Secretory Structures in Leaves and Flowers of Two Dragon’S Blood Croton (Euphorbiaceae): New Evidence and Interpretations

Total Page:16

File Type:pdf, Size:1020Kb

Secretory Structures in Leaves and Flowers of Two Dragon’S Blood Croton (Euphorbiaceae): New Evidence and Interpretations Int. J. Plant Sci. 177(6):511–522. 2016. q 2016 by The University of Chicago. All rights reserved. 1058-5893/2016/17706-0004$15.00 DOI: 10.1086/685705 SECRETORY STRUCTURES IN LEAVES AND FLOWERS OF TWO DRAGON’S BLOOD CROTON (EUPHORBIACEAE): NEW EVIDENCE AND INTERPRETATIONS Ana Carla Feio,* Ricarda Riina,† and Renata Maria Strozi Alves Meira1,* *Departamento de Biologia Vegetal, Anatomia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; and †Real Jardín Botánico, Consejo Superior de Investigaciones Científicas (RJB-CSIC), Plaza de Murillo 2, 28014 Madrid, Spain Editor: Patrick S. Herendeen Premise of research. Previous studies of secretory structures in species of the Neotropical dragon’s blood Croton (section Cyclostigma) show inconsistencies in their classification. An accurate assessment of the iden- tity and homology of such structures is essential for taxonomic and evolutionary studies. Methodology. Field-collected leaves, stipules, and flowers at different developmental stages were sampled. The material was subjected to standard anatomical study by light microscopy and SEM, and secretions were evaluated by histochemical analyses. Pivotal results. Leaves and flowers of Croton echinocarpus and Croton urucurana present five secretory structures (idioblasts, laticifers, colleters, extrafloral nectaries, and floral nectaries) with high similarity between the two species. Idioblasts secrete compounds of a mixed nature; laticifers are branched and nonarticulated; and colleters and nectaries present hydrophilic secretion. The leaf marginal glands previously described as extra- floral nectaries are actually colleters of the standard type. We found colleters in staminate and pistillate flowers. The histochemical tests detected proteins in the secretions of all structures. Conclusions. The classes of secondary metabolites detected support the biological activities of secretion described in the literature. The correct identification of colleters in flowers establishes a new register of these structures in flowers of this genus. We show that an approach integrating anatomic structure, histochemistry, and period of secretion activity allows for a more accurate classification and homology assessment of secretory elements in this genus, which is exceptionally rich in this type of structures. Keywords: anatomy, colleters, Crotoneae, histochemistry, nectaries, stipules. Introduction ginal glands have been described as colleters of the standard type in different sections of Croton and other Crotoneae gen- Croton echinocarpus Müll. Arg. and Croton urucurana Baill. era (Astraea Klotzsch and Brasiliocroton P.E. Berry & Cordeiro; are members of section Cyclostigma, a group of tree species Riina et al. 2014, 2015; Vitarelli et al. 2015). De-Paula et al. popularly known as dragon’s blood because of the exudation (2011), in a study of the floral morphology and anatomy of sev- of abundant red latex (Riina et al. 2009; van Ee et al. 2011) eral Crotoneae species, including C. urucurana, found glands that is used for medicinal purposes across the Neotropics. Be- alternate to floral nectaries that they described as filamentous sides laticifers, four other secretory structures (colleters, idio- structures. These authors also reported glands along the surface blasts, extrafloral nectaries, and secretory trichomes) have been of sepals as secretory trichomes, although they noted their sim- identified in the leaves of several Croton lineages from sections ilarity to colleters (De-Paula et al. 2011). other than Cyclostigma (Vitarelli et al. 2015). Previous anatom- For an accurate classification of a secretory structure, its an- ical surveys on members of Cyclostigma included the two spe- atomical characterization must be accompanied by an analysis cies studied here and described secretory structures from both of the chemical nature of its exudate and an evaluation of the leaves and flowers (Sá-Haiad et al. 2009; De-Paula et al. 2011); period of secretory activity. Descriptions based solely on mor- however, classification and homology assessment of such struc- phology are not sufficient to assign a role to a structure (Lersten tures remain unclear and require further investigation. and Curtis 1996) or to determine the importance of the exudate Extrafloral nectaries have been recorded to occur on the for the plant. In addition, morphologically similar structures margin, base, and blade of leaves of C. echinocarpus and may play different functional roles. Extrafloral nectaries can C. urucurana (Sá-Haiad et al. 2009). However, similar mar- be confused with other secretory structures, such as colleters, because the latter are also external structures that can have sim- 1 Author for correspondence; e-mail: [email protected]. ilar anatomy and topology. However, the period of activity and Manuscript received October 2015; revised manuscript received December the composition of the secretion show that the activity of 2015; electronically published May 24, 2016. colleters is earlier than that of nectaries, and the colleters’ secre- 511 This content downloaded from 161.111.170.152 on August 27, 2018 23:52:10 PM All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c). 512 INTERNATIONAL JOURNAL OF PLANT SCIENCES tion is characterized by the presence of mucilage, lipids, and pro- et al. 1965), and slides were mounted with synthetic resin (Per- teins and the absence of sugar (Fahn 1979; Thomas 1991; Cruz mount, Fisher Scientific, Fair Lawn, NJ). et al. 2002; Klein et al. 2004; Barreiro and Machado 2007). Nec- Part of each sample was also dehydrated through a tert- taries, on the other hand, secrete nectar, a sugary substance con- butanol series (Johansen 1940), embedded in histological par- sisting mainly of glucose, fructose, and sucrose (Fahn 1979; affin with DMSO (Histosec, Merck, Darmstadt, Germany), and Bentley and Elias 1983). serially sectioned at 10–12-mm thickness on a rotary microtome Because of inconsistencies in distinguishing between nectaries (Spencer 820, American Optical, Buffalo, NY). For structural and colleters in previous studies of Croton and the importance of characterization, longitudinal and cross sections were stained an accurate classification of such structures for taxonomy and with Astra blue 1% (Kropp 1972) and Safranin O 1% (Bukatsch evolutionary studies requiring accurate homology assessment, 1972, adapted) and mounted with synthetic resin. For structural we analyze the structure and histochemistry of leaf and floral se- characterization and histochemical tests, floral samples were cretory structures of C. echinocarpus and C. urucurana. We also dehydrated through tert-butanol series and embedded in histo- discuss the relationship between structure, secretion composi- logical paraffin with DMSO. tion, and function as well as the chemical nature of the secretions For detection of the main classes of secondary compounds, and its connections to the phytochemistry findings and medici- the following histochemical tests were carried out: periodic nal uses reported for both species in the literature. acid–Schiff reagent for total polysaccharides (McManus 1948); ruthenium red for acidic mucilage (Gregory and Baas 1989); Material and Methods tannic acid/ferric chloride for neutral mucilage (Pizzolato and Lillie 1973); Sudan black B (Pearse 1985) and neutral red (Kirk Croton echinocarpus is endemic to the Atlantic Forest of 1970) for total lipids in visible and UV light, respectively; NADI southeastern Brazil (Caruzo and dos Santos 2015), while Cro- reagent for terpenoids (David and Carde 1964); copper acetate/ ton urucurana is more widely distributed in southern South rubeanic acid for fatty acids (Ganter and Jollés 1969–1970); America (Brazil, Argentina, Paraguay, and Bolivia), occurring Nile blue for neutral and acidic lipids (Cain 1947); vanillin/ as a pioneer species in riparian forest (Caruzo and Cordeiro hydrochloric acid for tannins (Mace and Howell 1974); Wag- 2007; Cordeiro et al. 2015). Both species occur spontaneously ner’s reagent for alkaloids (Furr and Mahlberg 1981); and in Minas Gerais state, as well as around the Universidade Fede- xilidine ponceau (O’Brien and McCully 1981) and ninhydrin/ ral de Viçosa campus (20745010.10900S, 42752016.16700W) and Schiff’s reagent (Pearse 1985) for protein. Standard control pro- along the BR-356 road (2075403.93900S, 42739012.85700W), where cedures were carried out simultaneously as required for each fieldwork for this study was conducted. Samples were collected test, and the slides were mounted in glycerinated gelatin (Kaiser from vegetative and reproductive branches of both species. Her- 1880). To verify the occurrence of glucose in the secretion, barium vouchers were deposited at the VIC herbarium (Cou- Glicofita Plus (Accu-Chek Active, Hoffmann-La Roche) was tinho et al. 337, 338, 25/I/2014 [VIC]). Leaves at different de- used directly on the secretion. velopmental stages (shoot apex, leaf primordium, and mature Observations and photographic documentation were per- leaves), stipules, and staminate and pistillate flowers in different formed with a light microscope (Model AX70TRF, Olympus Op- stages of development were sampled (from bud to early fruit). tical, Tokyo) equipped with a U-Photo system and a digital camera Three fixative treatments were used for three different sets (AxioCam HRc, Carl Zeiss, Göttingen, Germany), an epifluo- of samples. The first set was fixed in FAA (formalin∶acetic rescence HBO 50-W mercury vapor lamp, and a filter block A (ex- acid∶ethanol
Recommended publications
  • Bark Anatomy and Cell Size Variation in Quercus Faginea
    Turkish Journal of Botany Turk J Bot (2013) 37: 561-570 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1201-54 Bark anatomy and cell size variation in Quercus faginea 1,2, 2 2 2 Teresa QUILHÓ *, Vicelina SOUSA , Fatima TAVARES , Helena PEREIRA 1 Centre of Forests and Forest Products, Tropical Research Institute, Tapada da Ajuda, 1347-017 Lisbon, Portugal 2 Centre of Forestry Research, School of Agronomy, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal Received: 30.01.2012 Accepted: 27.09.2012 Published Online: 15.05.2013 Printed: 30.05.2013 Abstract: The bark structure of Quercus faginea Lam. in trees 30–60 years old grown in Portugal is described. The rhytidome consists of 3–5 sequential periderms alternating with secondary phloem. The phellem is composed of 2–5 layers of cells with thin suberised walls and narrow (1–3 seriate) tangential band of lignified thick-walled cells. The phelloderm is thin (2–3 seriate). Secondary phloem is formed by a few tangential bands of fibres alternating with bands of sieve elements and axial parenchyma. Formation of conspicuous sclereids and the dilatation growth (proliferation and enlargement of parenchyma cells) affect the bark structure. Fused phloem rays give rise to broad rays. Crystals and druses were mostly seen in dilated axial parenchyma cells. Bark thickness, sieve tube element length, and secondary phloem fibre wall thickness decreased with tree height. The sieve tube width did not follow any regular trend. In general, the fibre length had a small increase toward breast height, followed by a decrease towards the top.
    [Show full text]
  • The Morphology and Histology of a Certain Structure Connected with the Pars Intermedia of the Pituitary Body Ofthe Ox1
    THE MORPHOLOGY AND HISTOLOGY OF A CERTAIN STRUCTURE CONNECTED WITH THE PARS INTERMEDIA OF THE PITUITARY BODY OFTHE OX1 ROSALIND \VULZEX From the Hearst Anatomical Laboratory oj the University oj California SEVENTEEN FIGURES Certain physiological experiments are now being conducted in the Rudolph Spreckels Physiological Laboratory of this University which necessitate the separation of a great number of ox pituitaries into their two main divisions. As an interesting anatomical feature was in this way brought to our attention the material was used in addition for this anatomical study. This feature has not been mentioned by the following who have written more or less fully upon the pituitary body of the ox, Peremeschko ('67), Dostojewski ('86), Herring ('08)' and Traut- mann ('11). The pituitary body of the ox, like that of other vertebrates, is composed of two distinct portions. One, the pars nervosa, is derived from the brain as an outgrowth of the hypothalamus. The other originates as a hollow buccal evagination which in time is completely separated from the digestive tract. That portion of this evagination which comes into contact with the pars nervosa is called the pars intermedia. It is a comparatively thin sheet of epithelium which spreads as a coating over much Material amounting to thousands of pituitary bodies was most kindly sup- plied by the Oakland Meat and Packing Company through the courtesy of the Superintendent. It was derived from cows, bulls and steers. As the cone struc- ture was present indifferently in these three varieties, its appearance can have little to do with sex or castration.
    [Show full text]
  • Tree Identification: from Bark and Leaves Or Needles
    Tree Identification: from bark and leaves or needles A walk in the woods can be a lot of fun, especially if you bring your kids. How do you get them to come along with you? Tell them this. “Look at the bark on the trees. Can you can find any that look like burnt potato chips, warts, cat scratches, camouflage pants or rippling muscles?” Believe it or not, these are descriptions of different kinds of tree bark. Tree ID from bark:______________________________________________________ Black cherry: The bark looks like burnt potato chips. Hackberry: The bark is bumpy and warty. Ironwood: The bark has long thin strips. With a little imagination, an ironwood can look like it is used as a scratching post by cats. They can also be easily spotted in winter because their light brown dead leaves hang on well past the first snow. Sycamore: A tree with bark that looks like camouflaged pants. The largest tree in Illinois is a sycamore, a majestic 115-foot tree near Springfield. Musclewood: a tree with smooth gray bark covering a trunk with ridges that look like they are rippling muscles. Shagbark hickory: Long strips of shaggy bark peeling at both ends. Cottonwood: Has heavy ridges that make it look like Paul Bunyan’s corduroy pants. Bur oak: Thick and gnarly bark has deep craggy furrows. The corky bark allows it to easily withstand hot forest fires. Tree ID from leaves or needles:________________________________________ Willow Oak: Has elongated leaves similar to those of a willow tree. Red pine: Red has 3 letters; a red pine has groupings of 2-3 prickly needles.
    [Show full text]
  • The Bark: = Periderm
    The Bark: = Periderm The bark is everything outside the vascular cambium. As you can see, there is a lot going on in the bark. The Bark: periderm: phellogen (cork cambium): The phellogen is the region of cell division that forms the periderm tissues. Phellogen development influences bark appearance. The Bark: periderm: phellem (cork): Phellem replaces the epidermis as the tree increases in girth. Photosynthesis can take place in some trees both through the phellem and in fissures. The Bark: periderm: phelloderm: Phelloderm is active parenchyma tissue. Parenchyma cells can be used for storage, photosynthesis, defense, and even cell division! The Bark: phloem: Phloem tissue makes up the inner bark. However, it is vascular tissue formed from the vascular cambium. The Bark: phloem: sieve tube elements: Sieve tube elements actively transport photosynthates down the stem. Conifers have sieve cells instead. The cambium: The cambium is the primary meristem producing radial growth. It forms the phloem & xylem. The Xylem (wood): The xylem includes everything inside the vascular cambium. The Xylem: a growth increment (ring): The rings seen in many trees represent one growth increment. Growth rings provide the texture seen in wood. The Xylem: vessel elements: Hardwood species have vessel elements in addition to trachieds. Notice their location in the growth rings of this tree The Xylem: fibers: Fibers are cells with heavily lignified walls making them stiff. Many fibers in sapwood are alive at maturity and can be used for storage. The Xylem: axial parenchyma: Axial parenchyma is living tissue! Remember that parenchyma cells can be used for storage and cell division.
    [Show full text]
  • Tolerance of Virginia-Type Peanut to Different Application Timings of 2,4-DB
    Tolerance ofVirginia-Type Peanut to Different Application Timings of 2,4-DB T. A. Baughman*, W. J. Grichar, and D. L. [ordan' ABSTRACT ductive periods. Astudyconductedin Texas on spanish-type Field studies were conducted to determine the ef­ peanut indicated 2,4-DB applied between maximum peg­ fects of2,4-DB application timings on yield and market ging and early pod (fruit) enlargement reduced yield and qualityofvirginia-typepeanut. Trialswere conducted at affected quality and pod size (Ketchersid et al., 1978). three locations in Texasand one location in North Caro­ However, theseyield reductions occurredwhen2,4-DB was linain 1997,1998, and 1999. 2,4-DB at 0.45 kgaelhawas applied at 0.9 kglha, which is more than the registered rate. applied 30, 45, 60, 90, and 120 d after planting (DAP). Multiple applications at 0.45 kglha did not affect spanish Additional timings included combinations of 30 DAP peanut (Ketchersid et al., 1978). Grichar et al. (1997) followedby (fb) 60, 90, or 120 DAP;60 DAP fb 90 or 120 reported that single and multiple applications of 2,4-DB at DAP; and 90 DAP fb 120 DAP. Peanut yield, market 0.45 kglha did not affect runner-type peanutyield or market grade factors, and pod and seed weight were not influ­ grade characteristics. enced by various application timings of 2,4-DB. Limiteddataare available documentingthe effect of 2,4­ DB on virginia-type peanut yield and grades when applied at various times throughoutthe growing season. Jordanet al. Key Words: Crop tolerance, market grade, yield. (2001) suggested that late season applications of2,4-DB did not affect podyield or market grade characteristics.
    [Show full text]
  • Getting Chemicals Into Trees Without Spraying
    Urban Forestry NR/FF/020 (pr) Getting Chemicals Into Trees Without Spraying Michael Kuhns, Forestry Extension Specialist This fact sheet provides an overview of injection, or phellogen that makes cork to thicken the outer bark, implantation, and other ways to get chemicals, mainly phloem that conducts food through the tree from where pesticides, into trees. Many techniques and systems it is stored or made to where it is being used (all of these exist and some are very good, some are good in some tissues together make up the bark), vascular cambium situations, and some are ineffective or bad for trees. that divides rapidly to make new phloem and xylem cells, This fact sheet addresses all of these. and xylem or wood. Xylem includes an outer layer called the sapwood that conducts mostly water and minerals from the roots to the canopy, and an inner layer called the Chemicals are applied to trees for many reasons. heartwood that is aged sapwood that has died and has lost Insecticides repel or kill damaging insects, fungicides its ability to conduct water but still adds strength. treat or prevent fungal diseases, nutrients and plant growth regulators affect growth, and herbicides kill trees or prevent sprouting after tree removal. Spraying is the most typical way to apply these chemicals. It is fast, uses readily available equipment, and is understood. The Phellem (Cork Phellogen down side of spraying is that much of the chemical being or Outer Bark) Phloem applied is wasted, either to drift, run off, or because it can not be applied precisely to where it is needed in the tree.
    [Show full text]
  • Tree Anatomy Stems and Branches
    Tree Anatomy Series WSFNR14-13 Nov. 2014 COMPONENTSCOMPONENTS OFOF PERIDERMPERIDERM by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Around tree roots, stems and branches is a complex tissue. This exterior tissue is the environmental face of a tree open to all sorts of site vulgarities. This most exterior of tissue provides trees with a measure of protection from a dry, oxidative, heat and cold extreme, sunlight drenched, injury ridden site. The exterior of a tree is both an ecological super highway and battle ground – comfort and terror. This exterior is unique in its attributes, development, and regeneration. Generically, this tissue surrounding a tree stem, branch and root is loosely called bark. The tissues of a tree, outside or more exterior to the xylem-containing core, are varied and complexly interwoven in a relatively small space. People tend to see and appreciate the volume and physical structure of tree wood and dismiss the remainder of stem, branch and root. In reality, tree life is focused within these more exterior thin tissue sets. Outside of the cambium are tissues which include transport cells, structural support cells, generation cells, and cells positioned to help, protect, and sustain other cells. All of this life is smeared over the circumference of a predominately dead physical structure. Outer Skin Periderm (jargon and antiquated term = bark) is the most external of tree tissues providing protection, water conservation, insulation, and environmental sensing. Periderm is a protective tissue generated over and beyond live conducting and non-conducting cells of the food transport system (phloem).
    [Show full text]
  • Species List For: Labarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey
    Species List for: LaBarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey 5/15/2006 Nels Holmberg Plant Survey 5/16/2006 Nels Holmberg, George Yatskievych, and Rex Plant Survey Hill 5/22/2006 Nels Holmberg and WGNSS Botany Group Plant Survey 5/6/2006 Nels Holmberg Plant Survey Multiple Visits Nels Holmberg, John Atwood and Others LaBarque Creek Watershed - Bryophytes Bryophte List compiled by Nels Holmberg Multiple Visits Nels Holmberg and Many WGNSS and MONPS LaBarque Creek Watershed - Vascular Plants visits from 2005 to 2016 Vascular Plant List compiled by Nels Holmberg Species Name (Synonym) Common Name Family COFC COFW Acalypha monococca (A. gracilescens var. monococca) one-seeded mercury Euphorbiaceae 3 5 Acalypha rhomboidea rhombic copperleaf Euphorbiaceae 1 3 Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agalinis gattingeri (Gerardia) rough-stemmed gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia parviflora swamp agrimony Rosaceae 5 -1 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Agrostis elliottiana awned bent grass Poaceae/Aveneae 3 5 * Agrostis gigantea redtop Poaceae/Aveneae 0 -3 Agrostis perennans upland bent Poaceae/Aveneae 3 1 Allium canadense var.
    [Show full text]
  • Why Do Animals Eat the Bark and Wood of Trees and Shrubs? William R
    FNR-203 Purdue University & Natural Re ry sou Forestry and Natural Resources st rc re e o s F Why Do Animals Eat the Bark and Wood of Trees and Shrubs? William R. Chaney, Professor of Tree Physiology Department of Forestry and Natural Resources Purdue University, West Lafayette, IN 47907 PURDUE UNIVERSITY Animals gnawing the bark and wood of trees anatomy, movement and storage of food in trees, and shrubs is not a malicious act or evidence of a and the variations in digestive systems among neurotic condition. Instead, it is the normal means animals. by which some animals acquire a nutritious food source. The ability to consume this seemingly Constituents of Plant Cell Walls unpalatable food supply and derive nourishment Unlike animals, plants have cells with rigid from it requires specialized feeding habits and cell walls composed of cellulose, hemicellulose, digestive systems. and lignins. Pectins help hold the individual cells together in tissues. All of these substances are potential sources of food for animals. Cellulose The most consummate wood feeders are the A principal component of cell walls is billions of termites throughout the world that cellulose, which consists of 5,000 to 10,000 literally devour thousands of tons of woody glucose molecules joined by a so-called beta debris every year in forests as well as lumber linkage to form straight chain polymers of pure in buildings. Many of our most serious and sugar. The long chains of cellulose are combined damaging insect pests are the bark beetles and first into microfibrils and then further into wood borers that feed on the parts of trees for macrofibrils to create a mesh-like matrix of cell which they are named.
    [Show full text]
  • Weed Science
    Integrated Pest Management MISSOURI Plant Protection Programs College of Agriculture, Food and Natural Resources Published by MU Extension, University of Missouri-Columbia $5.00 IPM1023 This publication is part of a series of IPM ManualsManuals prepared byby the Plant Protection ProgramsPrograms of the UniversityUniversity of Missouri.Missouri. TopicsTopics coveredcovered in the seriesseries include an introduction to scouting, weedweed identifi cation and management, plant diseases,diseases, and insects of fi eld and horticulturalhorticultural crops.crops. These IPM ManualsManuals are availableavailable from MU Extension at the following address: Extension Publications 2800 Maguire Blvd. Columbia, MO 65211 1-800-292-0969 CONTENTS Authors Broadleaf plant families. 4 Fred Fishel Department of Agronomy Common name index - Broadleaf plant Universiity of Missouri-Columbia families. 16 Kevin Bradley Grass and grasslike plant families. 17 Department of Agronomy Common name index - Grass and grasslike University of Missouri-Columbia plant families . 19 On the World Wide Web For this and other Integrated Pest Management publications on the World Wide Web, visit http://ipm.missouri.edu. Production MU Extension and Agricultural Information Tammy McNiel, editor Dennis Murphy, illustrator © 2005 University of Missouri A PHOTO COMPENDIUM OF MISSOURI WEED SEEDS ositive identifi cation of pests, includ- ruler. The distance between increments on the ing weeds, is the fi rst step in a sound sacle is 1 mm. Compare your sample with the Pintegrated pest management program. color images in this guide to assist in your iden- Knowledge of plant morphological features, tifi cation. Seed photographs are grouped by such as leaf and stem shape, fl ower type and their plant taxonomic family for both broadleaf color, and the presence of hairs make identi- and grass or grasslike weeds.
    [Show full text]
  • Light and Electron Microscopic Observations on the Anterior Pituitary of the Mouse Injected with Dl-Thyroxine By
    Okajimas Fol. anat. jap., 43: 21-51, 1967 Light and Electron Microscopic Observations on the Anterior Pituitary of the Mouse injected with dl-Thyroxine By Tomiji Uchida Department of Anatomy, Nagoya University School of Medicine, Nagoya, Japan (Director : Prof. Dr. Ka z u m a r o Y a m ad a) Introduction Probably, the first suggestion of the existence of a functional relationship between the thyroid and hypophysis was given by Niepce (1851) who described pituitary enlargement in a series of goitrous cretins. Since then numerous studies have provided detailed evidence of this relationship. The reciprocal interrelationship be- tween thyroid stimulating hormone (TSH) secretion in the anterior hypophysis and the circulating levels of thyroid hormone has been well established, and in general, procedures which reduce effective plasma concentrations of thyroid hormone increase thyrotrophic hormone release in the anterior pituitary, whereas increased circulat- ing levels of thyroxine inhibit thyrotophic hormone secretion. This negative feedback mechanism resides both in the level of the pituitary and of a hypothalamic " TSH releasing center " (S o 1 o m on and Dowling, '60). Earlier views (Ma rin e, Rosen and Spar k, '35; Morris, '52) favored pituitary acidophile cell as the source of thyrotrophic hormone, but results of many recent studies implicate the basophile cell (Zeckwer, '38a and '38b; Griesbach and Purves, '45 Pur v es and Griesbac h, '46a, '46b, '51a, '51b, '51c, '57a and '57b; Goldberg and Chaikoff, '50; Salter, '50, Halmi, '50, '51, '52a , '52b, and 52c ; R ennel s, '53; Halm i and G u d e, '54 D'Angelo, '53 and '55; Knigge, '55; Elf tman, '58; Mura - s h i m a, '60 and others).
    [Show full text]
  • Vascular Plants of Williamson County Croton Glandulosus Var. Lindheimeri − LINDHEIMER’S TROPIC CROTON [Euphorbiaceae]
    Vascular Plants of Williamson County Croton glandulosus var. lindheimeri − LINDHEIMER’S TROPIC CROTON [Euphorbiaceae] Croton glandulosus L. var. lindheimeri Muell.-Arg, LINDHEIMER’S TROPIC CROTON. Annual, taprooted, 1-stemmed at base, not rosetted, with an ascending to spreading branch on principal axis from each node, 10−22 cm tall; monoecious; shoots with only cauline leaves, densely stellate-pubescent with arms of hair unequal. Stems: cylindric, to 2.5 mm diameter, tough, green aging with light brown periderm on lower plant, having stellate hairs persistent on periderm. Leaves: helically alternate, simple, petiolate, with stipules; stipules 2, attached to stem at node, fingerlike, 1−1.5 mm long, with several stellate hairs and having some erect, 1-armed hairs at tip; petiole channeled, < 8−20 mm long, < blade, projecting from the edges at top of petiole and blade junction with a pair of glands (extrafloral nectaries), the nectaries cuplike and ± 0.6 mm across, in nature with a drop of exudate; blade oblong-narrowly ovate to ovate, 12−45 × 10−22 mm, tapered at base, serrate on margins, toothed to subtruncate at tip, pinnately veind with 3 veins at base and principal veins raised on lower surface, upper surface having hairs with fewer arms (some 1-armed), lower surface stellate-hairy throughout, arms subequal but with erect central arm. Inflorescence: raceme, with 1−3 pistillate flowers at base and < 10 staminate flowers above, bracteate, stellate-pubescent; raceme green, near base with 2 stalked, orangish yellow glands 0.35−0.4 mm long; bractlet subtending pedicel of staminate flowers club-shaped in outline, 0.5−0.7 mm long, < pedicel, ± green.
    [Show full text]