“Butyl” and “Pentyl”

Total Page:16

File Type:pdf, Size:1020Kb

“Butyl” and “Pentyl” 1/31/18 CHEM 109A Organic Chemistry https://labs.chem.ucsb.edu/zakarian/armen/courses.html Chapter 3 An Introduction to Organic Compounds Nomenclature, Physical Properties, and Structure © 2017 Pearson Education, Inc. How many hydrogens are attached to each carbon HO cholesterol © 2017 Pearson Education, Inc. 1 1/31/18 Alkanes are Saturated Hydrocarbons, CnH2n+2, Only Single Bonds heating power bbq lighters gasoline jet fuel diesel © 2017 Pearson Education, Inc. Types of Alkanes in Chapter 3 straight chain branched cyclic (CnH2n+2) (C H ) n 2n+2 (CnH2n) hexane cyclohexane butane © 2017 Pearson Education, Inc. 2 1/31/18 Alkanes and Alkyl Groups: Two alkanes C4H10 CH3CH2CH2CH2−X X Butane Butyl group and X X CH3CH2CH2CH3 CH3CH2CHCH2 Butane sec-butyl group and Isobutane X CH3CH(CH3)2 X and CH3 (CH3)3C−X CH3 CH (CH3)2CHCH2−X CH3 Isobutane isobutyl group tert-butyl group © 2017 Pearsonbutane Education, Inc. and isobutane are constitutional isomers Alkyl Substituents X X X X ethyl group n-propyl group n-butyl group n-pentyl group R X generic alkyl group © 2017 Pearson Education, Inc. 3 1/31/18 n = an Unbranched Chain Common names sometimes use “n” (stands for “normal”) to indicate a straight-chain alkane. © 2017 Pearson Education, Inc. Alkyl Substituents X X X X ethyl group n-propyl group n-butyl group n-pentyl group X R X X sec-butyl group isobutyl group generic alkyl group branched alkyl groups © 2017 Pearson Education, Inc. 4 1/31/18 Primary, Secondary, and Tertiary Carbons • A primary carbon is bonded to one carbon. • A secondary carbon is bonded to two carbons. • A tertiary carbon is bonded to three carbons. • Primary hydrogens are attached to primary carbons. • Secondary hydrogens are attached to secondary carbons. • Tertiary hydrogens are attached to tertiary carbons. © 2017 Pearson Education, Inc. Common Types of Organic Compounds R N R R O R X R OH R NH2 H R R N X = F, or Cl, or Br, or I R R an alkyl halide an alcohol an ether an alkyl amine © 2017 Pearson Education, Inc. 5 1/31/18 Nomenclature: Systematic and Common Summary of basic rules for systematic nomenclature: 1. find the longest carbon chain: that is your root (8 carbons? - octane....) 2. number the carbons – start with the end closest to a substituent or branching point 3. properly name the substituent alkyl groups: name the group, goes in front as prefix, alphabetical order halides: fluoro-, chloro-, bromo-, iodo-, if more than 1, di(bromo)-, tri-, tetra-, etc. also go in front, alphabetical order HO groups: back of the name (suffix), -ol (like methanol); if more than one, -diol, -triol, -tetraol..... RO groups: called alkoxy- (methoxy, ethoxy, etc.) go in front NH2 groups: go in the back as -amine (1-butanamine) © 2017 Pearson Education, Inc. sec-Pentyl is Not a Good Name A name must specify only one compound. © 2017 Pearson Education, Inc. 6 1/31/18 “tert” Can Be Used with “Butyl” and “Pentyl” tert-hexyl is not a good name. © 2017 Pearson Education, Inc. “Iso” Iso is at one end, and the group replacing the H is at the other end. © 2017 Pearson Education, Inc. 7 1/31/18 Alkyl Group Names © 2017 Pearson Education, Inc. Nomenclature of Alkanes First identify the longest continuous chain (the parent hydrocarbon) © 2017 Pearson Education, Inc. 8 1/31/18 Add the Name of the Substituent Number the chain in the direction that gives the substituent as low a number as possible. © 2017 Pearson Education, Inc. Common versus Systematic Nomenclature Common names never have numbers. Only systematic names have numbers. © 2017 Pearson Education, Inc. 9 1/31/18 List Substituents in Alphabetical Order The correct name is the one that contains the lowest number. © 2017 Pearson Education, Inc. Multiple Substituents The chain is numbered in the direction that puts the lowest number in the name. Substituents are listed in alphabetical order. (di, tri, tetra, sec, tert are not alphabetized) © 2017 Pearson Education, Inc. 10 1/31/18 When Both Have the Same Lowest Number When both names have the same lowest number, go for the next lowest number. © 2017 Pearson Education, Inc. When Both Have the Same Numbers When the same numbers are obtained in both directions, the first group listed gets the lower number. © 2017 Pearson Education, Inc. 11 1/31/18 Branched Substituents If the substituent has a common name, the common name can be used instead of the parenthetical name. © 2017 Pearson Education, Inc. Branched Substituents If the substituent does not have a common name, the parenthetical name has to be used. © 2017 Pearson Education, Inc. 12 1/31/18 Chains with the Same Length When two or more chains have the same length, the parent hydrocarbon is the chain with the most substituents. © 2017 Pearson Education, Inc. Cycloalkanes Skeletal structures do not show Cs and Hs bonded to Cs. © 2017 Pearson Education, Inc. 13 1/31/18 Monosubstituted Cycloalkanes A number is not needed. © 2017 Pearson Education, Inc. Disubstituted Cycloalkanes Substituents are stated in alphabetical order. #1 goes to the first-listed substituent. © 2017 Pearson Education, Inc. 14 1/31/18 Two Substituents with the Same Low Number If more than one name has the same low number, choose the name with the next lowest number. © 2017 Pearson Education, Inc. Classification of Alkyl Halides primary alkyl halide = halogen is on a primary carbon secondary alkyl halide = halogen is on a secondary carbon tertiary alkyl halide = halogen is on a tertiary carbon © 2017 Pearson Education, Inc. 15 1/31/18 Common versus Systematic Nomenclature Numbers are used only for systematic names. Common names never have numbers. © 2017 Pearson Education, Inc. Nomenclature of Alkyl Halides © 2017 Pearson Education, Inc. 16 1/31/18 Ethers © 2017 Pearson Education, Inc. Common Names of Ethers The substituents are listed in alphabetical order. © 2017 Pearson Education, Inc. 17 .
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Ep 2611776 B1
    (19) TZZ ___T (11) EP 2 611 776 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 211/36 (2006.01) C07D 471/04 (2006.01) 21.09.2016 Bulletin 2016/38 A61K 31/45 (2006.01) A61P 3/10 (2006.01) C07D 211/76 (2006.01) (21) Application number: 11822081.3 (86) International application number: (22) Date of filing: 25.08.2011 PCT/KR2011/006260 (87) International publication number: WO 2012/030106 (08.03.2012 Gazette 2012/10) (54) PRODUCTION METHOD OF INTERMEDIATE COMPOUND FOR SYNTHESIZING MEDICAMENT HERSTELLUNGSVERFAHREN FÜR EINE INTERMEDIATVERBINDUNG ZUR SYNTHESE EINES MEDIKAMENTS PROCÉDÉ DE PRODUCTION D’UN COMPOSÉ INTERMÉDIAIRE POUR LA SYNTHÈSE D’UN MÉDICAMENT (84) Designated Contracting States: EP-A2- 0 279 435 WO-A1-2006/104356 AL AT BE BG CH CY CZ DE DK EE ES FI FR GB WO-A1-2006/104356 US-A- 5 556 982 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO US-A1- 2008 039 517 PL PT RO RS SE SI SK SM TR • KIM S ET AL: "Free Radical-Mediated (30) Priority: 03.09.2010 KR 20100086619 Carboxylation by Radical Reaction of Alkyl Iodides with Methyl Oxalyl Chloride", (43) Date of publication of application: TETRAHEDRONLETTERS, PERGAMON, GB, vol. 10.07.2013 Bulletin 2013/28 39, no. 40, 1 October 1998 (1998-10-01), pages 7317-7320, XP004133669, ISSN: 0040-4039, DOI: (73) Proprietor: LG Life Sciences Ltd 10.1016/S0040-4039(98)01568-8 Jongno-gu, Seoul 110-062 (KR) • CHRISTOPHE MORIN ET AL: "Synthesis and Evaluation of Boronated Lysine and (72) Inventors: Bis(carboranylated)[gamma]-Amino Acids as • KIM, Bong Chan Monomers for Peptide Assembly", EUROPEAN Daejeon 305-380 (KR) JOURNAL OF ORGANIC CHEMISTRY, vol.
    [Show full text]
  • Methyl- 5/7- Substituted -2- (3,4-Dichloro) Benzoyl-4H-L,4- Benzothiazines As Bifunctional Anticancer Agents
    Synthesis and Spectral studies of Nitrosourea derivatives of 3- Methyl- 5/7- Substituted -2- (3,4-dichloro) benzoyl-4H-l,4- Benzothiazines as Bifunctional Anticancer Agents. Rajni Gupta* and Vandana Gupta Department of Chemistry, University ofRajasthcm, Jaipur-302004, India Email: [email protected] Abstract: The synthesis of of 3-methyl-5/7- substituted-4- (N-propyl-N-nitrosoamido)- 2- (3,4-dichloro benzoyl) -4H- 1,4-Benzothiazines by the isocyanation and successive nitrosation of 3-methyl -5/7- substituted- 2- (3,4- dichlorobenzoyl) -4H-l,4-Benzothiazines has been reported. The synthesized compounds have been characterized by their elemental analyses and spectral characteristics. Introduction: Analogous to phenothiazines, benzothiazines possesss a wide spectrum of biological activities'. Their several derivatives are in clinical use2'7. They exhibit significant anticancer activities, which are assigned due to their interaction with DMA by complexation. Nitrosourea derivatives constitute an important class of anticancer agents and its several derivatives like MNNG, CNU, MNU, GANU, and CDL-7 etc. are clinically significant. They interact with DNA via alkylation 8"9. However their clinical use is limited because of cumulative and delayed side effects exerted by these compounds. Bone marrow toxicity being dose limiting, therefore it is worthwhile to develop a new series of nitrosoureas with minimum toxicity and side effects. 4H-1, 4- Benzothiazines are much less toxic and therefore it is anticipated that their nitrosourea derivatives will be potent anticancer agents with minimum toxicity, side effects etc. In 3-methyl-5/7- substituted-4- (N-propyl-N-nitrosoamido)- 2- (3,4-dichloro benzoyl) -4H-1.4- Benzothiazines heterocyclic nitrogen with a side chain at 4-position constitutes N-nitrosourea linkage and possess both 1,4-benzothiazines nucleus and a nitrosourea moiety .
    [Show full text]
  • Monoazo Dyes of the Benzothiazole Series, Their Preparation and Use In
    Europâisches Patentamt 0 013 809 (ij) QJJJ EuropeanEurooean Patent Office Qj)l'ï> Publication number: V ^- Office européen des brevets (lD EUROPEAN PATENT SPECIFICATION © Date of publication of patent spécification: 10.08.83 © Int. Cl.3: C 09 B 23/00, C 09 B 29/08, D 06 P 1/18 @^ Application number: 79302860.6 @ Dateof filing: 12.12.79 54) Monoazo dyes of the benzothiazole séries, their préparation and use in dyeing or printing hydrophobic fibres. (30) Priority: 25.12.78 JP 163617/78 @ Proprietor: SUMITOMO CHEMICAL COMPANY, 03.10.79 JP 128308/79 LIMITED 1 5 Kitahama 5-chome Higashi-ku Osaka-shi Osaka-fu (JP) © Date of publication of application: 06.08.80 Bulletin 80/16 @ Inventor: Yoshinaga, Kenja 10-3-314, Sonehigashinocho-2-chome @ Publication of the grant of the patent: Tokonaka-shi (JP) 1 0.08.83 Bulletin 83/32 Inventor: Hashimoto, Kiyoyasu 2-40, Hirata-1-chome Ibaraki-shi (JP) (84) Designated Contracting States: Inventor: Okaniwa, Tetsuo CH DE FR GB IT NL 27, Kuisehonmachi-1 -chome Amagasaki-shi (JP) Inventor: Kenmochi, Hirohito @ References cited: 9-1 5, Matsugaoka-4-chome DE - A - 1 959 777 Takatsuki-shi (JP) FR - A - 1 444 036 GB - A - 944 250 GB - A - 1 448 782 @ Representative: Harrison, Michael Robert et al, Urquhart-Dykes & Lord 47 Marylebone Lane London W1 M 6DL(GB) The file contains technical information submitted after the application was filed and not included in this specification Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Carboxylic Acid Functionalized Butyl Rubber: from Synthesis to Applications
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 2-7-2013 12:00 AM Carboxylic Acid Functionalized Butyl Rubber: From Synthesis to Applications Matthew John McEachran The University of Western Ontario Supervisor Dr. Elizabeth R. Gillies The University of Western Ontario Graduate Program in Chemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Matthew John McEachran 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Materials Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Polymer Chemistry Commons Recommended Citation McEachran, Matthew John, "Carboxylic Acid Functionalized Butyl Rubber: From Synthesis to Applications" (2013). Electronic Thesis and Dissertation Repository. 1117. https://ir.lib.uwo.ca/etd/1117 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Carboxylic Acid Functionalized Butyl Rubber: From Synthesis to Applications (Spine title: Carboxylic Acid Functionalized Butyl Rubber) (Thesis format: Integrated Article) by Matthew John McEachran Graduate Program in Chemistry A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London,
    [Show full text]
  • Chapter 23: Substituted Hydrocarbons and Their Reactions
    736-773_Ch23-866418 5/9/06 3:37 PM Page 736 CHAPTER 23 Substituted Hydrocarbons and Their Reactions Chemistry 2.b, 2.d, 2.h, 3.a, 3.g, 8.c, 10.a, 10.b, 10.e I&E 1.b, 1.c, 1.j What You’ll Learn ▲ You will recognize the names and structures of several important organic functional groups. ▲ You will classify reactions of organic substances as sub- stitution, addition, elimina- tion, oxidation-reduction, or condensation and predict products of these reactions. ▲ You will relate the struc- tures of synthetic polymers to their properties. Why It’s Important Whether you are removing a sandwich from plastic wrap, taking an aspirin, or shooting baskets, you’re using organic materials made of substituted hydrocarbons. These com- pounds are in turn made of molecules whose atoms include carbon, hydrogen, and other elements. Visit the Chemistry Web site at chemistrymc.com to find links about substituted hydrocarbons and their reactions. The spooled threads shown in the photo are made from large organ- ic molecules called polymers. 736 Chapter 23 736-773_Ch23-866418 5/9/06 3:37 PM Page 737 DISCOVERY LAB Making Slime Chemistry 10.b n addition to carbon and hydrogen, most organic substances con- Itain other elements that give the substances unique properties. In this lab, you will work with an organic substance consisting of long carbon chains to which many ϪOH groups are bonded. How will the properties of this substance change when these groups react to form bonds called crosslinks between the chains? Safety Precautions Do not allow solutions or product to contact eyes or exposed skin.
    [Show full text]
  • Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of  Electrons Above and Below Its Sigma Bond Framework
    Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product.
    [Show full text]
  • Chem 341 • Organic Chemistry I Lecture Summary 07 • September 07, 2007
    Chem 341 • Organic Chemistry I Lecture Summary 07 • September 07, 2007 Chapter 2 - Polar Covalent Bonds; Acids and Bases Alkyl Substituents When an alkane is a smaller part of a larger molecule (a substituent), it is called an ‘alkyl’ group. The parent name for the number of carbons remains the same, but it is given a ‘yl’ ending indicating it is a sub-part of the molecule. See for example several common names for some organic molecules shown below. Note that for chlorobutane, there are four different constitutional isomers possible. Normal butane refers to the straight chain. If the chlorine is moved to a secondary carbin it is called a secondary chloride. If the carbon skeleton is changed, it becomes an iso-butyl group and if the chlorine is attached to the tertiary carbon it is a tert-butyl group. These common names are still in use, though there is a more exact systematic naming system that is easier to understand (but longer names). H3C Cl OH methyl chloride ethyl alcohol Cl Cl Cl Cl n-butyl chloride sec-butyl chloride iso-butyl chloride tert-butyl chloride 1-chlorobutane 2-chlorobutane 1-chloro-2-methylpropane 2-chloro-2-methylpropane Degree of Alkyl Substitution We designate a kind of carbon (or kind of functional group attached to that carbon) according to how many other alkyl groups are attached to it. For example, a carbon on the end of a chain (with one alkyl group) would be a primary carbon. The hydrogens attached to that carbon would be called primary hydrogens. An alcohol attached to a primary carbon would be called a primary alcohol.
    [Show full text]
  • The Mechanism of Pyridine Hydrogenolysis on Molybdenum-Containing Catalysts III
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiteit Twente Repository JOURNAL OF CATALYSIS 34, 215-229 (1974) The Mechanism of Pyridine Hydrogenolysis on Molybdenum-Containing Catalysts III. Cracking, Hydrocracking, Dehydrogenation and Disproportionation of Pentylamine J. SONNEMANS” AND P. MARS l’wente University of Technology, Enschede, The Netherlands Received October 30, 1973 The conversion of pentylamine on a MoOrA1203 catalyst was studied between 250 and 350°C at various hydrogen pressures. The reactions observed were cracking to pentene and ammonia, hydrocracking to pentane and ammonia, dehydrogenation to pentanimine and butylcarbonitrile, and disproportionation to ammonia and dipentylamine. The equilibrium between pentylamine, dipentylamine and ammonia appeared to be established under most of the experimental conditions. The equilibrium constant is about 9 at 250°C and about 5 at 320°C. The disproportionation reaction is zero order in hydrogen and of -1 order in the initial pentylamine pressure. Dehydrogenation was observed at low hydrogen pressures, and especially at higher temperatures; the reaction is first order in pentylamine. Both cracking and hydrocracking take place, mainly above 300°C. Hydrocracking appears to be half order in hydrogen; the rate of cracking is almost independent of the hydrogen pressure. The hydrocarbon formation is of zero order in pentyl- amine or dipentylamine. The same type of reactions (except hydrocracking) take place on alumina, but with a far lower reaction rate. INTRODUCTION catalysts at hydrogen pressures of about One of the intermediates formed in the 60 atm (Z-4). They reported a high rate hydrogenolysis of pyridine is pentylamine of ammonia formation from the primary (1).
    [Show full text]
  • WO 2012/092415 Al 5 July 2012 (05.07.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/092415 Al 5 July 2012 (05.07.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07C 2/36 (2006.01) C07F 9/46 (2006.01) kind of national protection available): AE, AG, AL, AM, C07C 9/15 (2006.01) C07F 11/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/US201 1/067709 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 29 December 201 1 (29. 12.201 1) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/980,457 29 December 2010 (29. 12.2010) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant (for all designated States except US): CHEV¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, RON PHILLIPS CHEMICAL COMPANY LP TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [US/US]; 10001 Six Pines Drive, The Woodlands, Texas DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 77380 (US).
    [Show full text]
  • Method for Producing Pyridine Compound
    (19) TZZ¥_¥¥_T (11) EP 3 159 339 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 26.04.2017 Bulletin 2017/17 C07D 413/04 (2006.01) C07D 471/04 (2006.01) A01N 43/76 (2006.01) A01N 43/90 (2006.01) (21) Application number: 15806287.7 (86) International application number: (22) Date of filing: 29.05.2015 PCT/JP2015/065512 (87) International publication number: WO 2015/190316 (17.12.2015 Gazette 2015/50) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • WAKAMATSU, Takayuki GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Oita-shi PL PT RO RS SE SI SK SM TR Oita 870-0106 (JP) Designated Extension States: • KASAI, Rika BA ME Osaka-shi Designated Validation States: Osaka 554-8558 (JP) MA (74) Representative: Vossius & Partner (30) Priority: 09.06.2014 JP 2014118457 Patentanwälte Rechtsanwälte mbB Siebertstrasse 3 (71) Applicant: Sumitomo Chemical Company, Limited 81675 München (DE) Tokyo 104-8260 (JP) (54) METHOD FOR PRODUCING PYRIDINE COMPOUND (57) To make it possible to produce a pyridine compound represented by formula (1) that is useful as an insecticide by reacting a compound represented by formula. (2) and a compound represented by formula (3). (In the formula, 1L represents a halogen atom; R2, R3, R4, R5, and R6 represent chain hydrocarbon groups, etc., having 1-6 carbon atoms optionally substituted by fluorine atoms. A 1 represents-NR7-, an oxygen atom, or a sulfur atom; A 2 represents a nitrogen atom or =CR8-.
    [Show full text]
  • Hydrophobically Modified Polyethyleneimines And
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2007 Hydrophobically Modified olyP ethyleneimines and Ethoxylated Polyethyleneimines Michael Joseph Simons Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Chemistry Commons Repository Citation Simons, Michael Joseph, "Hydrophobically Modified olyP ethyleneimines and Ethoxylated Polyethyleneimines" (2007). Browse all Theses and Dissertations. 162. https://corescholar.libraries.wright.edu/etd_all/162 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By MICHAEL J. SIMONS B.A., Columbia University, 1985 2007 Wright State University Wright State University School of Graduate Studies August 8, 2007 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Michael J. Simons ENTITLED Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. _______________________________ Eric Fossum, Ph. D. Thesis Director _______________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination _______________________________ Eric Fossum, Ph. D. _______________________________ Daniel Ketcha, Ph. D. _______________________________ Kenneth Turnbull, Ph.D. _______________________________ Joseph F. Thomas, Jr. Ph.D. Dean, School of Graduate Studies Abstract Michael Simons. M.S., Department of Chemistry, Wright State University, 2007. Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines.
    [Show full text]