Fallen Angels

Total Page:16

File Type:pdf, Size:1020Kb

Fallen Angels Tuomas Uusheimo FALLEN ANGELS Introduction Works PHOTOGRAPHER TUOMAS UUSHEIMO HELSINKI TEL 358 44 5893600 [email protected] WWW.TUOMASPHOTO.COM Tuomas Uusheimo FALLEN ANGELS The gods circle the heavens at night, governing events on Earth as they pass. Observers of the starry skies have been watching events in the firmament for thousands of years, and every once in a while they see gods descending to Earth in fiery flames. Many cultures have interpreted lights in the firmament as manifestations of the gods. Some four thousand years ago, early stargazers in ancient Mesopotamia noticed that the passage of the gods across the skies could be predicted. This was the birth of observational astrology. Although the movements of the stars have been observed and recorded for millennia, heavenly events have also been associated with stories. Bolts of lightning were seen as weapons hurled by gods in Finland as well as in Greece, where Zeus was often depicted with a thunderbolt in his hand, while in Iran the god of the heavens wielded a club to smite his enemies. The God of the Old Testament may of course have also hurled thunderbolts onto sinners. Sometimes the blow from a god reached all the way down to earth. Meteorites raining down from the skies were even more awe-inspiring than thunderbolts. One that struck the ground over two thousand years ago in Saaremaa, Estonia, may have left traces in The Kalevala, where in a song “the heavens are burst asunder” and a “red-ball” rushes down through nine starry vaults. According to a story from the other side of the Earth, the black stone of Kaaba descended from heaven and the sins of mankind turned it black from its original brilliant white. The idea of meteorites as fallen angels recalls the early days of human religious experience. In the monotheistic tradition, Satan was originally a beautiful angel who was cast down from Heaven, burning on his way down and becoming black and ugly – like a luminous shooting star that is reduced to a black lump of stone by the time it reaches the ground. Yet some of its heavenly beauty may remain in the forms and structures of the stone if we look close enough. Jaakko Hämeen-Anttila Professor of Arabic and Islamic Studies, Helsinki University PHOTOGRAPHER TUOMAS UUSHEIMO HELSINKI TEL 358 44 5893600 [email protected] WWW.TUOMASPHOTO.COM Fallen Angels are portraits of meteorites collected from around the globe. The subjects of my photographs are moulded by time, the laws of nature and chance. Two durationally extreme timelines can be discerned in this process: the formation of the objects in space over billions of years, and their sudden metamorphosis as they strike the atmosphere and finally fall to the Earth. The temporal and spatial dimensions of these events are very difficult to grasp within the sphere of our finite human time. I wanted to photograph the objects in my own artificial space, as part of something enormous and infinitely old. Tuomas Uusheimo (b. 1973) studied photography for a short period at the Rhode Island School of Design. He also holds a degree in architecture from the Helsinki University of Technology. In 2009 he started working as a photographer full time. Since then he has worked as an artist photographer as well as on architectural, editorial and commercial assignments for Finnish and international journals and design agencies. He has exhibited his work in group shows in Finland, Croatia, China, Tunisia and the United States. Acknowledgements: Professor Jaakko Hämeen-Anttila Architect Jarkko Kettunen Arts Promotion Center Finland PHOTOGRAPHER TUOMAS UUSHEIMO HELSINKI TEL 358 44 5893600 [email protected] WWW.TUOMASPHOTO.COM Chelyabinsk, 2013, Diasec, 90 x 120cm Toluca, 2013, Diasec, 90 x 120cm PHOTOGRAPHER TUOMAS UUSHEIMO HELSINKI TEL 358 44 5893600 [email protected] WWW.TUOMASPHOTO.COM Northwest Africa unclassified, 2013, Diasec, 90 x 120cm Kaali järv, 2013, Diasec, 90 x 120cm PHOTOGRAPHER TUOMAS UUSHEIMO HELSINKI TEL 358 44 5893600 [email protected] WWW.TUOMASPHOTO.COM Fallen Angels at Lasipalatsi Gallery in Helsinki 9.1 – 26.1.2014 Fallen Angels at Lasipalatsi Gallery in Helsinki 9.1 – 26.1.2014 PHOTOGRAPHER TUOMAS UUSHEIMO HELSINKI TEL 358 44 5893600 [email protected] WWW.TUOMASPHOTO.COM Tuomas Uusheimo FALLEN ANGELS Works edition sold 1. Northwest Africa unclassified, 2013, Diasec, 90 x 120 cm 6+ 2 ap 2. Chergach, 2013, Diasec, 90 x 120 cm 5 + 2 ap 3. Chelyabinsk, 2013, Diasec, 90 x 120 cm 6 + 2 ap (2) 4. Kaali järv, 2013, Diasec, 90 x 120 cm 6 + 2 ap (2) 5. Millbillillie, 2013, Diasec, 45 x 60 cm 5 + 2 ap PHOTOGRAPHER TUOMAS UUSHEIMO HELSINKI TEL 358 44 5893600 [email protected] WWW.TUOMASPHOTO.COM 6. Bjurböle 2013, Diasec, 45 x 60 cm 5 + 2 ap 7. Jbilet Winselwan, 2013, Diasec, 90 x 120 cm 6 + 2 ap (2) 8. Toluca, 2013, Diasec, 90 x 120 cm 5 + 2 ap (1) 9. Northwest Africa 8095, 2013, Diasec, 45 x 60 cm 5 + 2 ap 10. Canyon Diablo, 2013, Diasec, 45 x 60 cm 5 + 2 ap (1) 11. Sikhote Alin, 2013, Diasec, 45 x 60 cm 5 + 2 ap (1) PHOTOGRAPHER TUOMAS UUSHEIMO HELSINKI TEL 358 44 5893600 [email protected] WWW.TUOMASPHOTO.COM 12. Katol, 2013, Diasec, 45 x 60 cm 5 + 2 ap 13. Salla, 2013, Diasec, 90 x 120 cm 6 + 2 ap 14. Brenham, 2013, Diasec, 90 x 120 cm 5 + 2 ap (1) 15. Northwest Africa 6963 (Martian), 2013, Diasec, 45 x 60 cm 5 + 2 ap PHOTOGRAPHER TUOMAS UUSHEIMO HELSINKI TEL 358 44 5893600 [email protected] WWW.TUOMASPHOTO.COM .
Recommended publications
  • (Sptpang Coil.) [I49] I50 Bulletin American Museum of Natural History
    Article VIII.-CATALOGUE OF METEORITES IN THE COLLECTION OF THE AMERICAN MUSEUM OF NATURAL HISTORY, TO JULY i, I896. By E. 0. HOVEY. 'T'he Collection of Meteorites in the Arnerican Museum of Natural History consists of fifty-five slabs, fragments and com- plete individuals, representing twenty-six falls and finds. The foundation of the mineralogical department of the Museum was laid in I874 by the purchase of the collection of S. C. H. Bailey, in which there were a few meteorites. More were acquired with the portion of the Norman Spang Collection of Minerals which was purchased in I89I, and other meteorites have been bought by the Museum from time to time, or have been presented to it by friends. The soujrce from which each specimen came has been indicated in the following cataloguLe. This publication is made to assist. the large number of persons who have become interested in knowing the extent to which the material of various falls and finds has been distributed among collections and the present location of specimens. AEROSIDERITES. (IRON METEORI ES.) Cat. Date of NAME AND Weight No. Discovery. DE;SCRIPTION. in grams. 18 1784 Tejupilco, Toluca Valley, Mexico. A complete individual, the surface of which has scaled off somewhat. A polished and etched surface shows coarse Widmanstatten figures. 1153. (Bailey Co/i.) 17841 Xiquipilco, Toluca Valley, Mexico. A complete individual of ellipsoidal form, which had been used as a pounder by the natives. 564. (Sptpang Coil.) [I49] I50 Bulletin American Museum of Natural History. [Vol. VIII, AEROSIDERITES.-Continued. Cat. Date of NAME AND DESCRIPTION.
    [Show full text]
  • Iron Meteorites Are Made of Fe-Ni Metal Phases with Such Minor Minerals As Schrebersite, Troilite, Cohenite and Other Fe-Ni Carbides
    Bulk elemental analyses of iron meteorites by using INAA and LA-ICPMS. N. Shirai1, A. Yamaguchi2, M. K. Haba2, T. Ojima2, M. Ebiahra1 and H. Kojima2, 1Tokyo Metropolitan Univer- sity, 2National Institute of Polar Research. Introduction: Iron meteorites are made of Fe-Ni metal phases with such minor minerals as schrebersite, troilite, cohenite and other Fe-Ni carbides. As most iron meteorites are believed to be samples from the metallic core of differentiated planetesimals, petrological, mineralogical and chemi- cal studies of iron meteorites are fundamental for unraveling the process of planetary differentiation. Based on the structures, iron meteorites are originally classified into hexahedrites, octahedrites and ataxites. Hexahedrites and ataxites are nearly made of kamacite and taenite, respectively. Octahedrites consist of kamacite and taenite, and they are further divided into six subgroups on the basis of the width of the kamcite from finest (>0.2 mm) to coarsest (>3.3 mm). Almost all iron meteorites are classified into octahedrites. The chemical clas- sification of iron meteorites is based on their trace element compositions (Ni, Ga, Ge and Ir). Bulk elemental abundances for iron meteorites have been obtained by using neutron activation analysis (NAA). Other analytical methods such as laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) have not been very often applied to iron meteorites. In this study, we present simple and effective procedures for the chemical classification of iron meteorites by using INAA and LA-ICPMS. Based on the analytical data obtained by two analytical techniques, we discuss the accuracy and the precision of our data and how promisingly our analytical methods can be applied to classifica- tion of iron meteorites.r 9, 2016 (12:00 pm, JST) Experimental: Canyon Diablo (IAB), Toluca (IAB), Cape York (IIIAB), Muonionalusta (IVA) and Dronino (ungrouped) were analyzed by using two analytical methods (INAA and LA-ICPMS).
    [Show full text]
  • Disequilibrium Melting and Melt Migration Driven by Impacts: Implications for Rapid Planetesimal Core Formation
    Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 100 (2013) 41–59 www.elsevier.com/locate/gca Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation Andrew G. Tomkins ⇑, Roberto F. Weinberg, Bruce F. Schaefer 1, Andrew Langendam School of Geosciences, P.O. Box 28E, Monash University, Melbourne, Victoria 3800, Australia Received 20 January 2012; accepted in revised form 24 September 2012; available online 12 October 2012 Abstract The e182W ages of magmatic iron meteorites are largely within error of the oldest solar system particles, apparently requir- ing a mechanism for segregation of metals to the cores of planetesimals within 1.5 million years of initial condensation. Cur- rently favoured models involve equilibrium melting and gravitational segregation in a static, quiescent environment, which requires very high early heat production in small bodies via decay of short-lived radionuclides. However, the rapid accretion needed to do this implies a violent early accretionary history, raising the question of whether attainment of equilibrium is a valid assumption. Since our use of the Hf–W isotopic system is predicated on achievement of chemical equilibrium during core formation, our understanding of the timing of this key early solar system process is dependent on our knowledge of the seg- regation mechanism. Here, we investigate impact-related textures and microstructures in chondritic meteorites, and show that impact-generated deformation promoted separation of liquid FeNi into enlarged sulfide-depleted accumulations, and that this happened under conditions of thermochemical disequilibrium. These observations imply that similar enlarged metal accumu- lations developed as the earliest planetesimals grew by rapid collisional accretion.
    [Show full text]
  • An Evaluation of the Palladium-Silver Isotope Systematics in the Oldest Differentiated Planetesimal: Beyond Shock
    43rd Lunar and Planetary Science Conference (2012) 1116.pdf AN EVALUATION OF THE PALLADIUM-SILVER ISOTOPE SYSTEMATICS IN THE OLDEST DIFFERENTIATED PLANETESIMAL: BEYOND SHOCK. M.F. Horan1, R.W. Carlson1,and J. Blichert-Toft2 Department of Terrestrial Magnetism, Carnegie Institution of Washington (5241 Broad Branch Road NW, Washing- ton DC 20015. [email protected]), 2Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1 and CNRS (69007 Lyon, France). Introduction: Troilite from Muonionalusta (iron Troilite from slab 1 contained 5.612 ng/g Ag with meteorite group IVA) gives the oldest absolute age yet 107Ag/109Ag of 1.127±0.002, and 0.780±0.002 ng/g Pd, measured for a differentiated planetesimal corresponding to 108Pd/109Ag of 0.05946 ±0.00010. (4565.3±0.1 Ma) which suggests that the IVA parent HCl-insoluble inclusions (probably schreibersite) with- body accreted, differentiated, and cooled within 2-3 in this troilite yielded 1.758±0.006 ng/g Ag with Ma after CAI formation [1]. The aim of this study is to 107Ag/109Ag of 1.130±0.002, and 5168±10 ng/g Pd, use the quick evolution and volatile-depleted (high corresponding to 108Pd/109Ag of 1691±8. Troilite from Pd/Ag) composition of IVA irons to better constrain slab 2 contained 11.75±0.04 ng/g Ag and had a the initial Solar System abundance of 107Pd ( 107Pd 107Ag/109Ag ratio of 1.0833±0.0004 [6]. The Pd con- 107 Ag with t1/2 = 6.5 Ma). Most Pd/Ag ages have been centration was 0.291±0.1 ng/g corresponding to referenced to 107Pd/108Pd = (2.40±0.05) x 10-5 obtained 108Pd/109Ag of 13.9±0.1.
    [Show full text]
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • Ron Hartman and the Lucerne Valley Meteorites by Robert Verish Ron Hartman and the Lucerne Valley Meteorites
    Meteorite Times Magazine Contents by Editor Featured Monthly Articles Accretion Desk by Martin Horejsi Jim's Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob's Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Meteorite Calendar by Anne Black Meteorite of the Month by Editor Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2011 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • The Mineralogical Magazine Journal
    THE MINERALOGICAL MAGAZINE AND JOURNAL OF THE MINERALOGICAL SOCIETY. 1~o. 40. OCTOBER 1889. Vol. VIII. On the Meteorites which have been found iu the Desert of Atacama and its neighbourhood. By L. FLETCHER, M.A., F.R.S., Keeper of Minerals in the British Museum. (With a Map of the District, Plate X.) [Read March 12th and May 7th, ]889.J 1. THE immediate object of the present paper is to place on record J- the history and characters of several Atacama meteorites of which no description has yet been published; but incidentally it is con- venient at the same time to consider the relationship of these masses to others from the same region, which either have been already described, or at least are stated to be preserved in one or more of the known Meteo. rite-Collections. 2. The term " Desert of Atacama " is generally applied to that part of western South America which lies between the towns of Copiapo and Cobija, about 330 miles distant from each other, and which extends island as far as the Indian hamlet of Antofagasta, about 180 miles from 224 L. FLETCHER ON THE METEORITES OF ATACAMA. the coast. The Atacama meteorites preserved in the Collections have been found at several places widely separated throughout the Desert. 3. A critical examination of the descriptive literature, and a compari- son of the manuscript and printed meteorite-lists, which have been placed at my service, lead to the conclusion that all the meteoritic frag- ments from Atacama now preserved in the known Collections belong to one or other of at most thirteen meteorites, which, for reasons given below, are referred to in this paper under the following names :-- 1.
    [Show full text]
  • W Numerze: – Wywiad Z Kustoszem Watykańskiej Kolekcji C.D. – Cz¹stki
    KWARTALNIK MI£OŒNIKÓW METEORYTÓW METEORYTMETEORYT Nr 3 (63) Wrzesieñ 2007 ISSN 1642-588X W numerze: – wywiad z kustoszem watykañskiej kolekcji c.d. – cz¹stki ze Stardusta a meteorytry – trawienie meteorytów – utwory sp³ywania na Sikhote-Alinach – pseudometeoryty – konferencja w Tucson METEORYT Od redaktora: kwartalnik dla mi³oœników OpóŸnieniami w wydawaniu kolejnych numerów zaczynamy meteorytów dorównywaæ „Meteorite”, którego sierpniowy numer otrzyma³em Wydawca: w paŸdzierniku. Tym razem g³ówn¹ przyczyn¹ by³y k³opoty z moim Olsztyñskie Planetarium komputerem, ale w koñcowej fazie redagowania okaza³o siê tak¿e, i Obserwatorium Astronomiczne ¿e brak materia³u. Musia³em wiêc poczekaæ na mocno opóŸniony Al. Pi³sudskiego 38 „Meteorite”, z którego dorzuci³em dwa teksty. 10-450 Olsztyn tel. (0-89) 533 4951 Przeskok o jeden numer niezupe³nie siê uda³, a zapowiedzi¹ [email protected] dalszych k³opotów jest mi³y sk¹din¹d fakt, ¿e przep³yw materia³ów zacz¹³ byæ dwukierunkowy. W najnowszym numerze „Meteorite” konto: ukaza³ siê artyku³ Marcina Cima³y o Moss z „Meteorytu” 3/2006, 88 1540 1072 2001 5000 3724 0002 a w kolejnym numerze zapowiedziany jest artyku³ o Morasku BOŒ SA O/Olsztyn z „Meteorytu” 4/2006. W rezultacie jednak bêdzie mniej materia³u do Kwartalnik jest dostêpny g³ównie t³umaczenia i trzeba postaraæ siê o dalsze w³asne teksty. Czy mo¿e ktoœ w prenumeracie. Roczna prenu- merata wynosi w 2007 roku 44 z³. chcia³by coœ napisaæ? Zainteresowanych prosimy o wp³a- Z przyjemnoœci¹ odnotowujê, ¿e nabieraj¹ tempa przygotowania cenie tej kwoty na konto wydawcy do kolejnej konferencji meteorytowej, która planowana jest na 18—20 nie zapominaj¹c o podaniu czytel- nego imienia, nazwiska i adresu do kwietnia 2008 r.
    [Show full text]
  • N Arieuican%Mllsellm
    n ARieuican%Mllsellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2I63 DECEMBER I9, I963 The Pallasites BY BRIAN MASON' INTRODUCTION The pallasites are a comparatively rare type of meteorite, but are remarkable in several respects. Historically, it was a pallasite for which an extraterrestrial origin was first postulated because of its unique compositional and structural features. The Krasnoyarsk pallasite was discovered in 1749 about 150 miles south of Krasnoyarsk, and seen by P. S. Pallas in 1772, who recognized these unique features and arranged for its removal to the Academy of Sciences in St. Petersburg. Chladni (1794) examined it and concluded it must have come from beyond the earth, at a time when the scientific community did not accept the reality of stones falling from the sky. Compositionally, the combination of olivine and nickel-iron in subequal amounts clearly distinguishes the pallasites from all other groups of meteorites, and the remarkable juxtaposition of a comparatively light silicate mineral and heavy metal poses a nice problem of origin. Several theories of the internal structure of the earth have postulated the presence of a pallasitic layer to account for the geophysical data. No apology is therefore required for an attempt to provide a comprehensive account of this remarkable group of meteorites. Some 40 pallasites are known, of which only two, Marjalahti and Zaisho, were seen to fall (table 1). Of these, some may be portions of a single meteorite. It has been suggested that the pallasite found in Indian mounds at Anderson, Ohio, may be fragments of the Brenham meteorite, I Chairman, Department of Mineralogy, the American Museum of Natural History.
    [Show full text]
  • Investigate the History of the Solar System
    ARTHUR ROSS HALL OF METEORITES Grades 9-12 Investigate the History of the Solar System Overview Correlations to Standards Students will learn about meteorites and how scientists use these space rocks NY ES4 1.2C: Our solar system formed to investigate how the solar system formed and evolved. about five billion years ago from a giant cloud of gas and debris. Gravity caused • Before Your Visit: Students will complete a formative assessment probe, Earth and other planets to become and read and discuss a text about how and why scientists study meteorites. layered according to density differences in their materials. • During Your Visit: In the Arthur Ross Hall of Meteorites, students will observe meteorite samples to uncover the story of the formation and evolution of the solar system. Then, in the Gottesman Hall of Planet Earth, students will learn more about the formation of the Earth-Moon system, and search for impact craters on Earth and the Moon. • Back in the Classroom: Students will produce an illustrated text that describes the history of the solar system and explains how meteorites help scientists uncover this history. Background for Educators Meteorites are space debris that has fallen to Earth. They’re called meteoroids when still in deep space, meteors (or “shooting stars”) when falling through the atmosphere, and meteorites after they land on Earth. Meteorites range in size from microscopic to kilometers in diameter. They all originate inside our solar system. Most are fragments of small rocky and metallic bodies that broke apart long ago and orbit the Sun in the asteroid belt between Mars and Jupiter.
    [Show full text]
  • Meteorite Collections: Sample List
    Meteorite Collections: Sample List Institute of Meteoritics Department of Earth and Planetary Sciences University of New Mexico October 01, 2021 Institute of Meteoritics Meteorite Collection The IOM meteorite collection includes samples from approximately 600 different meteorites, representative of most meteorite types. The last printed copy of the collection's Catalog was published in 1990. We will no longer publish a printed catalog, but instead have produced this web-based Online Catalog, which presents the current catalog in searchable and downloadable forms. The database will be updated periodically. The date on the front page of this version of the catalog is the date that it was downloaded from the worldwide web. The catalog website is: Although we have made every effort to avoid inaccuracies, the database may still contain errors. Please contact the collection's Curator, Dr. Rhian Jones, ([email protected]) if you have any questions or comments. Cover photos: Top left: Thin section photomicrograph of the martian shergottite, Zagami (crossed nicols). Brightly colored crystals are pyroxene; black material is maskelynite (a form of plagioclase feldspar that has been rendered amorphous by high shock pressures). Photo is 1.5 mm across. (Photo by R. Jones.) Top right: The Pasamonte, New Mexico, eucrite (basalt). This individual stone is covered with shiny black fusion crust that formed as the stone fell through the earth's atmosphere. Photo is 8 cm across. (Photo by K. Nicols.) Bottom left: The Dora, New Mexico, pallasite. Orange crystals of olivine are set in a matrix of iron, nickel metal. Photo is 10 cm across. (Photo by K.
    [Show full text]
  • Geophysical Abstracts 167 October-December 1956
    Geophysical Abstracts 167 October-December 1956 GEOLOGICAL SURVEY BULLETIN 1048-D Geophysical Abstracts 167 October-December 1956 By MARY C. RABBITT, DOROTHY B. VTTALIANO, S. T. VESSEEOWSKY and others GEOLOGICAL SURVEY BULLETIN 1048-D Abstracts of current literature pertaining to the physics of the solid earth and to geophysical exploration UNITED STATES .GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director Per sale by th& Superintendent of Documents, LL S. Government Printing Office, Washington 25, D. C. .Price 25 ;cents, (single copy). Subscription price: $1.00 a year; 35 cents additional* 'for foreign mailing. The printing ofthis: publication h^s'feeeii approved'tty the Director of5 -' the Bureau ot the Budget, March 5, 1956. CONTENTS Page Introduction._____________________________________________________ 293 Extent of coverage___________________________________________ 293 List of journals--_-_____-_-__-___-____-________________________ 293- Form of eitation_______________________________________________ 294 Abstractors ___-__---_-_-_----._____-_--_-___________-_-_..______ 294 Age determinations_________________________________________________ 295 Earth currents____________________________________________________ 303 Earthquakes and earthquake \vaves__________________________________ 304 Elasticity___________-___--__---_-___-__-___________.__-___.__- 314 Electrical exploration--:-__-_-_--_---______-______________________-_ 316 Electrical
    [Show full text]