Herbicidal Composition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11 -
Methyl- 5/7- Substituted -2- (3,4-Dichloro) Benzoyl-4H-L,4- Benzothiazines As Bifunctional Anticancer Agents
Synthesis and Spectral studies of Nitrosourea derivatives of 3- Methyl- 5/7- Substituted -2- (3,4-dichloro) benzoyl-4H-l,4- Benzothiazines as Bifunctional Anticancer Agents. Rajni Gupta* and Vandana Gupta Department of Chemistry, University ofRajasthcm, Jaipur-302004, India Email: [email protected] Abstract: The synthesis of of 3-methyl-5/7- substituted-4- (N-propyl-N-nitrosoamido)- 2- (3,4-dichloro benzoyl) -4H- 1,4-Benzothiazines by the isocyanation and successive nitrosation of 3-methyl -5/7- substituted- 2- (3,4- dichlorobenzoyl) -4H-l,4-Benzothiazines has been reported. The synthesized compounds have been characterized by their elemental analyses and spectral characteristics. Introduction: Analogous to phenothiazines, benzothiazines possesss a wide spectrum of biological activities'. Their several derivatives are in clinical use2'7. They exhibit significant anticancer activities, which are assigned due to their interaction with DMA by complexation. Nitrosourea derivatives constitute an important class of anticancer agents and its several derivatives like MNNG, CNU, MNU, GANU, and CDL-7 etc. are clinically significant. They interact with DNA via alkylation 8"9. However their clinical use is limited because of cumulative and delayed side effects exerted by these compounds. Bone marrow toxicity being dose limiting, therefore it is worthwhile to develop a new series of nitrosoureas with minimum toxicity and side effects. 4H-1, 4- Benzothiazines are much less toxic and therefore it is anticipated that their nitrosourea derivatives will be potent anticancer agents with minimum toxicity, side effects etc. In 3-methyl-5/7- substituted-4- (N-propyl-N-nitrosoamido)- 2- (3,4-dichloro benzoyl) -4H-1.4- Benzothiazines heterocyclic nitrogen with a side chain at 4-position constitutes N-nitrosourea linkage and possess both 1,4-benzothiazines nucleus and a nitrosourea moiety . -
Monoazo Dyes of the Benzothiazole Series, Their Preparation and Use In
Europâisches Patentamt 0 013 809 (ij) QJJJ EuropeanEurooean Patent Office Qj)l'ï> Publication number: V ^- Office européen des brevets (lD EUROPEAN PATENT SPECIFICATION © Date of publication of patent spécification: 10.08.83 © Int. Cl.3: C 09 B 23/00, C 09 B 29/08, D 06 P 1/18 @^ Application number: 79302860.6 @ Dateof filing: 12.12.79 54) Monoazo dyes of the benzothiazole séries, their préparation and use in dyeing or printing hydrophobic fibres. (30) Priority: 25.12.78 JP 163617/78 @ Proprietor: SUMITOMO CHEMICAL COMPANY, 03.10.79 JP 128308/79 LIMITED 1 5 Kitahama 5-chome Higashi-ku Osaka-shi Osaka-fu (JP) © Date of publication of application: 06.08.80 Bulletin 80/16 @ Inventor: Yoshinaga, Kenja 10-3-314, Sonehigashinocho-2-chome @ Publication of the grant of the patent: Tokonaka-shi (JP) 1 0.08.83 Bulletin 83/32 Inventor: Hashimoto, Kiyoyasu 2-40, Hirata-1-chome Ibaraki-shi (JP) (84) Designated Contracting States: Inventor: Okaniwa, Tetsuo CH DE FR GB IT NL 27, Kuisehonmachi-1 -chome Amagasaki-shi (JP) Inventor: Kenmochi, Hirohito @ References cited: 9-1 5, Matsugaoka-4-chome DE - A - 1 959 777 Takatsuki-shi (JP) FR - A - 1 444 036 GB - A - 944 250 GB - A - 1 448 782 @ Representative: Harrison, Michael Robert et al, Urquhart-Dykes & Lord 47 Marylebone Lane London W1 M 6DL(GB) The file contains technical information submitted after the application was filed and not included in this specification Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. -
Chapter 23: Substituted Hydrocarbons and Their Reactions
736-773_Ch23-866418 5/9/06 3:37 PM Page 736 CHAPTER 23 Substituted Hydrocarbons and Their Reactions Chemistry 2.b, 2.d, 2.h, 3.a, 3.g, 8.c, 10.a, 10.b, 10.e I&E 1.b, 1.c, 1.j What You’ll Learn ▲ You will recognize the names and structures of several important organic functional groups. ▲ You will classify reactions of organic substances as sub- stitution, addition, elimina- tion, oxidation-reduction, or condensation and predict products of these reactions. ▲ You will relate the struc- tures of synthetic polymers to their properties. Why It’s Important Whether you are removing a sandwich from plastic wrap, taking an aspirin, or shooting baskets, you’re using organic materials made of substituted hydrocarbons. These com- pounds are in turn made of molecules whose atoms include carbon, hydrogen, and other elements. Visit the Chemistry Web site at chemistrymc.com to find links about substituted hydrocarbons and their reactions. The spooled threads shown in the photo are made from large organ- ic molecules called polymers. 736 Chapter 23 736-773_Ch23-866418 5/9/06 3:37 PM Page 737 DISCOVERY LAB Making Slime Chemistry 10.b n addition to carbon and hydrogen, most organic substances con- Itain other elements that give the substances unique properties. In this lab, you will work with an organic substance consisting of long carbon chains to which many ϪOH groups are bonded. How will the properties of this substance change when these groups react to form bonds called crosslinks between the chains? Safety Precautions Do not allow solutions or product to contact eyes or exposed skin. -
Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of Electrons Above and Below Its Sigma Bond Framework
Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product. -
The Mechanism of Pyridine Hydrogenolysis on Molybdenum-Containing Catalysts III
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiteit Twente Repository JOURNAL OF CATALYSIS 34, 215-229 (1974) The Mechanism of Pyridine Hydrogenolysis on Molybdenum-Containing Catalysts III. Cracking, Hydrocracking, Dehydrogenation and Disproportionation of Pentylamine J. SONNEMANS” AND P. MARS l’wente University of Technology, Enschede, The Netherlands Received October 30, 1973 The conversion of pentylamine on a MoOrA1203 catalyst was studied between 250 and 350°C at various hydrogen pressures. The reactions observed were cracking to pentene and ammonia, hydrocracking to pentane and ammonia, dehydrogenation to pentanimine and butylcarbonitrile, and disproportionation to ammonia and dipentylamine. The equilibrium between pentylamine, dipentylamine and ammonia appeared to be established under most of the experimental conditions. The equilibrium constant is about 9 at 250°C and about 5 at 320°C. The disproportionation reaction is zero order in hydrogen and of -1 order in the initial pentylamine pressure. Dehydrogenation was observed at low hydrogen pressures, and especially at higher temperatures; the reaction is first order in pentylamine. Both cracking and hydrocracking take place, mainly above 300°C. Hydrocracking appears to be half order in hydrogen; the rate of cracking is almost independent of the hydrogen pressure. The hydrocarbon formation is of zero order in pentyl- amine or dipentylamine. The same type of reactions (except hydrocracking) take place on alumina, but with a far lower reaction rate. INTRODUCTION catalysts at hydrogen pressures of about One of the intermediates formed in the 60 atm (Z-4). They reported a high rate hydrogenolysis of pyridine is pentylamine of ammonia formation from the primary (1). -
WO 2012/092415 Al 5 July 2012 (05.07.2012) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/092415 Al 5 July 2012 (05.07.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07C 2/36 (2006.01) C07F 9/46 (2006.01) kind of national protection available): AE, AG, AL, AM, C07C 9/15 (2006.01) C07F 11/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/US201 1/067709 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 29 December 201 1 (29. 12.201 1) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/980,457 29 December 2010 (29. 12.2010) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant (for all designated States except US): CHEV¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, RON PHILLIPS CHEMICAL COMPANY LP TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [US/US]; 10001 Six Pines Drive, The Woodlands, Texas DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 77380 (US). -
Method for Producing Pyridine Compound
(19) TZZ¥_¥¥_T (11) EP 3 159 339 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 26.04.2017 Bulletin 2017/17 C07D 413/04 (2006.01) C07D 471/04 (2006.01) A01N 43/76 (2006.01) A01N 43/90 (2006.01) (21) Application number: 15806287.7 (86) International application number: (22) Date of filing: 29.05.2015 PCT/JP2015/065512 (87) International publication number: WO 2015/190316 (17.12.2015 Gazette 2015/50) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • WAKAMATSU, Takayuki GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Oita-shi PL PT RO RS SE SI SK SM TR Oita 870-0106 (JP) Designated Extension States: • KASAI, Rika BA ME Osaka-shi Designated Validation States: Osaka 554-8558 (JP) MA (74) Representative: Vossius & Partner (30) Priority: 09.06.2014 JP 2014118457 Patentanwälte Rechtsanwälte mbB Siebertstrasse 3 (71) Applicant: Sumitomo Chemical Company, Limited 81675 München (DE) Tokyo 104-8260 (JP) (54) METHOD FOR PRODUCING PYRIDINE COMPOUND (57) To make it possible to produce a pyridine compound represented by formula (1) that is useful as an insecticide by reacting a compound represented by formula. (2) and a compound represented by formula (3). (In the formula, 1L represents a halogen atom; R2, R3, R4, R5, and R6 represent chain hydrocarbon groups, etc., having 1-6 carbon atoms optionally substituted by fluorine atoms. A 1 represents-NR7-, an oxygen atom, or a sulfur atom; A 2 represents a nitrogen atom or =CR8-. -
Hydrophobically Modified Polyethyleneimines And
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2007 Hydrophobically Modified olyP ethyleneimines and Ethoxylated Polyethyleneimines Michael Joseph Simons Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Chemistry Commons Repository Citation Simons, Michael Joseph, "Hydrophobically Modified olyP ethyleneimines and Ethoxylated Polyethyleneimines" (2007). Browse all Theses and Dissertations. 162. https://corescholar.libraries.wright.edu/etd_all/162 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By MICHAEL J. SIMONS B.A., Columbia University, 1985 2007 Wright State University Wright State University School of Graduate Studies August 8, 2007 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Michael J. Simons ENTITLED Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. _______________________________ Eric Fossum, Ph. D. Thesis Director _______________________________ Kenneth Turnbull, Ph.D. Department Chair Committee on Final Examination _______________________________ Eric Fossum, Ph. D. _______________________________ Daniel Ketcha, Ph. D. _______________________________ Kenneth Turnbull, Ph.D. _______________________________ Joseph F. Thomas, Jr. Ph.D. Dean, School of Graduate Studies Abstract Michael Simons. M.S., Department of Chemistry, Wright State University, 2007. Hydrophobically Modified Polyethyleneimines and Ethoxylated Polyethyleneimines. -
Docw R S Acquired by ERIC Include Many Informal Unpublished * Material - T Available Fromother Sources
DOCUMENT RESUME ED 135 584 SE 021 575 AUTHOR Zdravkovich, V. TITLE Organic Chemistry Self Instructional Package 4: Alkanes-Nomenclature. INSTITUTION Prince George's Community Coll., Largo, Md. PUB DATE 76 NOTE 41p.; For related Packages 1-17, see SE 021 572-588; Not available in hard copy due to copyright restrictions AVAILABLE FROM Prince George's Community College Bookstore, Largo, Maryland 20870 ($17.00 a set, $1.00 each) EDRS PRICE MF-$0.83 Plus Postage. MC Not Available from EDRS. DESCRIPTORS *Autoinstructional Aids; *Chemistry; *College Science; Higher Education; *Independent Study; Individualized Instruction; Individualized Programs; *Organic Chemistry; Science Education; Self Help Programs IDENTIFIERS Alkanes; Prince Georges Community College ABSTRACT This booklet, one of a series of 17 developed at Prince George's Community College, largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The entire series of modules covers the first 13 chapters of the Morrison-Boyd text in great detail. Each module has been provided with from one to three audiotapes, available from PrinOe George's Community College, to provide students additional explanations of particular concepts. Each module includes a self-evaluation exercise, a reference guide, worksheets to be completed with the audiotapes, answer sheets for the worksheets, a progress evaluation, an answer sheet for the progress evaluation, an answer sheet for the self-evaluation exercise, an introduction to the topic covered by the module, and student performance objectives for the module. The topic of this module is alkanes. -
United States Patent Office
3,252,929 United States Patent Office Patented May 24, 1966 2 been prepared by hydrolyzing triethyltin halides with 3,252,929 aqueous alkali and dehydrating the resulting product at HEAT AND LIGHT STABLE HALOGEN-CONTAIN NG RESNS STABLIZED BY TRALKYL TN elevated temperatures; it has also been produced by dis PROPOLATES tilling triethyltin hydroxide under reduced pressure, by Ferdinand C. Mieyer, St. Louis, Mo., assignor to Monsanto reacting silver oxide with S-methyl triethyltin or bis(tri Company, a corporation of Delaware ethyltin) sulfide, and by reacting triethyltin hydride with No Drawing. Filed Dec. 28, 1961, Ser. No. 162,925 metal oxides such as HgC), ZnO, Fe2O3, PbO, AS4O6, 13 Claims. (C. 260-23) VO5 and KMnO4. Bis(trihexyltin) oxide has been pre pared by shaking trihexyltin bromide with aqueous This invention relates to the stabilization of halogen O sodium hydroxide in ether. Bis(trioctyltin) oxide has containing resins against the deteriorating effects of heat been prepared in a similar manner by brominating tet and light. raooctyltin at -40° C., shaking the resulting trioctyltin Halogen-containing resin polymers are notoriously un bromide with aqueous 33% sodium hydroxide in ether, stable upon exposure to heat and ultraviolet light. This and drying the product after removal of the Solvent at instability is evidenced by the rapid discoloration and 15 100° C./12 mm. The higher bis(trialkyltin) oxide may Serious stiffening apparent after exposure to processing be prepared by similar methods. temperatures, and/or outdoor weathering. Moreover, The propiolic acid used in the reaction with the bis(tri this instability is sometime aggravated by the presence alkyltin) oxides to produce trialkyltin propiolates is a of plasticizers and other additives which are themselves well known, readily available material. -
Text Related to Segment 4.04 ©2002 Claude E. Wintner to Elaborate On
Text Related to Segment 4.04 ©2002 Claude E. Wintner To elaborate on the ideas developed so far, let us work out in some detail the cases of those C8H18 hydrocarbons that contain a stereogenic center or centers. Considering first only constitution, of the eighteen different constitutional formulae possible in the C8H18 manifold, in just five of these does one find a stereogenic carbon atom or atoms, substituted with four constitutionally distinct ligands, and marked in the figure by a dot. In those four cases where there is only a single stereogenic center, the situation is precisely the same as for 3-methylhexane. Each of these four constitutional formulae represents an enantiomeric pair, that is, two configurational isomers differing in their configuration at the stereogenic carbon atom. One isomer will have R absolute configuration, and the other S. H 2,3-dimethylhexane H 3-methylheptane H 2,4-dimethylhexane H 2,2,3-trimethylpentane H 3,4-dimethylhexane H the five constitutional isomers (among eighteen total) having molecular formula C8H18 that contain a stereogenic center or centers On the other hand, the case with two stereogenic centers, 3,4- dimethylhexane, presents a particularly instructive example and will lead us once again onto some new ground. A special symmetry in the molecule is apparent: each of the two stereogenic centers is identically substituted — from the point of view of constitution — by hydrogen, a methyl group, an ethyl group, and a secondary butyl group. In the next segment we shall see that there exist three molecules, all three having the constitution 3,4-dimethylhexane, but each one differing from the other two in its configuration.