The BEST WRITING on MATHEMATICS 2011

Total Page:16

File Type:pdf, Size:1020Kb

The BEST WRITING on MATHEMATICS 2011 The BEST WRITING on MATHEMATICS 2011 Pitici.indb 1 8/20/2011 2:22:41 PM Pitici.indb 2 8/20/2011 2:22:42 PM The BEST WRITING on MATHEMATICS 2011 Mircea Pitici, Editor princeton university press princeton and oxford Pitici.indb 3 8/20/2011 2:22:43 PM Copyright © 2012 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved ISBN 978-0-691-15315-5 This book has been composed in Perpetua Std Printed on acid-free paper. ∞ Printed in the United States of America 1 3 5 7 9 10 8 6 4 2 Pitici.indb 4 8/20/2011 2:22:43 PM To my teacher, Ioan Candrea In memoriam Pitici.indb 5 8/20/2011 2:22:44 PM Pitici.indb 6 8/20/2011 2:22:44 PM Contents Foreword: Recreational Mathematics Freeman Dyson xi Introduction Mircea Pitici xvii What Is Mathematics For? Underwood Dudley 1 A Tisket, a Tasket, an Apollonian Gasket Dana Mackenzie 13 The Quest for God’s Number Rik van Grol 27 Meta-morphism: From Graduate Student to Networked Mathematician Andrew Schultz 35 One, Two, Many: Individuality and Collectivity in Mathematics Melvyn B. Nathanson 43 Reflections on the Decline of Mathematical Tables Martin Campbell-Kelly 51 Under-Represented Then Over-Represented: A Memoir of Jews in American Mathematics Reuben Hersh 55 Did Over-Reliance on Mathematical Models for Risk Assessment Create the Financial Crisis? David J. Hand 67 Pitici.indb 7 8/20/2011 2:22:45 PM viii Contents Fill in the Blanks: Using Math to Turn Lo-Res Datasets into Hi-Res Samples Jordan Ellenberg 75 The Great Principles of Computing Peter J. Denning 82 Computer Generation of Ribbed Sculptures James Hamlin and Carlo H. Séquin 93 Lorenz System Offers Manifold Possibilities for Art Barry A. Cipra 115 The Mathematical Side of M. C. Escher Doris Schattschneider 121 Celebrating Mathematics in Stone and Bronze Helaman Ferguson and Claire Ferguson 150 Mathematics Education: Theory, Practice, and Memories over 50 Years John Mason 169 Thinking and Comprehending in the Mathematics Classroom Douglas Fisher, Nancy Frey, and Heather Anderson 188 Teaching Research: Encouraging Discoveries Francis Edward Su 203 Reflections of an Accidental Theorist Alan H. Schoenfeld 219 The Conjoint Origin of Proof and Theoretical Physics Hans Niels Jahnke 236 What Makes Mathematics Mathematics? Ian Hacking 257 What Anti-realism in Philosophy of Mathematics Must Offer Feng Ye 286 Seeing Numbers Ivan M. Havel 312 Pitici.indb 8 8/20/2011 2:22:45 PM Contents ix Autism and Mathematical Talent Ioan James 330 How Much Math is Too Much Math? Chris J. Budd and Rob Eastaway 336 Hidden Dimensions Marianne Freiberger 347 Playing with Matches Erica Klarreich 356 Notable Texts 367 Contributors 371 Acknowledgments 379 Credits 381 Pitici.indb 9 8/20/2011 2:22:46 PM Pitici.indb 10 8/20/2011 2:22:46 PM Foreword: Recreational Mathematics Freeman Dyson Hobbies are the spice of life. Recreational mathematics is a splendid hobby which young and old can equally enjoy. The popularity of Sudoku shows that an aptitude for recreational mathematics is widespread in the population. From Sudoku it is easy to ascend to mathematical pursuits that offer more scope for imagination and originality. To enjoy recre- ational mathematics you do not need to be an expert. You do not need to know the modern abstract mathematical jargon. You do not need to know the difference between homology and homotopy. You need only the good old nineteenth-century mathematics that is taught in high schools, arithmetic and algebra and a little geometry. Luckily for me, the same nineteenth-century mathematics was all that I needed to do useful calculations in theoretical physics. So, when I decided to become a professional physicist, I remained a recreational mathematician. This foreword gives me a chance to share a few of my adventures in recre- ational mathematics. The articles in this collection, The Best Writing on Mathematics 2011, do not say much about recreational mathematics. Many of them describe the interactions of mathematics with the serious worlds of education and finance and politics and history and philosophy. They are mostly looking at mathematics from the outside rather than from the inside. Three of the articles, Doris Schattschneider’s piece about Maurits Escher, the Fergusons’ piece on mathematical sculpture, and Dana Mackenzie’s piece about packing a circle with circles, come closest to being recre- ational. I particularly enjoyed those pieces, but I recommend the others too, whether they are recreational or not. I hope they will get you inter- ested and excited about mathematics. I hope they will tempt a few of you to take up recreational mathematics as a hobby. I began my addiction to recreational mathematics in high school with the fifty-nine icosahedra. The Fifty-Nine Icosahedra is a little book Pitici.indb 11 8/20/2011 2:22:47 PM xii Foreword published in 1938 by the University of Toronto Press with four authors, H.S.M. Coxeter, P. DuVal, H. T. Flather, and J. F. Petrie. I saw the title in a catalog and ordered the book from a local bookstore. Coxeter was the world expert on polyhedra, and Flather was the amateur who made models of them. The book contains a complete description of the fifty- nine stellations of the icosahedron. The icosahedron is the Platonic solid with twenty equilateral triangular faces. A stellation is a symmetrical solid figure obtained by continuing the planes of the twenty faces out- side the original triangles. I joined my school friends Christopher and Michael Longuet-Higgins in a campaign to build as many as we could of the fifty-nine icosahedra out of cardboard and glue, with brightly colored coats of enamel paint to enhance their beauty. Christopher and Michael both went on later to become distinguished scientists. Christopher, now deceased, was a theoretical chemist. Michael is an oceanographer. In 1952, Michael took a holiday from oceanography and wrote a paper with Coxeter giving a complete enumeration of higher-dimensional poly- topes. Today, if you visit the senior mathematics classroom at our old school in England, you will see the fruits of our teenage labors grandly displayed in a glass case, looking as bright and new as they did seventy years ago. My favorites among the stellations are the twin figures consisting of five regular tetrahedra with the twenty vertices of a regular dodecahe- dron. The twins are mirror images of each other, one right-handed and the other left-handed. These models give to anyone who looks at them a vivid introduction to symmetry groups. They show in a dramatic fash- ion how the symmetry group of the icosahedron is the same as the group of 120 permutations of the five tetrahedra, and the subgroup of rotations without reflections is the same as the subgroup of 60 even permutations of the tetrahedra. Each of the twins has the symmetry of the even permutation subgroup, and any odd permutation changes one twin into the other. Another book which I acquired in high-school was An Introduction to the Theory of Numbers by G. H. Hardy and E. M. Wright, a wonderful cornucopia of recreational mathematics published in 1938. Chapter 2 2n contains the history of the Fermat numbers, Fn 5 2 1 1, which Fer- mat conjectured to be all prime. Fermat was famously wrong. The first four Fermat numbers are prime, but Euler discovered in 1732 that 32 F5 5 2 1 1 is divisible by 641, and Landry discovered in 1880 that Pitici.indb 12 8/20/2011 2:22:51 PM Foreword xiii 64 F6 5 2 1 1 is divisible by 274,177. Since fast computers became avail- able, many larger Fermat numbers have been tested for primality, and not one has been found to be prime. Hardy and Wright provide a simple argument to explain why F5 is divisible by 641. Since 641 5 1 1 5a 5 24 1 54 with a 5 27, we have 4 4 4 4 4 4 F5 ϭ2 a ϩ 1ϭ(1 ϩ 5aϪ 5 ) a ϩ 1ϭ(1 ϩ 5a ) a ϩ(1 Ϫ (5a)), which is obviously divisible by 1 1 5a. I was always intrigued by the question of whether a similarly elementary argument could be found to explain the factorization of F6. Sixty years later, I found the answer. This was another joyful piece of recreational mathematics. The answer turned out to depend on a theorem concerning palindromic continued frac- tions. If a and q are positive integers with a , q, the fraction a/q can be expressed in two ways as a continued fraction: a/ q ϭ 1/(p1 ϩ1/( p 2 ϩ 1/...(pnϪ1 ϩ1/ pn )...)), where the partial quotients pj are positive integers. The fraction is palin- dromic if pj 5 pn112j for each j. The theorem says that the fraction is palindromic if and only if a2 1 (21)n is divisible by q. Landry’s factor of F6 has the structure q ϭ274177 ϭ1ϩ 28 f ,(f ϭ 26 Ϫ 1)(24 ϩ1), where f is a factor of 224 2 1, so that 224 Ϫ 1 ϭ fg,(g ϭ26 ϩ 1)(2 8 Ϫ24 ϩ 1), and 232 ϭ 28(1 ϩ fg),ϭgq Ϫ a a ϭg Ϫ 28 ϭ15409. The partial quotients of the fraction a/q are (17, 1, 3, 1, 5, 5, 1, 3, 1, 17).
Recommended publications
  • Feasibility Study for Teaching Geometry and Other Topics Using Three-Dimensional Printers
    Feasibility Study For Teaching Geometry and Other Topics Using Three-Dimensional Printers Elizabeth Ann Slavkovsky A Thesis in the Field of Mathematics for Teaching for the Degree of Master of Liberal Arts in Extension Studies Harvard University October 2012 Abstract Since 2003, 3D printer technology has shown explosive growth, and has become significantly less expensive and more available. 3D printers at a hobbyist level are available for as little as $550, putting them in reach of individuals and schools. In addition, there are many “pay by the part” 3D printing services available to anyone who can design in three dimensions. 3D graphics programs are also widely available; where 10 years ago few could afford the technology to design in three dimensions, now anyone with a computer can download Google SketchUp or Blender for free. Many jobs now require more 3D skills, including medical, mining, video game design, and countless other fields. Because of this, the 3D printer has found its way into the classroom, particularly for STEM (science, technology, engineering, and math) programs in all grade levels. However, most of these programs focus mainly on the design and engineering possibilities for students. This thesis project was to explore the difficulty and benefits of the technology in the mathematics classroom. For this thesis project we researched the technology available and purchased a hobby-level 3D printer to see how well it might work for someone without extensive technology background. We sent designed parts away. In addition, we tried out Google SketchUp, Blender, Mathematica, and other programs for designing parts. We came up with several lessons and demos around the printer design.
    [Show full text]
  • Tōhoku Rick Jardine
    INFERENCE / Vol. 1, No. 3 Tōhoku Rick Jardine he publication of Alexander Grothendieck’s learning led to great advances: the axiomatic description paper, “Sur quelques points d’algèbre homo- of homology theory, the theory of adjoint functors, and, of logique” (Some Aspects of Homological Algebra), course, the concepts introduced in Tōhoku.5 Tin the 1957 number of the Tōhoku Mathematical Journal, This great paper has elicited much by way of commen- was a turning point in homological algebra, algebraic tary, but Grothendieck’s motivations in writing it remain topology and algebraic geometry.1 The paper introduced obscure. In a letter to Serre, he wrote that he was making a ideas that are now fundamental; its language has with- systematic review of his thoughts on homological algebra.6 stood the test of time. It is still widely read today for the He did not say why, but the context suggests that he was clarity of its ideas and proofs. Mathematicians refer to it thinking about sheaf cohomology. He may have been think- simply as the Tōhoku paper. ing as he did, because he could. This is how many research One word is almost always enough—Tōhoku. projects in mathematics begin. The radical change in Gro- Grothendieck’s doctoral thesis was, by way of contrast, thendieck’s interests was best explained by Colin McLarty, on functional analysis.2 The thesis contained important who suggested that in 1953 or so, Serre inveigled Gro- results on the tensor products of topological vector spaces, thendieck into working on the Weil conjectures.7 The Weil and introduced mathematicians to the theory of nuclear conjectures were certainly well known within the Paris spaces.
    [Show full text]
  • Locally Compact Groups: Traditions and Trends Karl Heinrich Hofmann Technische Universitat Darmstadt, [email protected]
    University of Dayton eCommons Summer Conference on Topology and Its Department of Mathematics Applications 6-2017 Locally Compact Groups: Traditions and Trends Karl Heinrich Hofmann Technische Universitat Darmstadt, [email protected] Wolfgang Herfort Francesco G. Russo Follow this and additional works at: http://ecommons.udayton.edu/topology_conf Part of the Geometry and Topology Commons, and the Special Functions Commons eCommons Citation Hofmann, Karl Heinrich; Herfort, Wolfgang; and Russo, Francesco G., "Locally Compact Groups: Traditions and Trends" (2017). Summer Conference on Topology and Its Applications. 47. http://ecommons.udayton.edu/topology_conf/47 This Plenary Lecture is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Some Background Notes Some \new" tools Near abelian groups Applications Alexander Doniphan Wallace (1905{1985) Gordon Thomas Whyburn Robert Lee Moore Some Background Notes Some \new" tools Near abelian groups Applications \The best mathematics is the most mixed-up mathematics, those disciplines in which analysis, algebra and topology all play a vital role." Gordon Thomas Whyburn Robert Lee Moore Some Background Notes Some \new" tools Near abelian groups Applications \The best mathematics is the most mixed-up mathematics, those disciplines in which
    [Show full text]
  • Configurations on Centers of Bankoff Circles 11
    CONFIGURATIONS ON CENTERS OF BANKOFF CIRCLES ZVONKO CERINˇ Abstract. We study configurations built from centers of Bankoff circles of arbelos erected on sides of a given triangle or on sides of various related triangles. 1. Introduction For points X and Y in the plane and a positive real number λ, let Z be the point on the segment XY such that XZ : ZY = λ and let ζ = ζ(X; Y; λ) be the figure formed by three mj utuallyj j tangenj t semicircles σ, σ1, and σ2 on the same side of segments XY , XZ, and ZY respectively. Let S, S1, S2 be centers of σ, σ1, σ2. Let W denote the intersection of σ with the perpendicular to XY at the point Z. The figure ζ is called the arbelos or the shoemaker's knife (see Fig. 1). σ σ1 σ2 PSfrag replacements X S1 S Z S2 Y XZ Figure 1. The arbelos ζ = ζ(X; Y; λ), where λ = jZY j . j j It has been the subject of studies since Greek times when Archimedes proved the existence of the circles !1 = !1(ζ) and !2 = !2(ζ) of equal radius such that !1 touches σ, σ1, and ZW while !2 touches σ, σ2, and ZW (see Fig. 2). 1991 Mathematics Subject Classification. Primary 51N20, 51M04, Secondary 14A25, 14Q05. Key words and phrases. arbelos, Bankoff circle, triangle, central point, Brocard triangle, homologic. 1 2 ZVONKO CERINˇ σ W !1 σ1 !2 W1 PSfrag replacements W2 σ2 X S1 S Z S2 Y Figure 2. The Archimedean circles !1 and !2 together.
    [Show full text]
  • The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
    Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g.
    [Show full text]
  • Art Curriculum 1
    Ogdensburg School Visual Arts Curriculum Adopted 2/23/10 Revised 5/1/12, Born on: 11/3/15, Revised 2017 ​, Adopted December 4, 2018 Rationale Grades K – 8 By encouraging creativity and personal expression, the Ogdensburg School District provides students in grades one to eight with a visual arts experience that facilitates personal, intellectual, social, and human growth. The Visual Arts Curriculum is structured as a discipline based art education program aligned with both the National Visual Arts Standards and the New Jersey Core Curriculum Content Standards for the Visual and Performing Arts. Students will increase their understanding of the creative process, the history of arts and culture, performance, aesthetic awareness, and critique methodologies. The arts are deeply embedded in our lives shaping our daily experiences. The arts challenge old perspectives while connecting each new generation from those in the past. They have served as a visual means of communication which have described, defined, and deepened our experiences. An education in the arts fosters a learning community that demonstrates an understanding of the elements and principles that promote creation, the influence of the visual arts throughout history and across cultures, the technologies appropriate for creating, the study of aesthetics, and critique methodologies. The arts are a valuable tool that enhances learning st across all disciplines, augments the quality of life, and possesses technical skills essential in the 21 ​ century. ​ The arts serve as a visual means of communication. Through the arts, students have the ability to express feelings and ideas contributing to the healthy development of children’s minds. These unique forms of expression and communication encourage students into various ways of thinking and understanding.
    [Show full text]
  • Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets
    Kaleidoscopic Symmetries and Self-Similarity of Integral Apollonian Gaskets Indubala I Satija Department of Physics, George Mason University , Fairfax, VA 22030, USA (Dated: April 28, 2021) Abstract We describe various kaleidoscopic and self-similar aspects of the integral Apollonian gaskets - fractals consisting of close packing of circles with integer curvatures. Self-similar recursive structure of the whole gasket is shown to be encoded in transformations that forms the modular group SL(2;Z). The asymptotic scalings of curvatures of the circles are given by a special set of quadratic irrationals with continued fraction [n + 1 : 1; n] - that is a set of irrationals with period-2 continued fraction consisting of 1 and another integer n. Belonging to the class n = 2, there exists a nested set of self-similar kaleidoscopic patterns that exhibit three-fold symmetry. Furthermore, the even n hierarchy is found to mimic the recursive structure of the tree that generates all Pythagorean triplets arXiv:2104.13198v1 [math.GM] 21 Apr 2021 1 Integral Apollonian gaskets(IAG)[1] such as those shown in figure (1) consist of close packing of circles of integer curvatures (reciprocal of the radii), where every circle is tangent to three others. These are fractals where the whole gasket is like a kaleidoscope reflected again and again through an infinite collection of curved mirrors that encodes fascinating geometrical and number theoretical concepts[2]. The central themes of this paper are the kaleidoscopic and self-similar recursive properties described within the framework of Mobius¨ transformations that maps circles to circles[3]. FIG. 1: Integral Apollonian gaskets.
    [Show full text]
  • On Dynamical Gaskets Generated by Rational Maps, Kleinian Groups, and Schwarz Reflections
    ON DYNAMICAL GASKETS GENERATED BY RATIONAL MAPS, KLEINIAN GROUPS, AND SCHWARZ REFLECTIONS RUSSELL LODGE, MIKHAIL LYUBICH, SERGEI MERENKOV, AND SABYASACHI MUKHERJEE Abstract. According to the Circle Packing Theorem, any triangulation of the Riemann sphere can be realized as a nerve of a circle packing. Reflections in the dual circles generate a Kleinian group H whose limit set is an Apollonian- like gasket ΛH . We design a surgery that relates H to a rational map g whose Julia set Jg is (non-quasiconformally) homeomorphic to ΛH . We show for a large class of triangulations, however, the groups of quasisymmetries of ΛH and Jg are isomorphic and coincide with the corresponding groups of self- homeomorphisms. Moreover, in the case of H, this group is equal to the group of M¨obiussymmetries of ΛH , which is the semi-direct product of H itself and the group of M¨obiussymmetries of the underlying circle packing. In the case of the tetrahedral triangulation (when ΛH is the classical Apollonian gasket), we give a piecewise affine model for the above actions which is quasiconformally equivalent to g and produces H by a David surgery. We also construct a mating between the group and the map coexisting in the same dynamical plane and show that it can be generated by Schwarz reflections in the deltoid and the inscribed circle. Contents 1. Introduction 2 2. Round Gaskets from Triangulations 4 3. Round Gasket Symmetries 6 4. Nielsen Maps Induced by Reflection Groups 12 5. Topological Surgery: From Nielsen Map to a Branched Covering 16 6. Gasket Julia Sets 18 arXiv:1912.13438v1 [math.DS] 31 Dec 2019 7.
    [Show full text]
  • Datatype Defining Rewrite Systems for Naturals and Integers
    UvA-DARE (Digital Academic Repository) Datatype defining rewrite systems for naturals and integers Bergstra, J.A.; Ponse, A. DOI 10.23638/LMCS-17(1:17)2021 Publication date 2021 Document Version Final published version Published in Logical Methods in Computer Science License CC BY Link to publication Citation for published version (APA): Bergstra, J. A., & Ponse, A. (2021). Datatype defining rewrite systems for naturals and integers. Logical Methods in Computer Science, 17(1), [17]. https://doi.org/10.23638/LMCS- 17(1:17)2021 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Logical Methods in Computer Science Volume 17, Issue 1, 2021, pp. 17:1–17:31 Submitted Jan. 15, 2020 https://lmcs.episciences.org/ Published Feb.
    [Show full text]
  • Academic Genealogy of the Oakland University Department Of
    Basilios Bessarion Mystras 1436 Guarino da Verona Johannes Argyropoulos 1408 Università di Padova 1444 Academic Genealogy of the Oakland University Vittorino da Feltre Marsilio Ficino Cristoforo Landino Università di Padova 1416 Università di Firenze 1462 Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote Università di Mantova 1433 Università di Mantova Università di Firenze 1477 Constantinople 1433 DepartmentThe Mathematics Genealogy Project of is a serviceMathematics of North Dakota State University and and the American Statistics Mathematical Society. Demetrios Chalcocondyles http://www.mathgenealogy.org/ Heinrich von Langenstein Gaetano da Thiene Sigismondo Polcastro Leo Outers Moses Perez Scipione Fortiguerra Rudolf Agricola Thomas von Kempen à Kempis Jacob ben Jehiel Loans Accademia Romana 1452 Université de Paris 1363, 1375 Université Catholique de Louvain 1485 Università di Firenze 1493 Università degli Studi di Ferrara 1478 Mystras 1452 Jan Standonck Johann (Johannes Kapnion) Reuchlin Johannes von Gmunden Nicoletto Vernia Pietro Roccabonella Pelope Maarten (Martinus Dorpius) van Dorp Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Matthaeus Adrianus Alexander Hegius Johannes Stöffler Collège Sainte-Barbe 1474 Universität Basel 1477 Universität Wien 1406 Università di Padova Università di Padova Université Catholique de Louvain 1504, 1515 Université de Paris 1516 Università di Padova 1472 Università
    [Show full text]
  • January 2011 Prizes and Awards
    January 2011 Prizes and Awards 4:25 P.M., Friday, January 7, 2011 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS George E. Andrews, President BÔCHER MEMORIAL PRIZE: ASAF NAOR, GUNTHER UHLMANN American Mathematical Society FRANK NELSON COLE PRIZE IN NUMBER THEORY: CHANDRASHEKHAR KHARE AND DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY JEAN-PIERRE WINTENBERGER TEACHING OF MATHEMATICS LEVI L. CONANT PRIZE: DAVID VOGAN Mathematical Association of America JOSEPH L. DOOB PRIZE: PETER KRONHEIMER AND TOMASZ MROWKA EULER BOOK PRIZE LEONARD EISENBUD PRIZE FOR MATHEMATICS AND PHYSICS: HERBERT SPOHN Mathematical Association of America RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: AMIE WILKINSON DAVID P. R OBBINS PRIZE LEROY P. S TEELE PRIZE FOR LIFETIME ACHIEVEMENT: JOHN WILLARD MILNOR Mathematical Association of America LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION: HENRYK IWANIEC BÔCHER MEMORIAL PRIZE LEROY P. S TEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: INGRID DAUBECHIES American Mathematical Society FOR AMS-MAA-SIAM LEVI L. CONANT PRIZE American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY AN UNDERGRADUATE STUDENT: MARIA MONKS LEONARD EISENBUD PRIZE FOR MATHEMATICS AND OR PHYSICS F AWM American Mathematical Society LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: PATRICIA CAMPBELL RUTH LYTTLE SATTER PRIZE IN MATHEMATICS M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE WOMEN IN MATHEMATICS: American Mathematical Society RHONDA HUGHES ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN: LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION SHERRY GONG Association for Women in Mathematics ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN FOR JPBM Association for Women in Mathematics COMMUNICATIONS AWARD: NICOLAS FALACCI AND CHERYL HEUTON M.
    [Show full text]
  • SPATIAL STATISTICS of APOLLONIAN GASKETS 1. Introduction Apollonian Gaskets, Named After the Ancient Greek Mathematician, Apollo
    SPATIAL STATISTICS OF APOLLONIAN GASKETS WEIRU CHEN, MO JIAO, CALVIN KESSLER, AMITA MALIK, AND XIN ZHANG Abstract. Apollonian gaskets are formed by repeatedly filling the interstices between four mutually tangent circles with further tangent circles. We experimentally study the nearest neighbor spacing, pair correlation, and electrostatic energy of centers of circles from Apol- lonian gaskets. Even though the centers of these circles are not uniformly distributed in any `ambient' space, after proper normalization, all these statistics seem to exhibit some interesting limiting behaviors. 1. introduction Apollonian gaskets, named after the ancient Greek mathematician, Apollonius of Perga (200 BC), are fractal sets obtained by starting from three mutually tangent circles and iter- atively inscribing new circles in the curvilinear triangular gaps. Over the last decade, there has been a resurgent interest in the study of Apollonian gaskets. Due to its rich mathematical structure, this topic has attracted attention of experts from various fields including number theory, homogeneous dynamics, group theory, and as a consequent, significant results have been obtained. Figure 1. Construction of an Apollonian gasket For example, it has been known since Soddy [23] that there exist Apollonian gaskets with all circles having integer curvatures (reciprocal of radii). This is due to the fact that the curvatures from any four mutually tangent circles satisfy a quadratic equation (see Figure 2). Inspired by [12], [10], and [7], Bourgain and Kontorovich used the circle method to prove a fascinating result that for any primitive integral (integer curvatures with gcd 1) Apollonian gasket, almost every integer in certain congruence classes modulo 24 is a curvature of some circle in the gasket.
    [Show full text]