Primer Reporte Del Orden Strepsiptera En Nicaragua. Pp.51-53

Total Page:16

File Type:pdf, Size:1020Kb

Primer Reporte Del Orden Strepsiptera En Nicaragua. Pp.51-53 Rev Rev. Nica. Ent., (1993) 24:51-53. PRIMER REPORTE DEL ORDEN STREPSIPTERA EN NICARAGUA. Por Jean-Michel MAES* & Jeyaraney KATHIRITHAMBY.** RESUMEN Se reporta por primera vez el órden Strepsiptera de Nicaragua : Elenchus koebelei PIERCE, 1908 (Elenchidae); Stichotrema backeri (OLIVEIRA & KOGAN, 1959) (Myrmecolacidae) y Caenocholax fenyesi PIERCE, 1909 (Myrmecolacidae). ABSTRACT The Strepsiptera are reported for first time from Nicaragua : Elenchus koebelei PIERCE, 1908 (Elenchidae); Stichotrema backeri (OLIVEIRA & KOGAN, 1959) (Myrmecolacidae) y Caenocholax fenyesi PIERCE, 1909 (Myrmecolacidae). file:///C|/My%20Documents/REVISTA/REV%2024/24%20Strepsiptera.htm (1 of 3) [10/11/2002 07:14:40 p.m.] Rev * Museo Entomológico, S.E.A., A.P. 527, León, Nicaragua. ** Department of Zoology, University of Oxford, Great Britain. INTRODUCCION. En el transcurso del estudio de la fauna entomológica de Nicaragua, iniciado en 1984, se recogieron algunos Strepsiptera. Este órden de pequeños insectos parásitos no había sido reportado para Nicaragua. En este trabajo se presentan dos familias y tres especies de Strepsiptera. Los Strepsiptera forman un órden de insectos muy característicos, presentan alas posteriores membranosas y alas anteriores extremadamente reducidas. Presentan un dimorfismo muy fuerte, los machos son alados y las hembras son ápteras y a veces ápodas. Son parasitoides de muchos grupos de insectos, principalmente Hymenoptera Aculeata, Homoptera Auchenorrhyncha y Orthopteroida. FAMILIA MYRMECOLACIDAE. Caenocholax fenyesi PIERCE, 1909. Distribución : USA, Nicaragua (Matagalpa), Suramérica. Colectado en trampa lumínica. Machos parasitoide de HYM. Formicidae : Solenopsis invicta. Hembras parasitoides de Orthopteroida. Stichotrema backeri (OLIVEIRA & KOGAN, 1959). Distribución : Nicaragua (Nueva Segovia), Suramérica. Colectado en trampa luminica. Machos parasitoide de Hymenoptera Formicidae. Hembras parasitoide de Orthopteroida. FAMILIA ELENCHIDAE. Elenchus koebelei PIERCE, 1908. Distribución : Nicaragua (León), Galápagos, Suramérica. Colectado sobre frijol (Phaseolus vulgaris) y sandía (Citrullus lanatus). Parasitoide de Homoptera : Delphacidae : Nesosydne olipor. Nesosydne alcmaeon. file:///C|/My%20Documents/REVISTA/REV%2024/24%20Strepsiptera.htm (2 of 3) [10/11/2002 07:14:40 p.m.] Rev BIBLIOGRAFIA ABEDRABBO S., KATHIRITHAMBY J. & OLMI M. (1990) Contribution to the knowledge of the Elenchidae (Strepsiptera) and Dryinidae (Hymenoptera: Chrysidoidea) of the Galapagos Islands. Boll. Ist. Ent. "G. Grandi" Univ. Bologna, 45:121-128. KATHIRITHAMBY J. (1989) Review of the order Strepsiptera. Syst. Entomol., 14:41-92. file:///C|/My%20Documents/REVISTA/REV%2024/24%20Strepsiptera.htm (3 of 3) [10/11/2002 07:14:40 p.m.].
Recommended publications
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Sperm Cells of a Primitive Strepsipteran
    Insects 2013, 4, 463-475; doi:10.3390/insects4030463 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Sperm Cells of a Primitive Strepsipteran James B. Nardi 1,*, Juan A. Delgado 2, Francisco Collantes 2, Lou Ann Miller 3, Charles M. Bee 4 and Jeyaraney Kathirithamby 5 1 Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, USA 2 Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, Murcia 30100, Spain; E-Mails: [email protected] (J.A.D.); [email protected] (F.C.) 3 Biological Electron Microscopy, Frederick Seitz Materials Research Laboratory, Room 125, University of Illinois, 104 South Goodwin Avenue, Urbana, IL 61801, USA; E-Mail: [email protected] 4 Imaging Technology Group, Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, Urbana, IL 61801, USA; E-Mail: [email protected] 5 Department of Zoology, South Parks Road, Oxford OX1 3PS, UK; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-217-333-6590; Fax: +1-217-244-3499. Received: 1 July 2013; in revised form: 7 August 2013 / Accepted: 15 August 2013 / Published: 4 September 2013 Abstract: The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive families in the Coleoptera²the order now considered the most closely related to Strepsiptera based on recent genomic evidence.
    [Show full text]
  • X-Ray Micro-CT Reconstruction Reveals Eight Antennomeres in a New Fossil
    Palaeontologia Electronica palaeo-electronica.org X-ray micro-CT reconstruction reveals eight antennomeres in a new fossil taxon that constitutes a sister clade to Dundoxenos and Triozocera (Strepsiptera: Corioxenidae) Hans Henderickx, Jan Bosselaers, Elin Pauwels, Luc Van Hoorebeke, and Matthieu Boone ABSTRACT Eocenoxenos palintropos gen. nov. et sp.nov., a new fossil strepsipteran taxon from Baltic amber is described. The position of the new genus is based on cladistic analyses of morphological data sets. Most data of the fossil where retrieved with 3D micro-CT scan reconstructions. The new taxon is unambiguously situated as a sister group of the Dundoxenos-Triozocera clade within the Corioxenidae. The eocene taxon combines derived characteristics typical of Corioxenidae with the posession of eight antennomeres with five long flabella, a regained ancestral characteristic. Hans Henderickx. Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium (Address for correspondence: Hemelrijkstraat 4, B-2400 Mol, [email protected] Jan Bosselaers. Section of invertebrates, Royal Museum for Central Africa, B-3080 Tervuren, Belgium [email protected] Elin Pauwels. Department of Physics and Astronomy, Gent University, Proeftuinstraat 86, B-9000 Gent, Belgium [email protected] Luc Van Hoorebeke. Department of Physics and Astronomy, Gent University, Proeftuinstraat 86, B-9000 Gent, Belgium [email protected] Matthieu Boone. Department of Physics and Astronomy, Gent University, Proeftuinstraat 86, B-9000 Gent, Belgium [email protected] KEY WORDS: Strepsiptera; new genus; new species; micro-CT scan; Baltic amber fossil. INTRODUCTION similar to a trunk eclector trap (Dubois and LaPolla, 1999) often capturing invertebrates that are seldom Strepsiptera are regularly reported from Baltic encountered in the field, for example because they amber.
    [Show full text]
  • Infectious and Parasitic Diseases of Phytophagous Insect Pests in the Context of Extreme Environmental Conditions
    Cent. Eur. For. J. 67 (2021) 72–84 DOI: 10.2478/forj-2020-0018 REVIEW PAPER http://www.nlcsk.sk/fj/ Infectious and parasitic diseases of phytophagous insect pests in the context of extreme environmental conditions Danail Takov1*, Daniela Pilarska1, 2 , Andreas Linde3, Marek Barta4 1 Institute of Biodiversity and Ecosystem Research – Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, BG – Sofia 1000, Bulgaria 2 New Bulgarian University, Department of Natural Sciences, BG – 1618 Sofia, 21 Montevideo Str., Bulgaria 3 Eberswalde University for Sustainable Development, Alfred-Möller-Straße, DE – 16225 Eberswalde, Germany 4 Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, SK – 960 53 Zvolen, Slovak Republic Abstract The density of phytophagous insect pest populations is related (directly and indirectly) to several groups of factors that can be broadly divided into: abiotic, biotic and anthropogenic. Each extreme in the abiotic environment at a macro-level leads to a series of consecutive extremes in the biotic environment, which eventually results in micro-level responses in the individual organisms. The manifestation of factors acts in aggregate or in a sequence, creating a chain of processes around us. Insects very efficiently use the abundance of nutritional resources, resulting in a tre- mendous increase in their population density, and triggering control mechanisms through the emergence of parasitic and pathogenic infections (viruses, bacteria, fungi, microsporidia, protozoa and nematodes). The development of entomopathogenic infections in host populations is directly dependent on the characteristics of both the antagonist and the insect. It is associated with the lifestyle and life cycle of the insect, with features encoded in the mechanism of pathogen action, and limited by the pathogen’s virulence and pathogenicity.
    [Show full text]
  • The Biodiversity and Systematics of the Entomophagous Parasitoid Strepsiptera (Insecta)
    The Biodiversity and Systematics of the entomophagous parasitoid Strepsiptera (Insecta) Jeyaraney Kathirithamby, Department of Zoology and St Hugh’s College, Oxford. [email protected] [email protected] ABSTRACT Strepsiptera are small group of entomophagous parasiroids of cosmopolitan in distribution. They parasitize seven orders of Insecta and the common hosts in Europe are Hymenoptera, Hemiptera and Thysanura. INTRODUCTION Strepsiptera are obligate endoparasites the hosts of which include Blattodea, Diptera, Hemiptera, Hymenoptera, Mantodea, Orthoptera, and Thysanura, and 33 families. The name of the group is derived form the Greek words: twisted ( Strepsi-) and wing (pteron ), and refers in particular to the twisted hind wing of the male while in flight. Representatives of the suborder Mengenillidia show more primitive characteristics and parasitise Thysanura (Lepismatidae), the only known apterygote to be parasitized. Strepsiptera are cosmopolitan in distribution and are difficult to find: often the host has to be located to find the strepsipteran. To date about 600 species have been described, but many more await description and some could be cryptic species. The group is relatively well known in Europe (Kinzelbach, 1971, 1978), where details of Strepsiptera life history have been studied in Elenchus tenuicornis Kirby (Baumert, 1958, 1959), a parasite of Delphacidae (Homoptera) and in Xenos vesparum (Christ) (Hughes et al ., 2003, 2004a, 2004b, 2005), a parasite of polistine paper wasps (Hymenoptera: Vespidae). While most strepsipterans parasitize single taxa (leafhoppers or halictid bees), the males and females in the family Myrmecolacidae parasitize hosts belonging to different orders: (Formicidae and Orthoptera, respectively) (Ogloblin, 1939, Kathirithamby and Hamilton, 1992).
    [Show full text]
  • Zootaxa, Strepsiptera, Stylopidae, Xenos Hamiltoni Sp. N
    Zootaxa 1104: 35–45 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1104 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Description and biological notes of the first species of Xenos (Strep- siptera: Stylopidae) parasitic in Polistes carnifex F. (Hymenoptera: Vespidae) in Mexico JEYARANEY KATHIRITHAMBY1 & DAVID P. HUGHES2 1Department of Zoology, South Parks Road, Oxford, OX1 3PS, U.K. [email protected] 2 Present address: Centre for Social Evolution, Institute of Biology, University of Copenhagen, Univer- sitetsparken 15, 2100 Copenhagen, Denmark [email protected] C o r r e s p o n d e n c e : J e y a r a n e y K a t h i r i t h a m b y D e p a r t m e n t o f Z o o l o g y , S o u t h P a r k s R o a d , O x f o r d O X 1 3 P S , U K . e-mail: [email protected] Abstract A description and biological notes on the first species of Xenos (X. hamiltoni) (Strepsiptera: Stylopidae) parasitic in Polistes carnifex F. from Mexico is given. A list of Strepsiptera and their hosts from Mexico is provided. Key words: Strepsiptera, Xenos hamiltoni sp. n., Polistes carnifex, Mexico Introduction To date thirteen species of Strepsiptera have been described from Mexico. Kifune & Brailovsky (1988) listed eleven and Kathirithamby & Moya-Raygoza (2000) listed twelve, and since then one subspecies has been added (Kathirithamby & Johnston 2003).
    [Show full text]
  • (Strepsiptera: Stylopidae) from Dominican Amber
    March - April 2010 227 SYSTEMATICS, MORPHOLOGY AND PHYSIOLOGY New Fossil Stylops (Strepsiptera: Stylopidae) from Dominican Amber MARCOS KOGAN1, GEORGE POINAR JR2 1Integrated Plant Protection Center and Dept of Horticulture; 2Dept of Zoology. Oregon State Univ, Corvallis, Oregon, 97331, USA; [email protected]; [email protected] Edited by Roberto A Zucchi Neotropical Entomology 39(2):227-234 (2010) ABSTRACT - Description of a new species of the genus Stylops from Dominican amber expands the number of families of this order represented by fossils of the mid-Eocene in the Neotropical region. The specimen described herein is reasonably well preserved, except for the tip of the abdomen that hampered observation of the aedeagus. The specimen fi ts defi nition of the comtemporary genus Stylops and differs from a related species, Jantarostylops kinzelbachi Kulicka, from Baltic amber, by the larger number of ommatidia, relative proportion of antennal segments, and venation of hind wings. The specimen differs from other contemporary species of Nearctic Stylops in, among other characters, the smaller size, sub-costa detached from costa and maxillary structure. Discovery of this fossil species of Stylops provides evidence of a possibly more temperate climate in the Antilles, since most contemporary species of the genus occur predominantly in the temperate zones of the Nearctic, Palearctic, and Oriental regions. All known species of the genus parasitize bees of the genus Andrena (sensu lato). Existence of a fossil andrenid, Protandrena eickworti Rozen Jr, of the same Dominican amber, offers evidence of a potential host for this new species of Stylops. KEY WORDS: Fossil insect, Neotropical Strepsiptera, Jantarostylops, Protandrena For a relatively rare group of insects, Strepsiptera are and male puparium in planthoppers of two families: well represented in the Dominican amber (Table 1).
    [Show full text]
  • (Hymenoptera) Interactions on Edge Grasses of Maize Agroecosystem
    JHR 57: 155–166Host-Dryinidae (2017) (Hymenoptera) interactions on edge grasses of maize agroecosystem... 155 doi: 10.3897/jhr.57.12990 RESEARCH ARTICLE http://jhr.pensoft.net Host-Dryinidae (Hymenoptera) interactions on edge grasses of maize agroecosystem throughout winter in Mexico Iskra M. Becerra-Chiron1, Gustavo Moya-Raygoza1, Alejandro Muñoz-Urias2 1 Departamento de Botánica y Zoología, CUCBA, Universidad de Guadalajara, km 15.5 carretera Guada- lajara-Nogales, Las Agujas, Zapopan, C.P. 45110, Apdo. Postal 139, Jalisco, México 2 Departamento de Eco- logía, CUCBA, Universidad de Guadalajara, km 15.5 carretera Guadalajara-Nogales, Las Agujas, Zapopan, C.P. 45110, Apdo. Postal 139, Jalisco, México Corresponding author: Gustavo Moya-Raygoza ([email protected]) Academic editor: J. Neff | Received 31 March 2017 | Accepted 3 May 2017 | Published 30 June 2017 http://zoobank.org/9B5E8065-CCA9-42F2-AE0C-286A6B6A7653 Citation: Becerra-Chiron IM, Moya-Raygoza G, Muñoz-Urias A (2017) Host-Dryinidae (Hymenoptera) interactions on edge grasses of maize agroecosystem throughout winter in Mexico. Journal of Hymenoptera Research 57: 155–166. https://doi.org/10.3897/jhr.57.12990 Abstract Little is known about the host-parasitoid interactions on the edges of crops during winter. Our objective was to determine the parasitoid species that attack nymphs and adults of leafhoppers and planthoppers, and evaluate the interactions that occur during winter on maize edges. Between January and June of 2014 and 2015 leafhoppers and planthoppers with evidence of parasitism by Dryinidae (Hymenoptera) were collected on grasses that grow in maize fields margins in Mexico and were maintained alive until parasitoid adult emergence. Dryinids such as Gonatopus huggerti (Olmi), Gonatopus mimoides (Perkins), Gonatopus breviforceps (Kieffer), andGonatopus caraibicus (Olmi) were the most common parasitoids.
    [Show full text]
  • 1 the RESTRUCTURING of ARTHROPOD TROPHIC RELATIONSHIPS in RESPONSE to PLANT INVASION by Adam B. Mitchell a Dissertation Submitt
    THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell 1 A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology and Wildlife Ecology Winter 2019 © Adam B. Mitchell All Rights Reserved THE RESTRUCTURING OF ARTHROPOD TROPHIC RELATIONSHIPS IN RESPONSE TO PLANT INVASION by Adam B. Mitchell Approved: ______________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ______________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: ______________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Douglas W. Tallamy, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Charles R. Bartlett, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ______________________________________________________ Jeffery J. Buler, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Fossil Perspectives on the Evolution of Insect Diversity
    FOSSIL PERSPECTIVES ON THE EVOLUTION OF INSECT DIVERSITY Thesis submitted by David B Nicholson For examination for the degree of PhD University of York Department of Biology November 2012 1 Abstract A key contribution of palaeontology has been the elucidation of macroevolutionary patterns and processes through deep time, with fossils providing the only direct temporal evidence of how life has responded to a variety of forces. Thus, palaeontology may provide important information on the extinction crisis facing the biosphere today, and its likely consequences. Hexapods (insects and close relatives) comprise over 50% of described species. Explaining why this group dominates terrestrial biodiversity is a major challenge. In this thesis, I present a new dataset of hexapod fossil family ranges compiled from published literature up to the end of 2009. Between four and five hundred families have been added to the hexapod fossil record since previous compilations were published in the early 1990s. Despite this, the broad pattern of described richness through time depicted remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter term patterns. Corrections for rock record and sampling effort change some of the patterns seen. The time series produced identify several features of the fossil record of insects as likely artefacts, such as high Carboniferous richness, a Cretaceous plateau, and a late Eocene jump in richness. Other features seem more robust, such as a Permian rise and peak, high turnover at the end of the Permian, and a late-Jurassic rise.
    [Show full text]
  • Order STREPSIPTERA Manual Versión Española
    Revista IDE@ - SEA, nº 62B (30-06-2015): 1–10. ISSN 2386-7183 1 Ibero Diversidad Entomológica @ccesible www.sea-entomologia.org/IDE@ Class: Insecta Order STREPSIPTERA Manual Versión española CLASS INSECTA Order Strepsiptera Jeyaraney Kathirithamby1, Juan A. Delgado2,3 2,4 & Francisco Collantes 1 Department of Zoology, Universityu of Oxford, South Parks Road, Oxford OX1 3PS, UK [email protected] 2 Departamento de Zoología y Antropología Física, Universidad de Murcia, Murcia, (España) 3 [email protected] 4 [email protected] 1. Short group definition and main diagnostic characters Strepsiptera are entomophagous parasitoids with free-living adult males and endoparasitic females (except in the family Mengenillidae). The hosts of this group are referred in the bibliography as “stylopized”; the two more frequently parasitized insect order are Homoptera and Hymenoptera. The males have large raspberry-like eyes, flabellate antennae, shortened forewings resembling dip- teran halteres and large hind wings (Fig. 2A and 2C). The females are neotenic and endoparasitic in the suborder Stylopidia. The endoparasitic females are divided into two regions: a sacciform body, which is endoparasitic in the host and an extruded cephalothorax (Fig. 4). In the extant family Mengenillidae both males and females (Fig. 2A and 2B) emerge from the host to pupate externally, and the neotenic females of this family are, as the males, free living (Kinzelbach, 1971, 1978; Kathirithamby, 1989, 2009). Last molecular studies confirm the sister group relationships of Strepsiptera with Coleoptera. Both lineages split from a common ancestor during the Permian (Wiegmann et al., 2009; Misof et al., 2014). Unfortunately, the fossil record of this group is restricted to only a few specimens preserved in amber.
    [Show full text]
  • Zootaxa, Halictophagus, Insecta, Strepsiptera, Halictophagidae
    Zootaxa 1056: 1–18 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1056 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) A new species of Halictophagus (Insecta: Strepsiptera: Halicto- phagidae) from Texas, and a checklist of Strepsiptera from the United States and Canada JEYARANEY KATHIRITHAMBY1 & STEVEN J. TAYLOR2 1Department of Zoology, South Parks Road, Oxford OX1 3PS, U.K. [email protected] 2Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive (MC-652), Champaign IL 61820-6970 U.S.A. [email protected] Correspondence: Jeyaraney Kathirithamby Department of Zoology, South Parks Road, Oxford OX1 3PS, U.K.; e-mail: [email protected] Abstract A new species of Halictophagidae (Insecta: Strepsiptera), Halictophagus forthoodiensis Kathirith- amby & Taylor, is described from Texas, USA. We also present a key to 5 families, and a check-list of 11 genera and 84 species of Strepsiptera known from USA and Canada. Key words: Strepsiptera, Halictophagus, Texas, USA, Canada Introduction Five families and eighty three species of Strepsiptera have been recorded so far from USA and Canada of which thirteen are Halictophagus. Key to the families of adult male Strepsiptera found in USA and Canada 1. Mandibles absent..................................................................................... Corioxenidae – Mandibles present ........................................................................................................ 2 2. Legs with
    [Show full text]