Fast finger design automation for industrial robots Mohammadali Honarpardaz, Johan Andersson (Ölvander) and Mehdi Tarkian The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153950 N.B.: When citing this work, cite the original publication. Honarpardaz, M., Andersson (Ölvander), J., Tarkian, M., (2019), Fast finger design automation for industrial robots, Robotics and Autonomous Systems, 113, 120-131. https://doi.org/10.1016/j.robot.2018.12.011 Original publication available at: https://doi.org/10.1016/j.robot.2018.12.011 Copyright: Elsevier http://www.elsevier.com/ Agile Finger Design Automation for Industrial Robots M. Honarpardaz a, b, J. Ölvander b, M. Tarkian b a ABB, Corporate Research Center, Forskargränd 7, Västerås 721 78, Sweden b Linköping University, Division of Machine Design, Linköping 581 83, Sweden Corresponding author: Mohammadali Honarpardaz, ABB, Corporate Research Center, Forskargränd 7, Västerås 721 78, Sweden. Email:
[email protected] Abstract Finger design automation is highly demanded from robot industries to fulfill the requirements of the agile market. Nevertheless, literature lacks a promising approach which automates the design process of reliable fingers for industrial robots. Hence, this work proposes the generic optimized finger design (GOFD) method which automates the design process and minimizes the time it takes to design finger grippers. The method is applied to optimize fingers for several objects and it outperforms existing methods. Finally, the optimized fingers are manufactured and the results are experimentally verified. Keywords Optimization, fingers design, design automation, grasp synthesis, industrial grippers, robotics 1.