Transfusion and Patient Blood Management, and Discuss Relevant Transfusion Related Topics
    Guidelines for Transfusion and Community Transfusion Committee Patient Blood Management Community Transfusion Committee CHAIR: Aina Silenieks, M.D., [email protected] MEMBERS: A.Owusu-Ansah, M.D. S. Dunder, M.D. M. Furasek, M.D. D. Lester, M.D. D. Voigt, M.D. B. J. Wilson, M.D. COMMUNITY Juliana Cordero, Blood Bank Coordinator, CHI Health Nebraska Heart REPRESENTATIVES: Becky Croner, Laboratory Services Manager, CHI Health St. Elizabeth Mackenzie Gasper, Trauma Performance Improvement, Bryan Medical Center Kelly Gillaspie, Account Executive, Nebraska Community Blood Bank Mel Hanlon, Laboratory Specialist - Transfusion Medicine, Bryan Medical Center Kyle Kapple, Laboratory Quality Manager, Bryan Medical Center Lauren Kroeker, Nurse Manager, Bryan Medical Center Christina Nickel, Clinical Laboratory Director, Bryan Medical Center Rachael Saniuk, Anesthesia and Perfusion Manager, Bryan Medical Center Julie Smith, Perioperative & Anesthesia Services Director, Bryan Medical Center Elaine Thiel, Clinical Quality Improvement/Trans. Safety Officer, Bryan Med Center Kelley Thiemann, Blood Bank Lead Technologist, CHI Health St. Elizabeth Cheryl Warholoski, Director, Nebraska Operations, Nebraska Community Blood Bank Jackie Wright, Trauma Program Manager, Bryan Medical Center CONSULTANTS: Jed Gorlin, M.D., Innovative Blood Resources [email protected] Michael Kafka, M.D., LifeServe Blood Center [email protected] Alex Smith, D.O., LifeServe Blood Center [email protected] Nancy Van Buren, M.D., Innovative
    [Show full text]
  • Reducing the Risk of Iatrogenic Anemia and Catheter-Related Bloodstream Infections Using Closed Blood Sampling
    WHITE PAPER WHITE Reducing the Risk of Iatrogenic Anemia and Catheter-Related Bloodstream Infections Using Closed Blood Sampling INTRODUCTION In the Intensive Care Unit (ICU), critically ill patients are more numerous and severely ill than ever before.1 To effectively care for these patients, clinicians rely on physiologic monitoring of blood-flow, oxygen transport, coagulation, metabolism, and organ function. This type of monitoring has made the collection of blood for testing an essential part of daily management of the critically ill patient, yet it is widely recognized that excessive phlebotomy has a deleterious effect on patient health. The result is a clinical paradox in which diligent care may contribute to iatrogenic anemia. RISKS ASSOCIATED WITH CONVENTIONAL DIAGNOSTIC BLOOD SAMPLING Iatrogenic Anemia The process of obtaining a blood sample from an indwelling central venous or arterial Use of blood sampling techniques that rely catheter requires a volume of diluted blood on discarding a volume of blood for each (2–10 mL) to be discarded or “cleared” from the catheter before a sample can be taken.2,3 sample may contribute to iatrogenic anemia, Studies have shown that patients with central which remains a prevalent issue affecting venous or arterial catheters have more blood sampling than ICU patients who don’t have the vast majority of patients in the ICU. these catheters and the total blood volume drawn from patients with arterial catheters is 44% higher than patients without arterial catheters (See Table 1).4,5 It has also been
    [Show full text]
  • Myelodysplastic Syndromes Overview and Types
    cancer.org | 1.800.227.2345 About Myelodysplastic Syndromes Overview and Types If you have been diagnosed with a myelodysplastic syndrome or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Are Myelodysplastic Syndromes? ● Types of Myelodysplastic Syndromes Research and Statistics See the latest estimates for new cases of myelodysplastic syndromes in the US and what research is currently being done. ● Key Statistics for Myelodysplastic Syndromes ● What's New in Myelodysplastic Syndrome Research? What Are Myelodysplastic Syndromes? Myelodysplastic syndromes (MDS) are conditions that can occur when the blood- forming cells in the bone marrow become abnormal. This leads to low numbers of one or more types of blood cells. MDS is considered a type of cancer1. Normal bone marrow 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 Bone marrow is found in the middle of certain bones. It is made up of blood-forming cells, fat cells, and supporting tissues. A small fraction of the blood-forming cells are blood stem cells. Stem cells are needed to make new blood cells. There are 3 main types of blood cells: red blood cells, white blood cells, and platelets. Red blood cells pick up oxygen in the lungs and carry it to the rest of the body. These cells also bring carbon dioxide back to the lungs. Having too few red blood cells is called anemia. It can make a person feel tired and weak and look pale. Severe anemia can cause shortness of breath. White blood cells (also known as leukocytes) are important in defending the body against infection.
    [Show full text]
  • 6.5 X 11 Double Line.P65
    Cambridge University Press 978-0-521-53026-2 - The Cambridge Historical Dictionary of Disease Edited by Kenneth F. Kiple Index More information Name Index A Baillie, Matthew, 80, 113–14, 278 Abercrombie, John, 32, 178 Baillou, Guillaume de, 83, 224, 361 Abreu, Aleixo de, 336 Baker, Brenda, 333 Adams, Joseph, 140–41 Baker, George, 187 Adams, Robert, 157 Balardini, Lodovico, 243 Addison, Thomas, 22, 350 Balfour, Francis, 152 Aesculapius, 246 Balmis, Francisco Xavier, 303 Aetius of Amida, 82, 232, 248 Bancroft, Edward, 364 Afzelius, Arvid, 203 Bancroft, Joseph, 128 Ainsworth, Geoffrey C., 128–32, 132–34 Bancroft, Thomas, 87, 128 Albert, Jose, 48 Bang, Bernhard, 60 Alexander of Tralles, 135 Bannwarth, A., 203 Alibert, Jean Louis, 147, 162, 359 Bard, Samuel, 83 Ali ibn Isa, 232 Barensprung,¨ F. von, 360 Allchin, W. H., 177 Bargen, J. A., 177 Allison, A. C., 25, 300 Barker, William H., 57–58 Allison, Marvin J., 70–71, 191–92 Barthelemy,´ Eloy, 31 Alpert, S., 178 Bartlett, Elisha, 351 Altman, Roy D., 238–40 Bartoletti, Fabrizio, 103 Alzheimer, Alois, 14, 17 Barton, Alberto, 69 Ammonios, 358 Bartram, M., 328 Amos, H. L., 162 Bassereau, Leon,´ 317 Andersen, Dorothy, 84 Bateman, Thomas, 145, 162 Anderson, John, 353 Bateson, William, 141 Andral, Gabriel, 80 Battistine, T., 69 Annesley, James, 21 Baumann, Eugen, 149 Arad-Nana, 246 Beard, George, 106 Archibald, R. G., 131 Beet, E. A., 24, 25 Aretaeus the Cappadocian, 80, 82, 88, 177, 257, 324 Behring, Emil, 95–96, 325 Aristotle, 135, 248, 272, 328 Bell, Benjamin, 152 Armelagos, George, 333 Bell, J., 31 Armstrong, B.
    [Show full text]
  • Your Blood Cells
    Page 1 of 2 Original Date The Johns Hopkins Hospital Patient Information 12/00 Oncology ReviseD/ RevieweD 6/14 Your Blood Cells Where are Blood cells are made in the bone marrow. The bone marrow blood cells is a liquid that looks like blood. It is found in several places of made? the body, such as your hips, chest bone and the middle part of your arm and leg bones. What types of • The three main types of blood cells are the red blood cells, blood cells do the white blood cells and the platelets. I have? • Red blood cells carry oxygen to all parts of the body. The normal hematocrit (or percentage of red blood cells in the blood) is 41-53%. Anemia means low red blood cells. • White blood cells fight infection. The normal white blood cell count is 4.5-11 (K/cu mm). The most important white blood cell to fight infection is the neutrophil. Forty to seventy percent (40-70%) of your white blood cells should be neutrophils. Neutropenia means your neutrophils are low, or less than 40%. • Platelets help your blood to clot and stop bleeding. The normal platelet count is 150-350 (K/cu mm). Thrombocytopenia means low platelets. How do you Your blood cells are measured by a test called the Complete measure my Blood Count (CBC) or Heme 8/Diff. You may want to keep track blood cells? of your blood counts on the back of this sheet. What When your blood counts are low, you may become anemic, get happens infections and bleed or bruise easier.
    [Show full text]
  • Important Information for Female Platelet Donors
    Important Information for Female Platelet Donors We are grateful for the support you provide our community blood program and especially appreciate your willingness to help save lives as a volunteer platelet donor. We also take our responsibility to provide a safe and adequate blood supply very seriously and need to share the following information regarding a change to our donor eligibility criteria for female platelet donors. We recently began performing a Human Leukocyte Antigen (HLA) antibody test on each of our current female platelet donors who have ever been pregnant. In addition, we modified our Medical History Questionnaire to ask donors whether they have been pregnant since their last donation. Platelet donors who respond yes to that question will be screened for HLA antibodies. Platelet donors will also be retested after every subsequent pregnancy. These adjustments are being made as part of our effort to reduce occurrences of Transfusion-Related Acute Lung Injury (TRALI). TRALI is a rare but serious complication of blood transfusions most commonly thought to be caused by a reaction to HLA antibodies present in the donor’s plasma. When transfused, these antibodies can sometimes cause plasma to leak into the patient’s lungs, creating fluid accumulation — a condition referred to as acute pulmonary edema. Female donors who have been pregnant are more likely than others to have these HLA antibodies in their plasma. Once the antibodies develop, they are present forever. The antibodies could be harmful if transfused into certain patients. The antibodies are present in plasma — and platelet donations contain a high volume of plasma, so our current efforts are directed at screening blood samples from female platelet donors to test for the HLA antibody.
    [Show full text]
  • CD59: a Long-Known Complement Inhibitor Has Advanced to a Blood Group System
    B LOOD G ROUP R EVIEW CD59: A long-known complement inhibitor has advanced to a blood group system C. Weinstock, M. Anliker, and I. von Zabern The blood group system number 35 is based on CD59, a 20-kDa by Zalman et al.1 from the group of H.J. Muller-Eberhard in La membrane glycoprotein present on a large number of different Jolla, California, and in 1988 by Schönermark et al. from the cells, including erythrocytes. The major function of CD59 is to group of G.M. Hänsch in Heidelberg (Germany).2 This inhibitor protect cells from complement attack. CD59 binds to complement components C8 and C9 and prevents the polymerization of C9, was published under the designations “HRF (homologous which is required for the formation of the membrane attack restriction factor)” and “C8bp (C8 binding protein),” complex (MAC). Other functions of CD59 in cellular immunity respectively, to describe its properties.1,2 “C8bp” indicates the are less well defined. CD59 is inserted into the membrane by a glycosylphosphatidylinositol (GPI) anchor. A defect of this anchor binding capacity for C8. The name “HRF” points to a species causes lack of this protein from the cell membrane, which leads to incompatibility of this “factor” that provides protection from an enhanced sensitivity towards complement attack. Patients with complement attack more effectively in a homologous (e.g., paroxysmal nocturnal hemoglobinuria (PNH) harbor a varying human erythrocytes as a target of human complement) than in percentage of red blood cell clones with a defect in GPI-anchored proteins, including CD59. The most characteristic symptoms of a heterologous system (e.g., human erythrocytes as a target of this disease are episodes of hemolysis and thromboses.
    [Show full text]
  • Automatic Blood Cell and CRP Counter with Three-Part Differential
    FEATURE ARTICLE Automatic Blood Cell and CRP Counter with Three-Part Differential Measurement of White Blood Cells The LC-170 CRP FEATURE ARTICLE Automatic Blood Cell and CRP Counter with Three-Part Differential Measurement of White Blood Cells, The LC-170 CRP Yasuo Yamao WBC, RBC, Hct Electrical impedance method Hgb CRP Cyanmethemoglobin method Latex immunoturbidmetry WBC (White blood cells) LYM% MON% GRA% CRP quantitative LC-170CRP (Lymphocyte %) (Monocyte %) (Granulocyte %) analysis LYM# MON# GRA# (C-reactive protein) (Lymphocyte No.) (Monocyte No.) (Granulocyte No.) RBC (Red blood cells) PLT (Platelets) Hgb(Hemoglobin) Pct (Plateletcrit) Hct (Hematocrit) MPV (Mean Platelet Volume) MCV (Mean Corpuscular Volume) PDW (Platelet Distribution Width) MCH (Mean Corpuscular Hemoglobin) MCHC (Mean Corpuscular Hemoglobin Concentration) RDW (Red Blood Cell Distribution Width) Example of results Abstract The LC-l70 CRP automatic blood cell and CRP counter, developed by Horiba, is capable of simultaneously measuring all 19 C-reactive protein (CRP) density parameters and counting red blood cells, platelets, and three types of white blood cell: lymphocytes, monocytes, and granulocytes. As clinicians demand ever-higher precision measurements, a need has developed for clinical test machines having excellent operational and cost performance. This compact machine should make a powerful tool for initial diagnosis of inflammatory and infectious diseases, especially at small- and mid-size medical institutions. 20 Technical Reports 1 Introduction 2 Measurement Principles To prevent an explosion of medical costs as Japanese The LC-170 CRP uses the electrical impedance method society ages and fewer children are born, the Ministry of to count blood cells, the cyanmethemoglobin method to Health, Labor, and Welfare is pursuing a thorough reform measure hemoglobin concentration, and latex of the medical insurance system, including “preventing immunoturbidimetry to measure CRP concentration.
    [Show full text]