12 March 2021

Total Page:16

File Type:pdf, Size:1020Kb

12 March 2021 1 2 M A R C H 2 0 2 1 WEEKLY NEWS FROM THE PREP & COLLEGE Mobile Journalism Masterclass This week, the Grade 6s continued working on the Mobile Journalism DMA Course. They were fortunate to have photojournalist, Karen Winter, do a wonderful presentation on the finer points of photography and editing. The students were tasked with using their iPads to take and edit photos of toys. They learnt such a lot and the results of the exercise are creative and entertaining! 1 2 M A R C H 2 0 2 1 Creative photography by the Grade 6s, using toys in real life situations. 1 2 M A R C H 2 0 2 1 From the Prep Head's Desk ... What a wonderful week this has been, including glorious rain! Following all the excitement of last Friday’s Founders’ celebrations, one would have expected a quieter week. Not so. Two major STEAM DMA programmes were hosted, with the Grade 6s exploring mobile journalism under the tutelage of a professional photographer (thank you, Mrs Winter!). Their photo stories about Bridge House are wonderful; their creativity, while paying keen attention to the details of perspective and composition, is spectacular. And the ‘incidental learning’ in having to arrange times and dates to follow a teacher or a class group in order to snap them ‘in action’, invaluable. The Grade 5 pupils extended their project-based learning about Ancient Egypt to include 3D design, both printing a sarcophagus on the 3D printer, and then moulding a mummy to fit into it! They learned about negative space and volume in 3D design, produced papyrus, and even turned into engineers by building pyramids and considering the challenges of building dams. Next week sees the Grade 7s getting to grips with Data Literacy and Big Data, as they collect - and then filter and interpret - relevant data for a FITastic DATA project!. I am in awe of the attention to detail by the teachers in their planning and execution of all these project-based modules. Current affairs and much incidental learning are woven into all the projects, even as that is a hallmark of our day-to-day teaching methodology at Bridge House. Speaking of incidental learning: children are naturally curious, and it is this curiosity that provides countless opportunities to introduce new vocabulary, check on a map ‘where X actually happened’, ask those ‘why’ and ‘what if’ questions, and even teach a new skill or craft … both at school and at home. Critical thinking skills can’t just be taught, and definitely don’t ‘just appear’; they have to be carefully nurtured and extended, even as they are modelled. It has been lovely to see parents of the Junior Primary and Pre-Primary departments coming onto the campus for feedback meetings - Senior Prep parents, it will be your turn at the start of next term. Our children are eagerly preparing for the ‘staggered’ Inter-House Athletics Meets and the Gr 1 and 2 Gala next week. Yes indeed - it may be the final week of the term, but it’s all systems go, to the very last day. Sandie Parker Prep Deputy: Academics and Culture 1 2 M A R C H 2 0 2 1 3D Modelling in Ancient Egypt The Grade 5s embarked on their DMA adventure this week. They explored 3D modelling in various shapes and forms using Ancient Egypt as a theme. They drew 3D shapes using negative and positive spaces; learnt about dams; built pyramids using Lego and skewers and made and decorated Papyrus. Their mummies had to fit into a 3D printed sarcophagus. The design app, Tinkercad, was used to design 3D shapes and an Ancient Egyptian artefact. It was a creative three days, experienced through team building and project-based learning. 1 2 M A R C H 2 0 2 1 Condolences We were sad to hear in a letter from the Round Square President, King Constantine, about the death of Rod Fraser (AM). Rod was an important member of the Round Square Academics international consultancy team, with many years’ experience of school leadership and a vast network of contacts globally, but most particularly in Australasia and South East Asia. Rod had over forty years’ experience in school education, including 20 as Principal and CEO of Ivanhoe Grammar School in Melbourne, a leading co-educational IB school for over 2000 students. It was there that he introduced transnational high school programmes which delivered the Victoria State Certificate of Education (VCE) in partnership with schools in China. He has also led other curriculum design and delivery projects which have focused on improving international understanding amongst staff and students in schools. For 6 years, Rod Chaired the Board of Trustees of the Round Square International Network of Schools. He also Chaired the International Baccalaureate’s Regional Council for Asia-Pacific and was a Member of the IB Global Heads’ Council. Rod was a Fellow of the Australian College of Educators and the Council for Educational Leadership. In June 2015, Rod was acknowledged in the Queen's Birthday Honours list becoming a Member of the Order of Australia (AM) in the General Division for significant service to secondary education, to national and international learning development organisations and to the community. Rod visited Bridge House for the International Round Square Conference held here in 2017 (photo below). He is fondly remembered for his wisdom, his masterful chairmanship of meetings, his sharp sense of humour, his compassion and so much more. He was a special human being who had a huge impact on literally thousands of lives. We send our sincere condolences to the Round Square Community, the Ivanhoe Grammar community and particularly to Rod’s wife Sandy and his children. 1 2 M A R C H 2 0 2 1 What are we learning about this week? The Grade 0s are learning about ten frames and tally marks. A ten frame is a two-by-five rectangular frame into which counters are placed to demonstrate numbers less than or equal to 10. Counters can be arranged in different ways to represent different numbers, which visually help children develop a strong sense of number. Tally marks, also called hash marks, are a unary numeral system. They are a form of numeral used for counting. They are most useful in counting or tallying ongoing results, such as the score in a game or sport, as no intermediate results need to be erased or discarded. 1 0 M A R C H 2 0 2 1 Boarding at Bridge House Mr Le Roux took some of the Bellegam boys hiking in the Franschhoek mountains. Being able to rise above the clouds and look down on the valleys and hills below, brings a feeling of peace and tranquility and we are so fortunate to have these amazing landscapes so close to the school. They found a beautiful baby chameleon, the size of a fingernail. 1 2 M A R C H 2 0 2 1 COLLEGE SPORT CAPE TOWN PREMIER HOCKEY LEAGUE Congratulations to the following boys who have been selected to play for various teams in the Cape Town Premier Hockey League; U16 Boys Plate Section All Stars Team James Shone U16 Boys Royals Team Joey Baylet U16 Boys Raiders Team Reuben Sendzul U16 Boys Raptors Team Jack Wells U16 Boys The Heat Team Sebastian Phillips PSI INDOOR HOCKEY Congratulations to the following boys who have been selected for the following teams to participate in the Intercity Tournament on 20 & 21 March Foxes Boys U16 James Shone Joey Baylet Sebastian Phillips Foxes Cubs Boys U15 Reuben Sendzul INTER-HOUSE SWIMMING AND ATHLETICS TRACK EVENTS (100m, 200m & 400m) These events will take place on Friday 19 March as follows: 08:30 - 10:00 Inter-House Gala events for Grades 10- 12 Inter-House Track events (100m, 200m & 400m) for Grades 8 & 9 10:00 - 10:30 Break 10:30 - 11:45 Inter-House Gala events for Grades 8 & 9 Inter House Track events for Grades 10-12 11:45 Athletics Matrics 4 x 100m Relay 12:00 End oF school day EQUESTRIAN Amelia Ansley rode her first DRASA event (Distance Riding Association South Africa) and secured first overall position as well as the veterinary prize for best condition horse. The DRASA event consists of 3 elements: horsemanship (riding skill); completing a 20km course, including obstacles and in challenging terrain, as close as possible to a predicted time; and monitoring the horse's physical condition before and after the distance has been completed. Out of a field of 20 riders - two juniors and eighteen adults - Amelia and her 17-year-old Arabian horse, Tiran, led the field. 1 0 M A R C H 2 0 2 1 Prep school parents who would like to meet David Clark and have a tour of the College are invited to contact Gill Malcolm: [email protected], for an appointment. 1 0 M A R C H 2 0 2 1 Click here and fill in the form https://docs.google.com/forms/d/e/1FAIpQLScDXUA 5jTgtYZXgzUk5jGSQ47L5OYPABIMkW1ORAJDI_TUvdg /viewform 1 0 M A R C H 2 0 2 1 Notices End of Term You are reminded that Term 1 ends next Friday 19 March. The Prep will finish school at 11h45 on that day and the College at 12h00. Term 2 begins on Wednesday 7 April with the boarders returning in the late afternoon of Tuesday 6 April. Reports Reports will be emailed to you on Friday 19 March. Second-Hand Clothing It’s time to start checking your children’s winter clothing.
Recommended publications
  • The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
    Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g.
    [Show full text]
  • Datatype Defining Rewrite Systems for Naturals and Integers
    UvA-DARE (Digital Academic Repository) Datatype defining rewrite systems for naturals and integers Bergstra, J.A.; Ponse, A. DOI 10.23638/LMCS-17(1:17)2021 Publication date 2021 Document Version Final published version Published in Logical Methods in Computer Science License CC BY Link to publication Citation for published version (APA): Bergstra, J. A., & Ponse, A. (2021). Datatype defining rewrite systems for naturals and integers. Logical Methods in Computer Science, 17(1), [17]. https://doi.org/10.23638/LMCS- 17(1:17)2021 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Logical Methods in Computer Science Volume 17, Issue 1, 2021, pp. 17:1–17:31 Submitted Jan. 15, 2020 https://lmcs.episciences.org/ Published Feb.
    [Show full text]
  • Experimental Methods and Instrumentation for Chemical Engineers Experimental Methods and Instrumentation for Chemical Engineers
    Experimental Methods and Instrumentation for Chemical Engineers Experimental Methods and Instrumentation for Chemical Engineers Gregory S. Patience AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Elsevier 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands First edition 2013 Copyright © 2013 Elsevier B.V. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in ­evaluating and using any information, methods, compounds, or experiments
    [Show full text]
  • Parallel Branch-And-Bound Revisited for Solving Permutation Combinatorial Optimization Problems on Multi-Core Processors and Coprocessors Rudi Leroy
    Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors Rudi Leroy To cite this version: Rudi Leroy. Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Lille 1, 2015. English. tel-01248563 HAL Id: tel-01248563 https://hal.inria.fr/tel-01248563 Submitted on 27 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale Sciences Pour l’Ingénieur Université Lille 1 Nord-de-France Centre de Recherche en Informatique, Signal et Automatique de Lille (UMR CNRS 9189) Centre de Recherche INRIA Lille Nord Europe Maison de la Simulation Thèse présentée pour obtenir le grade de docteur Discipline : Informatique Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors. Défendue par : Rudi Leroy Novembre 2012 - Novembre 2015 Devant le jury
    [Show full text]
  • Tied to the Representation of Numbers
    1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in INTRODUCTION TO COMPUTER SCIENCE Topic Objective: At the end of this topic the student will be able to understand: Concrete devices Numbers Early computation Navigation and astronomy Weather prediction Symbolic computations Definition/Overview: History of Computing: The history of computing is longer than the history of computing hardware and modern computing technology and includes the history of methods intended for pen and paper or for chalk and slate, with or without the aid of tables. The timeline of computing presents a summary list of major developments in computing by date. Key Points: 1. Concrete devices Computing is intimatelyWWW.BSSVE.IN tied to the representation of numbers. But long before abstractions like number arose, there were mathematical concepts to serve the purposes of civilization. These concepts are implicit in concrete practices such as : one-to-one correspondence, a rule to count how many items, say on a tally stick, eventually abstracted into number; comparison to a standard, a method for assuming reproducibility in a measurement, for example, the number of coins; the 3-4-5 right triangle was a device for assuring a right angle, using ropes with 12 evenly spaced knots, for example. 2. Numbers www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in Eventually, the concept of numbers became concrete and familiar enough for counting to arise, at times with sing-song mnemonics to teach sequences to others. All the known languages have words for at least "one" and "two", and even some animals like the blackbird can distinguish a surprising number of items.
    [Show full text]
  • A NUMERAL SYSTEM BASICS of NUMBER SYSTEMS Lecture 5 EVERYTHING IS a NUMBER in a DIGITAL DEVICE!
    A NUMERAL SYSTEM BASICS OF NUMBER SYSTEMS Lecture 5 EVERYTHING IS A NUMBER IN A DIGITAL DEVICE! •How to code a text in digital view? a picture? a video? a sound? something else? •To remember: we can code any kind of information into a digital view! It’s only a question about algorithm and our ideas! Do you agree? A. GRIGOREV | UKHTA STATE TECHNICAL UNIVERSITY 2 A NUMBER •A computer can understand positional number system where there are only a few symbols called digits and these symbols represent different values depending on the position they occupy in the number. •A value of each digit in a number can be determined using The digit The position of the digit in the number The base of the number system (where base is defined as the total number of digits available in the number system). A. GRIGOREV | UKHTA STATE TECHNICAL UNIVERSITY 3 A NUMERAL SYSTEM •A numeral system (or system of numeration) is a writing system for expressing numbers; that is a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. A. GRIGOREV | UKHTA STATE TECHNICAL UNIVERSITY 4 UNARY NUMERAL SYSTEM (JUST STICKS) A. GRIGOREV | UKHTA STATE TECHNICAL UNIVERSITY 5 POSITIONAL NOTATION PLACE-VALUE NOTATION A. GRIGOREV | UKHTA STATE TECHNICAL UNIVERSITY 6 RADIX •In mathematical numeral systems the base or radix is usually the number of unique digits, including zero, that a positional numeral system uses to represent numbers. •For example, for the decimal system the radix is 10, because it uses the 10 digits from 0 through 9.
    [Show full text]
  • Proposal to Encode Tally Marks Source: Dr
    L2/15-328 Title: Proposal to encode tally marks Source: Dr. Ken Lunde (Adobe) & Daisuke MIURA Status: Individual contribution Action: For consideration by the UTC Date: 2015-11-30 Abstract Tally marks, which form a unary numeral system, have been used for thousands of years as a method of counting or keeping score through the use of stroke clusters. Tally marks also predate modern digits, and in some cases, served as their basis for some scripts. Most tally mark systems represent five digits, which correspond to the number of digits on a single human hand, but there is one system in this proposal that can represent ten digits. This proposal introduces four “tally mark” systems, and provides evidence that suggests that they require a “plain text” representa- tion, and should thus be encoded. Introduction Wikipedia’s very brief Tally marks article describes four tally mark systems, which serve as the basis for this proposal. The most common tally mark system, which is widely used in Europe, North America, and elsewhere, uses one to four parallel vertical strokes to represent the digits one through four, respectively, along with a horizontal or diagonal stroke that crosses over the four previous vertical strokes—completing the tally cluster—to represent the digit five. This tally mark sys- tem is sometimes referred to as the Barred-Gate Tally Mark System, because the four vertical strokes represent a gate, and the fifth stroke represents a bar that closes the gate.In this pro- posal, this system uses character names that begin with TALLY DIGIT. Another tally mark system, which is used in some French- and Spanish-speaking regions and particularly in South America, uses four strokes to form a box or square, with the number of successive strokes representing the digits one through four, respectively, along with a 45-de- gree diagonal stroke—completing the tally cluster—to represent the digit five.
    [Show full text]
  • 31 Infinity One by One
    31 Infinity One by One Chapter of the book Infinity Put to the Test by Antonio Le´on available HERE Abstract.–Infinitist orthodoxy assumes the existence, as a complete totality, of the set of natural numbers, each of whose elements is defined by adding one unity to its immediate predecessor. The result of adding infinitely many units to the first natural number is not an infinite number but an infinitude of finite natural numbers. By means of the Unary System of Numeration, this chapter analyzes the consequences of such an assumption. Keywords: unary numeral system, unary table of natural numbers, actual infinity, potential infinity. The unary numeral system P570 A numeral is not a number but the symbol we use to represent a number. Thus, the numeral “5” is the symbol for the number 5 in the usual decimal numeral system. Perhaps the most primitive way to represent numbers [1] is what we now call the unary numeral system (UNS). As its name suggests, only one numeral is needed to represent any natural number. Here we will use the numeral “1”. The successive natural numbers will then be written as: 1, 11, 111, 1111, 11111, 111111, . P571 Although, for obvious reasons, the UNS is not the most appropriate for complex arithmetic calculations, it is the system that best represents the essential nature of the natural numbers: each natural number is exactly one unit greater than its immediate predecessor, and then the unary ex- pression of each natural number has exactly one numeral more than the unary expression of its immediate predecessor.
    [Show full text]
  • Informatics 1 - Computation & Logic: Tutorial 3
    Informatics 1 - Computation & Logic: Tutorial 3 Counting Week 5: 16-20 October 2017 Please attempt the entire worksheet in advance of the tutorial, and bring all work with you. Tutorials cannot function properly unless you study the material in advance. Attendance at tutorials is obligatory;pleaselet the ITO know if you cannot attend. You may work with others, indeed you should do so; but you must develop your own understanding; you can’t phone a friend during the exam. If you do not master the coursework you are unlikely to pass the exams. If we want to go beyond yes/no questions, it is natural to ask, How many ...? We are interested in sets, so we will ask how many elements there are in a set. We will focus on finite sets. We write A or #A for the number of elements in A | | I Let A and B be disjoint finite sets , with at least one element, b B (A and B 2 may have other elements). (a) Is b A? 2 Use arithmetic operators to give expressions for the following numbers: (b) = (e) A B = |{}| | [ | (c) A b = (f) A B = | [{ }| | ⇥ | (d) a, b a A = (g) }A = |{h i| 2 }| | | (h) f f : A B = |{ | ! }| (i) R A A RisatotalorderingofA = |{ ✓ ⇥ | }| II Give rules, in the style of Tutorial 0, to generate the following sets: (a) the set }N of finite subsets of the natural numbers, N. F✓ (b) the set N of natural numbers 1 The natural numbers N = 0, 1, 2, 3, 4,... correspond to the sizes of finite sets.
    [Show full text]
  • Natural Codes As Foundation for Hierarchical Labeling and Extend Hexadecimals for Arbitrary-Length Bit Strings
    Natural Codes as foundation for hierarchical labeling and extend hexadecimals for arbitrary-length bit strings 1 1 2 Peter Krauss , Thierry Jean ,​ Daniele R. Sampaio , ​ ​ ​ José Damico3, Everton Bortolini1,4, ​ Rui Pedro Julião5, Alexander Zipf 6, Alan C. Alves7 ​ ​ ABSTRACT We propose a positional notation for bit strings (binary sequences) with an arbitrary amount of bits, which preserves hierarchy and is compatible with the ordinary hexadecimal numeric representation. When the elements of a nested set are labeled with Natural numbers, the hierarchical structure is not preserved; but when the numerical labels are replaced by variable-length bit strings, distinguishing leading zeros (00 and 0 as distinct entities), it is possible to express labels with hierarchical syntax, preserving the original nested structure. We present a formal definition of this type of numerical labeling system, calling it Natural Codes. We slso show that it can be transformed into human-readable encodings (positional notations such as base4, base8 or base16), the base notation extensions base4h, base8h and base16h for hierarchical representation. The reference-model adopted is the finite Cantor set with hierarchy degree k — strictly, the set C is the “hierarchical tree of the Cantor set”, which is ​ ​ ​k isomorphic to a complete binary tree —, proposing a simple labeling process, mapping elements of C ​ ​k into elements of the Natural Codes. The proposal of the base notation extensions introduces a complement to ordinary base syntax, where the last digit can use, when necessary, a complementary alphabet to represent partial values (with one bit less than ordinary digits). The hierarchical representation is a superset, differenciating from ordinary base notation by this last digit, that is a non-hierarchical member of the representation (named nhDigit).
    [Show full text]
  • Relational Understanding As Inclusion Tool for Children with Math Learning Disabilities
    FACULTAD DE CIENCIAS HUMANAS, SOCIALES Y DE LA EDUCACIÓN GIZA, GIZARTE ET HEZKUNTZA ZIENTZIEN FAKULTATEA Graduado o Graduada en Maestro en Educación Primaria Lehen Hezkuntzako Irakaslean Graduatua Trabajo Fin de Grado Gradu Bukaerako Lana Relational Understanding as Inclusion Tool for Children with Math Learning Disabilities Estudiante/Ikaslea: Alicia Ruth Urzay García Enlace vídeo: https://youtu.be/h_IohgAo43k Tutor/Tutora: Olga Raquel García Catalán Departamento/Saila: Estadística, Informática y Matemáticas Campo/Arloa: Matemáticas Mayo, 2021 Relational Understanding as a Inclusion Tool for Children with Math Learning Disabilities Resumen El presente proyecto resalta la importancia de enseñar las operaciones matemáticas de la suma y la resta desde el entendimiento relacional, para permitir al alumnado con dificultades de aprendizaje adquirir una comprensión matemática significativa, huyendo así de la memorización de múltiples procedimientos. Esto les permite concebir las matemáticas como una herramienta que les acerca y facilita la comprensión de la vida que les rodea. Concretamente en nuestro caso, su aplicación les permite reconocer y entender las operaciones de la suma y la resta en diferentes situaciones o contextos de su vida cotidiana. Se propone la implantación de un taller matemático en un colegio público de Pamplona para un alumno de sexto curso desde el aula externa de PT. Este taller, basado en el juego, pretende trabajar la aritmética de las matemáticas haciendo uso de materiales manipulativos como herramienta de aprendizaje para que el alumno con dificultades posea unos recursos que le permitan desarrollar sus habilidades matemáticas y construir conocimiento, de modo que cree y desarrolle sus propios procedimientos de resolución de problemas. Por último, analizamos los beneficios de esta propuesta y comprobamos la existencia de una progresión en el aprendizaje del alumno.
    [Show full text]
  • L211 Logic and Mathematics 7
    L211 Logic and Mathematics 7. Lecture Number systems Norbert PREINING [email protected] http://www.preining.info/jaist/l211/2015e/ Tally marks Europe, North America etc History: the first notation systems for numbers Kanji area France, Spain, South America Forestry Unary numeral system What to do with big numbers? Egyptian number system 1 10 100 1000 10000 100000 1000000 Roman number system I 1 II 2 III 3 IV 4 V 5 VI 6 VII 7 VIII 8 IX 9 X 10 L 50 C 100 D 500 M 1000 MMXV Decimal systems Decimal system Decimal number system and poitional notation = 1000 + 1000 + 1000 + 100 + 100 + 1 + 1 + 1 + 1 三千二百四 = 3 · 1000 + 2 · 100 + 4 · 1 MMMCCIV 3203 = 3 · 1000 + 2 · 100 + 0 · 10 + 4 · 1 三千二百四 Reason of a positional notation system 3204 三千六百四 Which one is not a decimal notation system? MMMCCIV ! + 五百七十八 = 四千百八十二 Decimal system Number systems with base 2, 10, 16 10-base (decimal) 0 X k dndn−1 ::: d1d0 = dk 10 0 X k k=n (dndn−1 ::: d1d0)10 = dk 10 k=n Example 2-base (binary) 0 42 = 4 · 101 + 2 · 100 X k (bnbn−1 ::: b1b0)2 = bk 2 305 = 3 · 102 + 0 · 101 + 5 · 100 k=n 16-base (hexadecimal) 三千六百四 3604 0 X k + 五百七十八 + 578 (hnhn−1 ::: h1h0)16 = hk 16 = 四千百八十二 = 4182 k=n How many number symbols (digits) are necessary? Number of digits Usage of the binary system 0 X k 10-base (dndn−1 ::: d1d0)10 = dk 10 3204 I Morse code k=n Digits: 0, 1, 2, .
    [Show full text]