Nanotechnology in the Forest Products Industry
Total Page:16
File Type:pdf, Size:1020Kb
NaNannootteecchhnnoollooggyy iinn tthehe FFoorresestt PPrroodduuccttss IInndduussttrry:y: UUppddaattee PPhhiill JJoonneess TTeedd WeWeggnneerr JJuunnee 1199,, 22000055 www.swst.org www.nanotechforest.org www.fpl.fs.fed.us www.nano.gov PPrreesseennttaattiioonn OOvveerrvviieeww NNaannootteecchhnnoollooggyy WWhhaatt iiss NNaannootteecchhnnoollooggyy?? WWhhyy iiss iitt iimmppoorrttaanntt?? NNaattiioonnaall NNaannootteecchhnnoollooggyy IInniittiiaattiiveve NNaannootteecchhnnoollooggyy iinn tthhee FoForreestst PrProodduuctctss IInndduussttrryy WWoorrkksshhoopp DDeelliiveverraabblleess OOuuttccoommeess NNexextt StSteeppss AAFF&P&PAA AAggeennddaa 22002200 TTooppiicc AArreeaass NNaannootteecchhnnoollooggyy (A(Apppprroovveedd @@ DeDecceemmbbeerr 22000044 AAggeennddaa 22002200 CCTTOO mmeeeettiinngg)) NNaannoosscciieennccee aanndd NNaannootteecchhnnoollooggyy . The nanoscale is not just another step towards miniaturization. It is a qualitatively new scale where materials properties, such as melting point or electrical conductivity, differ significantly from the same properties in the bulk. “Nanoscience” seeks to understand these new properties. “Nanotechnology” seeks to develop materials and structures that exhibit novel and significantly improved physical, chemical, and tribiological properties and functions due to their nanoscale size. The goals of nanoscience and nanotechnology are: to understand and predict the properties of materials at the nanoscale to “manufacture” nanoscale components from the bottom up to integrate nanoscale components into macroscopic scale objects and devices for real-world uses The Scale of Things -- Nanometers and More Things Natural Things Manmade 10-2 m 1 cm 10 mm Head of a pin I1n-2 mtmersection of 1,000,000 nanometers = 21st Century Ant 10-3 m 1 millimeter (mm) MicroElectroMechanical devices Challenge ~ 5 mm 10 -100 µm wide quantum mechanics e v a w o r c Dust mite i M and continuum µ 200 m 10-4 m 0.1 mm 100 µm mechanics Fly ash d Human hair ~ 10-20 µm l ~ 10-50 µm wide or e w -5 0.01 mm h 10o m T r µ 10 m O P c O O i d e O O O O r M a r Red blood cells Red blood cells f O O O O O O O O n I Pollen grain with white cell O O O O O O O O µ ~ 2-5 m 1,000 nanometers = S S S S S S S S 10-6 m 1 micrometer (µm) Zone plate x-ray “lens” e l b Outermost ring spacing i s ~35 nm Vi 0.1 µm 10-7 m Combine nanoscale building t 100 nm blocks to make novel e l o i functional devices, e.g., a v d l a r photosynthetic reaction r t l o U center with integral w semiconductor storage 0.01 µm no 10-8 m a 10 nm Nanotube transistor ~10 nm diameter N Nanotube electrode e h ATP synthase T 10-9 m 1 nanometer (nm) y a r - x t f So DNA Carbon nanotube ~2-1/2 nm diameter 10-10 m 0.1 nm Quantum corral of 48 iron atoms on copper surface ~2 nm diameter Atoms of silicon positioned one at a time with an STM tip Office of Basic Energy Sciences Office of Science, U.S. DOE spacing ~tenths of nm Corral diameter 14 nm Version 03-05-02 Wood: Nature Working Across a Length Scale >1010! Cellulose nanofiber bundles 6 Assembly proteins (rosette) which produces ~28nm cellulose nanofibers www.ita.doc.gov/td/forestprod/ jupiter.phys.ttu.edu/corner/1999/dec99.pdf Candace Haigler and Larry Blanton, Cellulose: “You're surrounded by it, but did you know it was Source: Jeffery Catchmark , Penn State University there?” DDeeffiinniittiioonn ooff NNaannootetecchhnonollggyy SSccaallee:: 11 nnmm –– 110000 nnmm ((nnmm == bbiilllliioonntthh ooff aa mmeteteerr)) CCrreaeattiinngg nnaannooscscaallee ssiizzee mmaatteerriiaallss ddooeses nnoott mmeeaann nnaannototeechchnnoollooggyy iiss iinnvvoollvveedd MMaatteerriiaall mmuustst hhaavvee uunniiqquuee pprrooppeerrttiieess ((ee..gg.. eleleeccttrriicacall,, pphhyyssiicacall,, cchheemmiiccaall,, ooppttiicacall)) tthhaatt aarree ddiiffffeerreenntt tthhaatt tthhee bbuullkk pprrooppeerrttiieses AAcchhiieevviinngg tthhoossee uunniiqquuee pprrooppeerrttiieses mmuusstt be repeatable and controllable be repeatable and controllable “New” Materials from “Old” Materials MMoolleeccuullaarr PPeerrffeeccttiioonn:: TThhee FFuulllleerreennee NNaannoottuubbee • The strongest fiber that will ever be made • Electrical conductivity of copper or silicon • Thermal conductivity of diamond • The chemistry of carbon • The size and perfection of DNA • Can we harness this material? Nanomaterials Opportunities Nanomaterials offer the potential for unprecedented material performance that could Solve major societal problems (e.g., energy, medicine, environment, manufacturing, communications, computing, and security) Energize the economy for decades Revitalize existing businesses Boost competitiveness globally Create entirely new industries NNaannootteecchhnnoollooggyy MMaarrkkeett OOppppoorrtutunniittiieess >> $$11 TTrriilllliioonn MMaatteerriiaallss ((mmaarrkekett eessttiimmaattee $$334400 bbiilllliioonn)) EElleeccttrroonniiccss aanndd PPhhoottoonniiccss ((mmaarrkekett eessttiimmaattee $$330000 bbiilllliioonn)) MMeeddiiccaall ((mamarrkekett eessttiimmaattee $$118800 bbiilllliioonn)) IInndduussttrriiaall PPrroocceessssiinngg ((mmaarrkekett eessttiimamattee $$110000 bbiilllliioonn)) PPoowweerr ((mmaarrkekett eessttiimmaattee $$4455 bbiilllliioonn)) AAggrriiccuullttuurree ((nnoo eessttiimmaattee aavavaiillaabbllee)) CCoonnssttrruuccttiioonn ((nnoo eessttiimmaattee aavavaiillaabbllee)) UUSS NNaannootteecchhnnoollooggyy PPrrooggrraamm NNaattiioonnaall NNaannootteecchhnnoollooggyy IInniittiiaattiivvee ((NNNNII)) aapppprroovveedd 11999999 –– OOffffiiccee ooff ScSciieennccee&& TTeecchhnnoollooggyy PPoolliiccyy –– NNaattiioonnaall SScciieennccee && TTeecchhnnoollooggyy CCoouunncciill 2211st CCeennttuurryy NNaannootteecchhnnoollooggyy RR&&DD AAcctt ((PPLL 118800--115533)) DDeecceemmbbeerr 22000033 NNaannoossccaallee ScSciieennccee,, EEnnggiinneeeerriinngg,, && TTeecchhnnoollooggyy SuSubbccoommmmiitttteeee UU..S.S. NNaattiioonnaall NNaannoottecechhnnoollooggyy IInniittiiaattiivvee ((BBuuddggeett aauutthhororiittyy,, UUSS ddoollllaarrss iinn mmiilllliioonnss)) Fiscal Year 2001 2005 2006 National Science Foundation 150 305 344 Defense (DOD) 125 276 230 Energy (DOE) 88 211 207 National Institutes of Health 40 89 144 Commerce (NIST) 33 53 75 NASA 22 35 32 Agriculture (USDA) 0 5 11 EPA 5 5 5 Justice 1 2 2 Homeland Security 0 1 1 TOTAL 44664 9822 1054 NNI Centers and User Facilities Electron Transport in Molecular NSF Centers– 17 Nanostructures - Columbia DOD – 3 Templated Synthesis & Assembly Nanoscale Systems in Info. DOE NSRCs – 5 at the Nanoscale – U Wis-Madison Technologies – Cornell NASA – 4 Molecular Function at NanoBio Nanoscience in Biological & Interface – U Penn Environmental Engineering – NCI – 3-5 (FY2005+) Rice Extreme UV Science and High-Rate Nanomanufacturing – Integrated Nanopatterning & Technology – Northeastern Detection – Northwestern Colorado State Affordable Nanoeng . of Polymer Nanoscale Systems & Their Scalable & Integrated Biomedical Devices – Ohio State Device Applications – Nano Manufacturing - Harvard UCLA Integrated Nanomechanical Directed Assembly of Nanoscale CEM Systems – UC-Berkeley Nanostructures – Manufacturing Systems NNIN Rensselaer Polytechnic Inst Center - UIUC Probing the Nanoscale – Stanford Nanobiotechnology Learning & Teaching in Nano S&E – (STC) - Cornell NCN Northwestern 2000 2001 2002 2003 2004 2005 2006 2007 Cell Mimetic Space Nanophase Materials Institute for Exploration - UCLA Sciences - ORNL Nanoscience - NRL Intelligent Bio-Nanomtls & Molecular Foundry Structures for Aerospace - LBNL Institute of Soldier Vehicles – Tex A&M Integrated Nanotechnologies – MIT Bio-Inspection, Design, & Nanotechnologies - SNL Nanoscience Innovation Processing of Multifunctional Nanoscale Nanocomposites - Princeton in Defense - UCSB Materials - ANL Nanoelectronics & Computing - Functional 5/08 Purdue Nanomaterials - BNL 30000 25000 s Rest of World e l All c United States i 20000 t r a Nanotechnology f o 15000 r e Research Papers b 10000 m u n 5000 US ~30% 0 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 Year 6.0 5.0 s Rest of World e l c i United States t 4.0 r a High Impact " * 3.0 o n Journal a 2.0 n " Nanotechnology % 1.0 Research Papers 0.0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 9 9 9 9 9 9 9 9 9 0 0 0 0 0 9 9 9 9 9 9 9 9 9 0 0 0 0 0 US ~ 50% 1 1 1 1 1 1 1 1 1 2 2 2 2 2 Year pharmaceuticals cosmetics ,lipstick & drugs lotions & sunscreens Nano Now jewellery, pigments optical & in paints semiconductor wafer polishing cutting tools & wear flame retardant resistant coatings Nano 2007 additives drug delivery, biomagnetic biosensors, propellants, separation & wound transducers & functional nozzles & valves healing detectors designer fluids nano-optical, unique alloys nanoelectronics & Nano 2012 & coatings nanopower sources NEMS based faster switches high-end flexible nano-bio materials devices & ultrasensitive displays as artificial organs sensors NNaanonotetecchnhnoollooggyy && WWoooodd WoodWood // LLiigngnococeelllluullososee OOnnee ooff tthhee mmoosstt aabbuunnddaanntt bbiioollooggiiccaall rraaww mmaatteerriiaallss-- uubbiiqquuiittoouuss NNaannoo--ffiibbrriillaarr ssttrruuccttuurree ((ssoouurrccee oorr ssuubbssttiittuuttee ffoorr nnaannoottuubbeess && nnaannoowwiirreess??)) SSeellff--aasssseemmbbllyy——ccoonnttrroolllleedd LiLiggnnoocceelllluulloossee aass aa nnaannoommaatteerriiaall aanndd iittss iinntteerraacctt wwiitthh ootthheerr nnaannoommaatteerriiaallss iiss llaarrggeellyy uunneexxpplloorreedd CCaappaacciittyy ttoo bbee