Fig Development in Two Neotropical Ficus Species, F. Yoponensis (Subgen

Total Page:16

File Type:pdf, Size:1020Kb

Fig Development in Two Neotropical Ficus Species, F. Yoponensis (Subgen Botany Fig development in two Neotropical Ficus species, F. yoponensis (subgen. Pharmacosycea) and F. colubrinae (subgen. Spherosuke): comparing rainforest and pasture trees Journal: Botany Manuscript ID cjb-2020-0139.R2 Manuscript Type: Article Date Submitted by the 06-Feb-2021 Author: Complete List of Authors: Cervantes-Pasqualli, Juan; Instituto de Ecología, Red de Ecología Funcional Laborde, Javier;Draft Instituto de Ecología, Red de Ecología Funcional Keyword: figs, Agaonidae wasps, reproductive event, Ficus, syconium development Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : © The Author(s) or their Institution(s) Page 1 of 40 Botany Fig development in two Neotropical Ficus species, F. yoponensis (subgen. Pharmacosycea) and F. colubrinae (subgen. Spherosuke): comparing rainforest and pasture trees Juan Alberto Cervantes-Pasqualli1, Javier Laborde*2 1 Instituto de Ecología, A. C. – Posgrado, Carretera Antigua a Coatepec 351, Col. El Haya, CP 91073, Xalapa, Veracruz, Mexico. [email protected] ORCID: https://orcid.org/0000-0001-7687-3738 2 Instituto de Ecología, A. C. – Red de Ecología Funcional, Carretera Antigua a Coatepec 351, Col. El Haya, CP 91073, Xalapa, Veracruz, Mexico. [email protected] *Corresponding author: Javier Laborde, Instituto de Ecología, A. C., Carretera Antigua a Coatepec 351, Col. El Haya, CP 91073, Xalapa, Veracruz, DraftMexico. Phone: +52 (228) 842-1800 ext. 4205, e-mail: [email protected] ORCID: http://orcid.org/0000-0001-5401-4182 © The Author(s) or their Institution(s) Botany Page 2 of 40 Abstract In the fragmented landscape of Los Tuxtlas, adult fig trees are found in rainforest remnants and in pastures. Syconium (fig) development is known to vary between and within Ficus species, but it is not known whether it differs between rainforest and pasture trees. We describe syconium development for two Ficus species with different life forms (free-standing vs. hemi-epiphytic) in two contrasting, adjacent habitats: undisturbed rainforest and active pastures. Over three months, we monitored 15 reproductive events in Ficus yoponensis and F. colubrinae, collecting and dissecting syconia every 3-4 days (1 291 and 815 syconia per species, respectively). External and internal structural changes in the syconia are described, including foundress occurrence and the maximum duration of the receptive phase while waiting for pollinators. The duration of both the reproductive events (< 8 weeks) and the developmental phases in the two species did not differ betweenDraft rainforest and pasture trees, and are within the lower range of time reported for other Ficus species. After pollinator exclusion, the receptive phase lasted up to four times its normal duration. Syconia were slightly larger in rainforest than in pasture trees, and the infestation of F. yoponensis syconia by non-pollinating insects was higher in rainforest trees. Keywords: figs, Agaonidae wasps, reproductive event, Ficus, syconium development. © The Author(s) or their Institution(s) Page 3 of 40 Botany Introduction The genus Ficus (Moraceae) has more than 800 species worldwide that are characterized by having their inflorescences enclosed within a globular structure known by botanists as a syconium (Harrison 2005), a term derived from the ancient Greek word “sykon” meaning “fig”. The syconia (plural of syconium) are spheroidal urns that contain hundreds of unisexual flowers, whose only avenue of communication with the exterior is a narrow opening called the ostiole, located at the pole opposite the peduncle (Verkerke 1989). All Ficus species in the Neotropics are monoecious, and produce protogynous syconia whose female flowers have styles that differ in length and whose stigmas form an inner layer that lines the inside of the syconial cavity (Berg 1992; Weiblen 2001). Since the flowers are fully enclosed within the syconium, not just any animal can act as a pollinator. Only tiny (< 2 mm) wasps (Hymenoptera, Chalcidoidea, Agaonidae) specialized in entering via the ostioleDraft are able to pollinate these enclosed structures (Janzen 1979; Harrison 2005). Therefore, the genus Ficus is also characterized by its obligate mutualistic interaction with its pollinating wasps. About 90% of the fig wasp’s life cycle (egg to adult in 4 – 8 weeks) occurs inside the syconium. The wasps are unable to reproduce outside the syconium and without the pollinating fig wasps, the tree is unable to produce seeds (Herre et al. 2008). The development of syconia and their pollinating fig wasps was described by Galil and Eisikowitch (1968), using the African species F. sycomorus as a model. Based on their observations of the development of the female and male flowers, the seeds and the life cycle of the fig wasps inside the syconium, these authors defined five phases. Pre-female phase A: The axillar meristems on the fig tree branches begin to differentiate and grow to form the syconium, inside which immature female flowers begin to develop. Receptive or female phase B: The female flowers are ready to be pollinated by the adult female wasps that arrive carrying pollen from another syconium and must enter the syconial cavity via the ostiole. Inside, the wasps pollinate the flowers at the same time as they oviposit their eggs in some of the female © The Author(s) or their Institution(s) Botany Page 4 of 40 flowers. As the female wasp makes her way through the imbricating scales of the ostiole she loses her wings and antennae. Inter-floral phase C: Pollinated flowers begin to develop a seed, while flowers with a wasp egg begin to form a gall in which a larva develops. Emerging or male phase D: Adult male wasps emerge from the galls and begin to mate with female wasps who are inside their respective galls or they liberate the female from her gall and mate with her immediately. At the same time as the male wasps are fertilizing the females, the fig’s male flowers mature, their anthers exposing pollen inside the syconial cavity. After mating, male wasps dig a tunnel to exit the syconium, usually close to or through the ostiole and then die outside. These tunnels are used to exit the syconium by the adult female wasps who are loaded with pollen and are carrying the next generation of wasps, the eggs of which will be laid inside another receptive syconium (phase B). Mature or ripe phase E: The syconium infructescence ripens, with well formed seeds and no pollinating waspsDraft inside. Other non-pollinating insects are able to enter and/or oviposit within the syconium (Palmieri and Pereira 2018), and their larvae will either feed on the developing flowers (phytophagous insects) or prey on the pollinator fig wasps, interfering with the mutualistic interaction of the fig wasps with the fig tree. Reproductive events tend to be asynchronous in the fig tree population, while syconium production and development are usually synchronous within the tree crown, limiting self-pollination (Janzen 1979; Bronstein and Patel 1992; Harrison 2005). The year-round production of syconia required to maintain the short-lived pollinating wasps makes Ficus species one of the most reliable and important food sources for the large number of vertebrate frugivores that consume ripe figs (syconia) and disperse their seeds. This is why the ripe infructescences of Ficus have been identified as a key resource in maintaining diversity in the world’s tropical forests, particularly in humid forest where 75 to 80% of the tree species depend on vertebrate frugivores for seed dispersal (Janzen 1979; Shanahan et al. 2001; Harrison 2005). It is generally thought that all Ficus species follow the developmental phases described by Galil and Eisikowitch (1968). © The Author(s) or their Institution(s) Page 5 of 40 Botany However, it is known that the duration and timing of reproductive events (fruiting), the duration of each phase of syconium development, as well as the external and internal morphological characteristics of the syconium (including the number of female and male flowers, seeds and fig wasps produced) all vary greatly between species and between individuals of the same species (Ramírez 1974; Janzen 1979; Herre 1989, 1996). Even so, fruit phenology and syconium characteristics have been described thoroughly for only a few species (Baijnath and Ramcharun 1983; Zhang et al. 2006; Piedra-Malagón et al. 2019). In Mexico, the development of syconia has only been fully described for F. petiolaris, an endemic species that grows in seasonally dry tropical forest (Piedra-Malagón et al. 2019). The duration of the developmental phases of both the syconia and the wasps determines how many reproductive events are needed by the trees throughout the year to maintain the population of pollinators. The duration of the receptive phase is particularly critical, sinceDraft it determines how long the tree is able to keep syconia on its branches while waiting for pollinators to arrive, but the duration of the inter-floral phase when the wasp larvae grow and become adults is also key (Bronstein et al. 1990; Anstett et al. 1995, 1997). Of the six Ficus subgenera that have been described worldwide, only two are found in the Americas (Ibarra-Manríquez et al. 2012): Pharmacosycea and Spherosuke (previously known as Urostigma). Of the 22 Ficus species reported for Mexico, five belong to Pharmacosycea and 17 to Spherosuke (Ibarra- Manríquez et al. 2012; Pederneiras et al. 2015). In Mexico, Pharmacosycea species are free-living terrestrial trees that
Recommended publications
  • Plant Terminology
    PLANT TERMINOLOGY Plant terminology for the identification of plants is a necessary evil in order to be more exact, to cut down on lengthy descriptions, and of course to use the more professional texts. I have tried to keep the terminology in the database fairly simple but there is no choice in using many descriptive terms. The following slides deal with the most commonly used terms (more specialized terms are given in family descriptions where needed). Professional texts vary from fairly friendly to down-right difficult in their use of terminology. Do not be dismayed if a plant or plant part does not seem to fit any given term, or that some terms seem to be vague or have more than one definition – that’s life. In addition this subject has deep historical roots and plant terminology has evolved with the science although some authors have not. There are many texts that define and illustrate plant terminology – I use Plant Identification Terminology, An illustrated Glossary by Harris and Harris (see CREDITS) and others. Most plant books have at least some terms defined. To really begin to appreciate the diversity of plants, a good text on plant systematics or Classification is a necessity. PLANT TERMS - Typical Plant - Introduction [V. Max Brown] Plant Shoot System of Plant – stem, leaves and flowers. This is the photosynthetic part of the plant using CO2 (from the air) and light to produce food which is used by the plant and stored in the Root System. The shoot system is also the reproductive part of the plant forming flowers (highly modified leaves); however some plants also have forms of asexual reproduction The stem is composed of Nodes (points of origin for leaves and branches) and Internodes Root System of Plant – supports the plant, stores food and uptakes water and minerals used in the shoot System PLANT TERMS - Typical Perfect Flower [V.
    [Show full text]
  • An Ancient Technique for Ripening Sycomore Fruit in East.Mediterranean Countries
    An Ancient Technique for Ripening Sycomore Fruit in East.Mediterranean Countries J. GALIL 1 Introduction was always very short on trees, the wood of Sycomore trees (Ficus sycomor~s L.) are the sycomore was highly valued. The ancient widespread in the Near East, in Egypt, Egyptians used it to make a wide assortment Israel, Lebanon and Cyprus. They grow of household utensils and factory imple- chiefly in plains and along rivers, where the ments, houses, all kinds of boxes and espe- soil renmins humid even during the hot and cially coffins (23). Figuratively speaking dry s']mmer. They are tall trees with a broad and from the standpoint of construction crown and spreading branches, standing out timber, the ancient Egyptian civilization conspicuously from other plants. may be said to have been firmly based on the Sycomores originate fro.m the savannas of sycomore tree (17). Although the taste of eastern Central Africa and from Yemen, sycomore fruit is not superlative, in Egypt where they grow spontaneously and repro- it has been held in high esteem since earliest duce by seeds. The flowers are pollinated times. regularly by the small chalcidoid wasp Cera- The Egyptians of old expressed their tosolen arab@us Mayr. affection and appreciation for the sycomore It is not known how the sycomore was in many ways. It was held sacred to various introduced into the Near East. Perhaps deities, especially to Iiathor, the goddess of seeds or branches were swept with the Nile love. Representations of the tree and its flood, or man may have brought it along fruit are to be found on bas-reliefs and from the south (20).
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Middle to Late Paleocene Leguminosae Fruits and Leaves from Colombia
    AUTHORS’ PAGE PROOFS: NOT FOR CIRCULATION CSIRO PUBLISHING Australian Systematic Botany https://doi.org/10.1071/SB19001 Middle to Late Paleocene Leguminosae fruits and leaves from Colombia Fabiany Herrera A,B,D, Mónica R. Carvalho B, Scott L. Wing C, Carlos Jaramillo B and Patrick S. Herendeen A AChicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA. BSmithsonian Tropical Research Institute, Box 0843-03092, Balboa, Ancón, Republic of Panamá. CDepartment of Paleobiology, NHB121, PO Box 37012, Smithsonian Institution, Washington, DC 20013, USA. DCorresponding author. Email: [email protected] Abstract. Leguminosae are one of the most diverse flowering-plant groups today, but the evolutionary history of the family remains obscure because of the scarce early fossil record, particularly from lowland tropics. Here, we report ~500 compression or impression specimens with distinctive legume features collected from the Cerrejón and Bogotá Formations, Middle to Late Paleocene of Colombia. The specimens were segregated into eight fruit and six leaf 5 morphotypes. Two bipinnate leaf morphotypes are confidently placed in the Caesalpinioideae and are the earliest record of this subfamily. Two of the fruit morphotypes are placed in the Detarioideae and Dialioideae. All other fruit and leaf morphotypes show similarities with more than one subfamily or their affinities remain uncertain. The abundant fossil fruits and leaves described here show that Leguminosae was the most important component of the earliest rainforests in northern South America c. 60–58 million years ago. Additional keywords: diversity, Fabaceae, fossil plants, legumes, Neotropics, South America. Received 10 January 2019, accepted 5 April 2019, published online dd mmm yyyy Introduction dates for the crown clades ranging from the Cretaceous to the – Leguminosae, the third-largest family of flowering plants with Early Paleogene, c.
    [Show full text]
  • Responses of a Translocated Howler Monkey Alouatta Palliata Group to New Environmental Conditions
    Vol. 12: 25–30, 2010 ENDANGERED SPECIES RESEARCH Published online June 4 doi: 10.3354/esr00287 Endang Species Res Contribution to the Theme Section ‘Responses of animals to habitat alteration’ OPENPEN ACCESSCCESS Responses of a translocated howler monkey Alouatta palliata group to new environmental conditions Aralisa Shedden-González*, Ernesto Rodríguez-Luna Centro de Investigaciones Tropicales, Universidad Veracruzana, Exhacienda Lucas Martín, Calle Araucarias s/n, Col. Periodistas C.P. 91019 Xalapa, Veracruz, Mexico ABSTRACT: Considering the drastic changes in primate habitats, we must search for management strategies to maintain primate populations in the wild. In the present study, a group of howler mon- keys Alouatta palliata was followed after being translocated to a 90 ha tropical forest used for under- story palm Chamaedorea elegans cultivation. The group’s behavior was recorded in the new environ- ment. There was no evidence of behavioral alterations due to the different habitat conditions, the translocation process or the palm cultivation activities at the release site. These results indicate that reintroduction, even to fragments used for cultivation purposes, is a viable conservation approach for howler monkey conservation in the Los Tuxtlas region of Mexico. KEY WORDS: Adaptive responses · Alouatta palliata · Conservation · Mexico · Reintroduction Resale or republication not permitted without written consent of the publisher INTRODUCTION translocation or reintroduction has been successful (IUCN SSC 2002). Certain site characteristics can facil- The conversion of ecosystems for farming, planta- itate the objectives of a translocation or reintroduction tions and urban or suburban developments is reducing (ensuring long-term persistence of the released ani- a diverse range of habitats (Soulé & Orians 2001).
    [Show full text]
  • Fruits: Kinds and Terms
    FRUITS: KINDS AND TERMS THE IMPORTANT PART OF THE LIFE CYCLE OFTEN IGNORED Technically, fruits are the mature ovaries of plants that contain ripe seeds ready for dispersal • Of the many kinds of fruits, there are three basic categories: • Dehiscent fruits that split open to shed their seeds, • Indehiscent dry fruits that retain their seeds and are often dispersed as though they were the seed, and • Indehiscent fleshy fruits that turn color and entice animals to eat them, meanwhile allowing the undigested seeds to pass from the animal’s gut We’ll start with dehiscent fruits. The most basic kind, the follicle, contains a single chamber and opens by one lengthwise slit. The columbine seed pods, three per flower, are follicles A mature columbine follicle Milkweed seed pods are also large follicles. Here the follicle hasn’t yet opened. Here is the milkweed follicle opened The legume is a similar seed pod except it opens by two longitudinal slits, one on either side of the fruit. Here you see seeds displayed from a typical legume. Legumes are only found in the pea family Fabaceae. On this fairy duster legume, you can see the two borders that will later split open. Redbud legumes are colorful before they dry and open Lupine legumes twist as they open, projecting the seeds away from the parent The bur clover modifies its legumes by coiling them and providing them with hooked barbs, only opening later as they dry out. The rattlepods or astragaluses modify their legumes by inflating them for wind dispersal, later opening to shed their seeds.
    [Show full text]
  • Differences in Home Range, Activity Patterns and Diet of Red Howler Monkeys in a Continuous Forest and a Forest Fragment in Colombia Pablo R
    Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 39(153):503-513000-000, octubre-diciembre de 2015 Ecological traits of red howler monkeys in Meta, Colombia doi: http://dx.doi.org/10.18257/raccefyn.262 Original article CienciasNatural naturalesSciences Differences in home range, activity patterns and diet of red howler monkeys in a continuous forest and a forest fragment in Colombia Pablo R. Stevenson1,*, Marta L. Beltrán1, Marcela J. Quiñones1,2, Jorge A. Ahumada1,3 1 Centro de Investigaciones Ecológicas La Macarena. Departamento de Ciencias Biológicas, Universidad de Los Andes. Bogotá, Colombia 2 Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands 3 Tropical Ecology Assessment and Monitoring Network (TEAM), Center for Applied Biodiversity Science, Conservation International. Arlington, VA, USA Abstract Howler monkeys, genus Alouatta, are recognized as one of the most resistant primates to forest fragmentation. In this study a comparison of the home range, activity and diet of red howler monkeys (A. seniculus) was made between a continuous forest and a fragment in Meta, Colombia (Tinigua Park and Santa Rosa farm, respectively). Data was gathered on focal animals for 4-5 days per month, over 13 months in the continuous forest, and for six months in a 21-ha fragment. Home range areas were larger in the continuous forest. Resting was the most frequent activity in both places (58-59%), but individuals in the continuous forest moved more than those in the fragment (15 vs. 9%). In contrast, feeding was less frequent in the continuous forest (23 vs. 31%). Consumption of leaves was higher in the fragment (67%) than in the continuous forest (56%), contrasting with the pattern found for ripe fruit consumption (fragment: 32%, continuous forest: 44%).
    [Show full text]
  • The Synstigma Turns the Fig Into a Large Flower Simone P
    The synstigma turns the fig into a large flower Simone P. Teixeira, Marina F. B. Costa, João Paulo Basso-Alves, Finn Kjellberg, Rodrigo A. S. Pereira To cite this version: Simone P. Teixeira, Marina F. B. Costa, João Paulo Basso-Alves, Finn Kjellberg, Rodrigo A. S. Pereira. The synstigma turns the fig into a large flower. Botanical Journal of the Linnean Society, Linnean Society of London, In press, 10.1093/botlinnean/boaa061. hal-02981678 HAL Id: hal-02981678 https://hal.archives-ouvertes.fr/hal-02981678 Submitted on 28 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The synstigma turns the fig into a large flower Simone P. Teixeira1,*,, Marina F. B. Costa1,2, João Paulo Basso-Alves2,3, Finn Kjellberg4 And Rodrigo A. S. Pereira5 1Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040–903, Ribeirão Preto, SP, Brazil 2PPG em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, 13083–970, Campinas, SP, Brazil 3Instituto de Pesquisa do Jardim Botânico do Rio de Janeiro, DIPEQ, Rua Pacheco Leão, 915, 22460- 030, Rio de Janeiro, RJ, Brazil 4CEFE UMR 5175, CNRS—Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, F-34293 Montpellier Cédex 5, France 5Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av.
    [Show full text]
  • Developmental Anatomy of Ficus Ingens Syconia in Relation to Its Wasp Faunula
    S.Afr.J. Bot. , 1989, SS( 4): 409- 421 409 Developmental anatomy of Ficus ingens syconia in relation to its wasp faunula H. Baijnath* and S. Naicker Department of Botany, University of Durban-Westville, Private Bag X54001, Durban, 4000 Republic of South Africa Accepted 6 February 1989 Syconial development in Ficus ingens (Miq.) Miq., extends over a period of 70-80 days and displays the same basic pattern reported by earlier workers. Developmental anatomical observations of the different components of the syconium are presented. Following pollination, structural changes of gall and seed flowers differ and the implications of some of these are considered. Since hairs occur at different stages of develop­ ment, speculations are presented on their role. In most instances, the anatomical changes could be related to wasp development and behaviour, thus highlighting the close mutualistic relationship that exists between figs and wasps. Die ontwikkeling van die sikonium van Ficus ingens (Miq.) Miq. duur vir 'n peri ode van 70-80 dae en vertoon dieselfde basiese patroon soos reeds vroeer deur ander werkers aangetoon. Waarnemings betreffende die ontwikkelingsanatomie van die verskillende dele van die sikonium word aangebied. Die strukturele verander­ ings in die gal- en saadvormende blomme nadat bestuiwing plaasgevind het verskil en die implikasies van sommige hiervan word bespreek. Weens die feit dat hare op verskeie stadiums van ontwikkeling ontstaan, word daar oor hulle rol gespekuleer. Die anatomiese veranderings hou in die meeste gevalle verband met die ontwikkeling en gedrag van wespe waardeur die noue mutualistiese verwantskap tussen vye en wespe beklemtoon word. Keywords: Anatomy, Ficus ingens, syconium 'To whom correspondence should be addressed Introduction Ficus ingens (Mig .) Mig., is a medium-sized spreading dse tree which belongs to the subgenus Urostigma and is fairly widespread in Africa.
    [Show full text]
  • Drupe. Fruit with a Hard Endocarp (Figs. 67 and 71-73); E.G., and Sterculiaceae (Helicteres Guazumaefolia, Sterculia)
    Fig. 71. Fig. 72. Fig. 73. Drupe. Fruit with a hard endocarp (figs. 67 and 71-73); e.g., and Sterculiaceae (Helicteres guazumaefolia, Sterculia). Anacardiaceae (Spondias purpurea, S. mombin, Mangifera indi- Desmopsis bibracteata (Annonaceae) has aggregate follicles ca, Tapirira), Caryocaraceae (Caryocar costaricense), Chrysobal- with constrictions between successive seeds, similar to those anaceae (Licania), Euphorbiaceae (Hyeronima), Malpighiaceae found in loments. (Byrsonima crispa), Olacaceae (Minquartia guianensis), Sapin- daceae (Meliccocus bijugatus), and Verbenaceae (Vitex cooperi). Samaracetum. Aggregate of samaras (fig. 74); e.g., Aceraceae (Acer pseudoplatanus), Magnoliaceae (Liriodendron tulipifera Hesperidium. Septicidal berry with a thick pericarp (fig. 67). L.), Sapindaceae (Thouinidium dodecandrum), and Tiliaceae Most of the fruit is derived from glandular trichomes. It is (Goethalsia meiantha). typical of the Rutaceae (Citrus). Multiple Fruits Aggregate Fruits Multiple fruits are found along a single axis and are usually coalescent. The most common types follow: Several types of aggregate fruits exist (fig. 74): Bibacca. Double fused berry; e.g., Lonicera. Achenacetum. Cluster of achenia; e.g., the strawberry (Fra- garia vesca). Sorosis. Fruits usually coalescent on a central axis; they derive from the ovaries of several flowers; e.g., Moraceae (Artocarpus Baccacetum or etaerio. Aggregate of berries; e.g., Annonaceae altilis). (Asimina triloba, Cananga odorata, Uvaria). The berries can be aggregate and syncarpic as in Annona reticulata, A. muricata, Syconium. Syncarp with many achenia in the inner wall of a A. pittieri and other species. hollow receptacle (fig. 74); e.g., Ficus. Drupacetum. Aggregate of druplets; e.g., Bursera simaruba THE GYMNOSPERM FRUIT (Burseraceae). Fertilization stimulates the growth of young gynostrobiles Folliacetum. Aggregate of follicles; e.g., Annonaceae which in species such as Pinus are more than 1 year old.
    [Show full text]
  • DAPHNIPHYLLACEAE 1. DAPHNIPHYLLUM Blume, Bijdr. 13
    DAPHNIPHYLLACEAE 交让木科 jiao rang mu ke Min Tianlu (闵天禄 Ming Tien-lu)1; Klaus Kubitzki2 Dioecious trees or shrubs; branchlets with leaf scars and lenticels. Leaves alternate, usually conferted at apex of branchlets, sim- ple, entire, long petiolate, exstipulate. Inflorescence racemose, axillary, solitary, bracteate at base. Flowers unisexual, sometimes ster- ile. Calyx 3–6-parted, persistent or deciduous. Petals absent. Male flowers: stamens 5–12(–18), 1-whorled, radially arranged; filaments shorter than anthers; anthers luniform with lateral-longitudinal dehiscence, connective ± exserted. Female flowers: staminodes absent or 5–10; ovary ovoid or ellipsoidal, 2-locular; ovules 2 per locule, anatropous, pendulous; style very short; style branches 2, recurved or circinate, persistent, adaxially with decurrent stigmas. Drupe ovoid or ellipsoidal, tuberculate or indistinctly tuberculate-rugose on surface, often glaucous; mesocarp fleshy. Stone hard; testa membranous; endosperm fleshy; embryo small; cotyledons semiterete; rad- icle terete. One genus and 25–30 species: India and Sri Lanka to Australia, but centered in E and SE Asia; ten species (three endemic) in China. Ming Tien lu. 1980. Daphniphyllaceae. In: Cheng Mien & Ming Tien lu, eds., Fl. Reipubl. Popularis Sin. 45(1): 1–11. 1. DAPHNIPHYLLUM Blume, Bijdr. 13: 1152. 1826–1827. 虎皮楠属 hu pi nan shu Morphological characters and geographical distribution are the same as those of the family. 1a. Calyx absent. 2a. Female flower with staminodes around ovary. 3a. Staminodes 10; leaf blade not papillate below, lateral veins slender and dense, visible on both surfaces ...................................................................................................................................................... 1. D. macropodum 3b. Staminodes 5; leaf blade finely (or minutely) papillate below, lateral veins laxly arcuate, slightly impressed adaxially, prominent abaxially ....................................................................................................
    [Show full text]
  • PHENOLOGY, BIOMETRICS and FRUITS PRODUCTION of Attalea
    Facultad de Ciencias ACTA BIOLÓGICA COLOMBIANA Departamento de Biología http://www.revistas.unal.edu.co/index.php/actabiol Sede Bogotá ARTÍCULO DE INVESTIGACIÓN / RESEARCH ARTICLE BOTÁNICA PHENOLOGY, BIOMETRICS AND FRUITS PRODUCTION OF Attalea nucifera (ARECACEAE) IN COLOMBIA FENOLOGÍA, PARÁMETROS BIOMÉTRICOS Y PRODUCTIVIDAD DE FRUTOS DE Attalea nucifera (ARECACEAE) EN COLOMBIA Ivón Jiménez-Morera1 , Néstor García1 1Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 40 – 62, Bogotá, Colombia *For correspondence: [email protected] Received: 06th February 2019, Returned for revision: 03rd May 2019, Accepted: 28th May 2019. Associate Editor: Xavier Marquínez-Casas. Citation/Citar este artículo como: Jiménez-Morera I, García N. Phenology, biometrics and fruits production of Attalea nucifera (Arecaceae) in Colombia. Acta biol. Colomb. 2020;25(1):104-111. DOI: http://dx.doi.org/10.15446/abc.v25n1.77701 ABSTRACT Attalea nucifera is a threatened palm endemic to the Magdalena River basin in Colombia. In the past its seeds were consumed by the inhabitants of the town of Guaduas, Cundinamarca, although currently its use is less frequent. To assess the productive potential of this palm, we studied its phenology, biometric parameters, and fruit productivity in a forest relict in Guaduas. Field work was carried out between April 2016 and March 2017. The reproductive cycle of this species lasted approximately 12 and a half months from bud to fruit ripening. Although bud production occurred throughout the year, it increased during periods of greatest rainfall. Flowering peaks occurred towards the end of the rainy season and fruits ripened towards the period of low rainfall. We found a positive correlation between the number of leaves in the crown and the production of reproductive structures (rs = 0.447, p = 0.004).
    [Show full text]