Download Boeing Deferred Prosecution Agreement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Boeing 737-300, 9H-ABT
Boeing 737-300, 9H-ABT AAIB Bulletin No: 5/98 Ref: EW/C97/8/3Category: 1.1 Aircraft Type and Registration: Boeing 737-300, 9H-ABT No & Type of Engines: 2 CFM56 turbofan engines Year of Manufacture: 1993 Date & Time (UTC): 1 August 1997 at 0943 hrs Location: On approach to Manchester Airport Type of Flight: Public Transport Persons on Board: Crew - 7 - Passengers - 93 Injuries: Crew - None - Passengers - None Nature of Damage: Nil Commander's Licence: Airline Transport Pilot's Licence Commander's Age: 49 years Commander's Flying Experience: 11,765 hours (of which 7,500 hours were on type) Last 90 days - 255 hours Last 28 days - 96 hours Information Source: AAIB Field Investigation History of flight The crew were operating a scheduled flight, as AMC 202, from Maltato Manchester. For the first part of the flight, the first officerwas the handling pilot. However, the forecast weather at Manchesterindicated that Low Visibility Procedures (LVP) would be requiredand, in accordance with company procedures, this would requirethe commander in the left seat to be the handling pilot. Therefore,towards the end of the cruise, the commander took over the handlingduties and the first officer assumed the normal non-handling dutiesincluding the radio monitoring and response. Prior to flight,the commander had confirmed the serviceability of the aircraftand noted that there were no 'Carried Forward Defects' in theTechnical Log; additionally, he had also confirmed that both thefirst officer and himself were qualified to carry out the expectedLVP approach. Throughout the flight, the aircraft was fully serviceable. Before descent, the crew obtained the airport weather informationand the commander briefed for the expected approach to Runway24 at Manchester. -
A Fond Farewell to Ve Fantastic Eets
NEWS RELEASE A fond farewell to ve fantastic eets 4/30/2020 Last month, American Airlines announced plans to accelerate the retirement of some older, less fuel-ecient aircraft from its eet sooner than originally planned. As ying schedules and aircraft needs are ne-tuned during this period of record low demand, American will take the unique step of retiring a total of ve aircraft types. American has ocially retired the Embraer E190 and Boeing 767 eets, which were originally scheduled to retire by the end of 2020. The airline has also accelerated the retirement of its Boeing 757s and Airbus A330-300s. Additionally, American is retiring 19 Bombardier CRJ200 aircraft operated by PSA Airlines. These changes remove operating complexity and will bring forward cost savings and eciencies associated with operating fewer aircraft types. It will also help American focus on ying more advanced aircraft as we continue receiving new deliveries of the Airbus A321neo and the Boeing 737 MAX and 787 family. American’s narrowbody eet also becomes more simplied with just two cockpit types – the Airbus A320 and the Boeing 737 families. This benets American’s operational performance through training eciency and streamlined maintenance. American continues to evaluate its schedule and remains committed to caring for customers on life’s journey. These changes will help American continue to provide a reliable travel experience around the world, even during these uncertain times. Here’s a snapshot of the aircraft exiting American’s eet: Airbus A330-300 — Blue Sky News/Pittsburgh International AirportAirbus A330-300 1 Joined the US Airways eet in 2000 prior to joining American’s eet in 2013. -
ICCT Aircraft Efficiency Design Public Draft
TRENDS IN AIRCRAFT EFFICIENCY AND DESIGN PARAMETERS Mazyar Zeinali, Ph.D. Daniel Rutherford, Ph.D. International Council on Clean Transportation (ICCT) ABSTRACT Developing an aircraft CO2 candidate metric and subsequent compliance assessment requires an understanding of practices and trends in aircraft design. Historically, fuel burn has been an important consideration for airlines, and manufacturers have responded by developing technologies to improve the efficiency of new aircraft designs. However, market forces also demand improvements in aircraft performance beyond reduced fuel burn. As a consequence, some portion of efficiency gained through improved technology has been devoted to increasing other aircraft design parameters such as range, maximum payload, and speed rather than to reducing emissions on a constant mission. In this paper, we discuss some initial ICCT work on sales‐weighted historical trends in new aircraft design attributes and their influence on aircraft efficiency, using design range as a first area of inquiry. We show that aircraft design parameters that influence fuel efficiency have changed over time, both in aggregate and for specific replacement designs, and therefore need to be taken into account when developing a CO2 certification requirement and stringency scenarios for further consideration. We also present evidence that commercial aircraft are not typically operated near their maximum performance points (i.e. design range and max payload), and therefore setting a CO2 certification requirement and standard at those points may overestimate improvements in future designs. 1. INTRODUCTION Developing an aircraft CO2 candidate metric and stringency scenarios will require knowledge and understanding of a complex system. Proper design choices will not only result in a policy that underscores environmental performance accurately, but also one that minimizes costs, undesirable impacts on competitiveness, and potential standard gaming. -
Rock Solid Performance WHY Caterpillar?
2012 YEAR IN REVIEW ROCK SOLID Potential | Position | Plan | People | Performance In a global marketplace filled with shifting dynamics, our customers count on Caterpillar as a dependable source of products, services and solutions to meet their needs. This strategy is the stabilizing force behind our business. Today, we’re as confident of our rock solid strength as at any time in our history. ROCK SOLID 2012 Year in Review Forward-Looking Statements Certain statements in this 2012 Year in Review relate to future events and expectations and are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as “believe,” “estimate,” “will be,” “will,” “would,” “expect,” “anticipate,” “plan,” “project,” “intend,” “could,” “should” or other similar words or expressions often identify forward-looking statements. All statements other than statements of historical fact are forward-looking statements, including, without limitation, statements regarding our outlook, projections, forecasts or trend descriptions. These statements do not guarantee future performance, and we do not undertake to update our forward-looking statements. Caterpillar’s actual results may differ materially from those described or implied in our forward-looking statements based on a number of factors, including, but not limited to: (i) global economic conditions and economic conditions in the industries and markets we serve; (ii) government monetary or fiscal policies and infrastructure spending; (iii) commodity or component -
Boeing Reports Second-Quarter Results
Boeing Reports Second-Quarter Results ▪ Continued progress on global safe return to service of 737 MAX ▪ Revenue of $17.0 billion, GAAP earnings per share of $1.00 and core (non-GAAP)* earnings per share of $0.40 ▪ Operating cash flow of ($0.5) billion; cash and marketable securities of $21.3 billion ▪ Commercial Airplanes backlog grew to $285 billion and added 180 net orders Table 1. Summary Financial Results Second Quarter First Half (Dollars in Millions, except per share data) 2021 2020 Change 2021 2020 Change Revenues $16,998 $11,807 44% $32,215 $28,715 12% GAAP Earnings/(Loss) From Operations $1,023 ($2,964) NM $940 ($4,317) NM Operating Margin 6.0 % (25.1) % NM 2.9 % (15.0) % NM Net Earnings/(Loss) $567 ($2,395) NM $6 ($3,036) NM Earnings/(Loss) Per Share $1.00 ($4.20) NM $0.09 ($5.31) NM Operating Cash Flow ($483) ($5,280) NM ($3,870) ($9,582) NM Non-GAAP* Core Operating Earnings/(Loss) $755 ($3,319) NM $402 ($5,019) NM Core Operating Margin 4.4 % (28.1) % NM 1.2 % (17.5) % NM Core Earnings/(Loss) Per Share $0.40 ($4.79) NM ($1.12) ($6.49) NM *Non-GAAP measure; complete definitions of Boeing’s non-GAAP measures are on page 6, “Non-GAAP Measures Disclosures." CHICAGO, July 28, 2021 – The Boeing Company [NYSE: BA] reported second-quarter revenue of $17.0 billion, driven by higher commercial airplanes and services volume. GAAP earnings per share of $1.00 and core earnings per share (non-GAAP)* of $0.40 primarily reflects higher commercial volume and lower period costs (Table 1). -
Boeing's Commercial Jetliners Make an Ideal Platform for a Variety Of
s Boeing commercial jetliners crisscross the globe every Aircraft sees huge potential in modifying the Next-Generation 737 Development. “We must continue to show compelling value day, military and government aircraft based on those platform for a host of other military missions. Boeing also is com- to our customers.” The development of the new 737-based A planes are transporting state leaders, patrolling the skies peting to have its 767-based NewGen Tanker replace hundreds P-8A for the U.S. Navy offers an ideal model for how that can and assisting warfighters. of aging KC-135 tankers operated by the U.S. Air Force. be accomplished, he added. For more than a half-century, Boeing and its heritage companies Meanwhile, the U.S. president and congressional leaders fly The Poseidon team is using an in-line production process— have designed and built more than 1,000 specialized aircraft based on specially outfitted 747s, 757s and 737s. the industry’s first for derivative aircraft—based on the Boeing on commercial airplanes. With growing international demand for Modifying commercial aircraft for military and government uses Next-Generation 737 production system to build P-8 aircraft. military derivatives, and the recent success of the P-8A Poseidon, is not novel. Boeing heritage company Douglas Aircraft produced “It is the most affordable and efficient way to build military deriva- these programs are garnering significant attention. the first airplane used regularly by a president in 1944, when tive airplanes, and no one else in the world has this capability,” “We have a historic window, both domestically and internation- Franklin D. -
F. Robert Van Der Linden CV
Curriculum Vitae F. Robert van der Linden Aeronautics Department National Air and Space Museum Smithsonian Institution Washington, D.C. 20013-7012 [email protected] 202-633-2647 (Office) Education Ph.D. (Modern American, Business and Military History) The George Washington University. 1997. M.A. (American and Russian History) The George Washington University. 1981. B.A. (History) University of Denver, 1977. Member Phi Beta Kappa Present Position Curator of Air Transportation and Special Purpose Aircraft, Aeronautics Division, National Air and Space Museum (NASM), Smithsonian Institution, Washington, D.C. Primary Responsibilities Research and Writing Currently at work on "The Struggle for the Long-Range Heavy Bomber: The United States Army air Corps, 1934-1939. This book examines the fight between the Army Air Corps, the Army, and the Navy over the introduction of a new generation of long-range heavy bombers during the interwar period. Questions of cost, of departmental responsibility, and of the relationship between business and industry, all play key roles in the search for this elusive aircraft and ultimately which military branch controls the air. Underlying all of these issues is the question of whether or not the United States needs a separate, independent air force. Also researching a book on the creation of Transcontinental & Western Air (TWA). This business history will trace the story of this important airline from its creation in 1930 from the ambitious but unprofitable Transcontinental Air Transport, formed by Clement Keys with technical assistance from Charles Lindbergh, and parts for the successful Western Air Express of Harris Hanshue through World War II and its reorganization as Trans World Airlines under Howard Hughes. -
Visualization at Boeing: Past, Present, Future
Engineering, Operations & Technology Information Technology Visualization:Acquiring Information using Past Visual, Analytics Present, and Future at Boeing Dave Kasik Senior Technical Fellow The Boeing Company Dave Kasik and [email protected] Senesac The Boeing Company June, 2011 BOEING is a trademark of Boeing Management Company. Copyright © 2011 Boeing. All rights reserved. A Bit About Us Engineering, Operations & Technology | Information Technology . Dave: . Involved in comppgputer graphics since 1969 . Boeing Senior Technical Fellow . ACM Distinguished Scientist . Stand-in on starship bridges . Known around Boeing as – A curmudgeon about virtual reality in the immersive, stereo sense – An a dvoca te for augmen te d rea lity – Leading proponent and expert for broad use of visualization for geometric and non-geometric data . Chr is: . Involved in computer graphics since 1990 . Boeing Senior Architect . Specialty - being able to apply technology to real world problems . Passion is to simplify complex problems Copyright © 2012 Boeing. All rights reserved. 2 Why Are We Here? Engineering, Operations & Technology | Information Technology . Boeing builds astounding aerospace products . We require hugely varied technology, ranging from . Basic physics to . Networking (on-board & conventional) to . Computing (real-time systems & traditional) to . Material science to . Natural language analysis to . Basically, you name it, we have it . Boeing generates terror -by tes of data . Has worked with advanced visual analysis techniques to gain more insight from our data Copyright © 2012 Boeing. All rights reserved. 3 Outline Engineering, Operations & Technology | Information Technology . Motivation . Past: Give a quick Boeing history of projects that changed computer graphics . Present: Stress current 3D use cases in Boeing . FtFuture: How is compu ter grap hics evol living t o address industrial needs? Copyright © 2012 Boeing. -
Five Years. After They Separated, They Engaged in Four Years of Litigation Over the Distribution of Approximately $200,000 of Property
I IL_EC COURT OF APPEALq D1V1S10'i4, TI 201 L; MAR 1 1 AN S: 40 S ` E IFF M 1-i3N ON Y ON 1'' Y IN THE COURT OF APPEALS OF THE STATE OF WASHINGTO DIVISION II In re the Marriage of: No. 43788 -1 - II JEANNE MARIE HARRIS, Appellant, MA ROGER DUANE KELL, UNPUBLISHED OPINION LEE, J. — Jeanne Marie Harris and Roger Duane Kell were married for approximately five years. After they separated, they engaged in four years of litigation over the distribution of approximately $200,000 of property. The trial court primarily awarded the parties their separate property and entered a judgment distributing less than $ 50, 000 in additional assets between the parties. Harris appeals. We affirm the trial court. In addition, due to the intransigent nature of Harris' s appeal, we grant Kell' s request for attorney fees. FACTS Harris and Kell married on May 3, 2003. Kell was an electrician working out of the union hall. He also owned several rental properties. Harris was a Vancouver city councilwoman and she owned a consulting business. After the parties married, they lived together in Harris' s home. No. 43788 -1 - II During the marriage, Kell worked as an electrician for several companies including Kraft and Boeing. Harris ran for county commissioner, but lost. Later she opened an Allstate Insurance agency. Although both parties contributed to household expenses ( Harris paid the mortgage and Kell paid for utilities), they primarily kept their finances separate. During this period, Harris was incurring large amounts of credit card debt. Harris and Kell separated on May 31, 2008. -
A Study of Vehicle Structural Layouts in Post-WWII Aircraft
A Study of Vehicle Structural Layouts in Post-WWII Aircraft Mark D. Sensmeier* Embry-Riddle Aeronautical University, Prescott, Arizona, 86301 Jamshid A. Samareh† NASA Langley Research Center, Hampton, Virginia, 23681 In this paper, results of a study of structural layouts of post-WWII aircraft are presented. This study was undertaken to provide the background information necessary to determine typical layouts, design practices, and industry trends in aircraft structural design. Design decisions are often predicated not on performance-related criteria, but rather on such factors as manufacturability, maintenance access, and of course cost. For this reason, a thorough understanding of current “best practices” in the industry is required as an input for the design optimization process. To determine these best practices and industry trends, a large number of aircraft structural “cutaway” illustrations were analyzed for five different aircraft categories (commercial transport jets, business jets, combat jet aircraft, single- engine propeller aircraft, and twin-engine propeller aircraft). Several aspects of wing design and fuselage design characteristics are presented here for the commercial transport and combat aircraft categories. A great deal of commonality was observed for transport structure designs over a range of eras and manufacturers. A much higher degree of variability in structural designs was observed for the combat aircraft, though some discernable trends were observed as well. Nomenclature Frames = Circumferential fuselage structures which help maintain fuselage shape and prevent skin buckling Longerons = Lengthwise fuselage structures which carry bending loads Ribs = Chordwise wing structures which maintain wing shape, carry shear, and prevent skin buckling Spars = Spanwise wing structures which provide primary wing resistance to aerodynamic bending loads I. -
Re-Engining a Boeing 727-200 (Advanced) Versus Buying a New Boeing 757-200
Journal of Aviation/Aerospace Education & Research Volume 4 Number 1 JAAER Fall 1993 Article 1 Fall 1993 A Cost Analysis: Re-Engining a Boeing 727-200 (Advanced) Versus Buying a New Boeing 757-200 Peter B. Coddington Follow this and additional works at: https://commons.erau.edu/jaaer Scholarly Commons Citation Coddington, P. B. (1993). A Cost Analysis: Re-Engining a Boeing 727-200 (Advanced) Versus Buying a New Boeing 757-200. Journal of Aviation/Aerospace Education & Research, 4(1). https://doi.org/10.15394/ jaaer.1993.1110 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Coddington: A Cost Analysis: Re-Engining a Boeing 727-200 (Advanced) Versus B A COSTANALYSIS: RE-ENGINlNG A BOEING 727-200 (ADVANCED) VERSUS BUYING A NEWBOEING 757-200 Peter B. Coddington The Boeing 727-200 and 757-200 are both narrowbody aircraft designed for short- to medium-range flights carrying 164 to 214 passengers. Until recently, when overtaken by the Boeing 737, the 727-200 program was the most successful aircraft program in history. The 727 airplane has carried 2.3 billion passengers, equivalent to half the world's population (Sterling, 1992). More than half of all 727s sold were advanced 200s and as late as 1990 an incredible 50% of all U.S. passenger traffic had flown on 727-200s since the advanced model was launched in 1971. -
Few Changes for Open Enrollment in 2021
Special Section: SPEEA/Boeing open enrollment Nov. 3-24 Prof and Tech contracts Take health assessment by Nov. 24 to avoid monthly fee PEEA members and their covered spouses who do not complete the online health assessment by Nov. 24 will be Sassessed a non-compliance fee of $20 per month per person. This does not apply to dependents. The assessment is available through the Step by Step link on Boeing’s Worklife. Once Few changes for open you’ve located the health assessment link, you will be directed to a Vida portal. enrollment in 2021 Reasons for assessment By Jason Collete $3,600/$7,200. The percentage Boeing Boeing encourages participation for SPEEA Contract Administrator and Benefits contributes to your HSA remains the same. individuals to become more aware of their Coordinator • Anyone may be covered by the health-risk factors. Addressing risk factors Advantage+ plan. But not everyone is early is a way to potentially lower the health- pen enrollment, the time period each eligible to establish and fund a tax-free care costs for the employee and the company. year when employees can change their HSA account. Ensure you understand In addition to raising awareness of potential medical plans, is Nov. 3-24 at The the rules at OBoeing Company. illnesses, the lowered health-care costs www.healthequity.com/boeing. directly affect the company’s bottom line, When reviewing the annual open enrollment • Because the Advantage+ plan uses the because the majority of medical plans are information from Boeing, keep the following exact same network as the Traditional self-funded by Boeing.