Phylogenetic Selection of Target Species in Amaryllidaceae Tribe

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Selection of Target Species in Amaryllidaceae Tribe South African Journal of Botany 77 (2011) 175–183 www.elsevier.com/locate/sajb Phylogenetic selection of target species in Amaryllidaceae tribe Haemantheae for acetylcholinesterase inhibition and affinity to the serotonin reuptake transport protein M.G.K. Bay-Smidt a, A.K. Jäger a, K. Krydsfeldt a, A.W. Meerow b,c, G.I. Stafford a,d, ⁎ J. Van Staden d, N. Rønsted a, a Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark b USDA-ARS-SHRS, National Germplasm Repository, 13601 Old Cutler Road, Miami, Florida, USA c Fairchild Tropical Garden, Miami, Florida, USA d Research Centre for Plant Growth and Development, School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3201, South Africa Received 25 April 2010; received in revised form 14 July 2010; accepted 28 July 2010 Abstract We present phylogenetic analyses of 37 taxa of Amaryllidaceae, tribe Haemantheae and Amaryllis belladonna L. as an outgroup, in order to provide a phylogenetic framework for the selection of candidate plants for lead discoveries in relation to Alzheimer's disease and depression. DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) and the plastid trnL-F regions were used. Maximum parsimony analyses provide increased support for the sister relationship of Haemanthus and Scadoxus. Within Haemanthus, a well supported clade (89% BS) corresponds to a summer rainfall group (mainly Eastern Cape) with white-pale pink flowers. A second strongly supported clade (100% BS) corresponds to a winter rainfall group (mainly Western Cape) with red-pale pink flowers. Haemanthus montanus, which is from the summer rainfall region, is sister to the winter rainfall group. Alkaloid profiles and bioactivity profiles were investigated for 16 taxa using gas chromatography-mass spectrometry (GC–MS) and assays measuring acetylcholinesterase (AChE) inhibition and affinity to the serotonin reuptake transport protein (SERT). No alkaloids were detected by GC–MS in extracts of the two species of Gethyllis included in the present study suggesting that Gethyllis (and possibly Apodolirion) species may not produce the alkaloids characteristic for the family. AChE inhibitory activity was found in all investigated clades except the Apodolirion–Gethyllis clade, which can be explained by the apparent lack of alkaloids in this clade. In spite of infra-specific variability of alkaloid profiles observed, dose-dependent SERT activity appears to be pronounced and restricted to the genus Haemanthus within tribe Haemantheae. Three of eight Haemanthus species tested had IC50 b10 μg/ml. Two of the most active extracts in the present study contained primarily montanine type alkaloids which have not been tested for SERT affinity previously. Simultaneous evaluation of bioactivity and alkaloid profiles in a phylogenetic framework can potentially be used to select candidate species for phytotherapy and drug discovery. © 2010 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Acetylcholinesterase; Amaryllidaceae; Drug discovery; Internal transcribed spacer; Phylogeny; Serotonin-reuptake-transport-protein; trnL-F 1. Introduction significant part of health care problems everywhere and are increasing as human life-expectancy increases in many Mental health problems such as epilepsy, convulsions, de- countries (WHO, 2010a). Plants provide a large number of pression, dementia and age-related diseases constitute a herbal remedies to treat mental illnesses. Many people are largely dependent on plants as the only readily available medicine (WHO, 2010b). In southern Africa well over 300 ⁎ Corresponding author. Tel.: +45 35 336504; fax: +45 35336001. species are used by traditional healers to treat mental illnesses E-mail address: [email protected] (N. Rønsted). (Sobiecki, 2002; Stafford et al., 2008). 0254-6299/$ - see front matter © 2010 SAAB. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.sajb.2010.07.016 176 M.G.K. Bay-Smidt et al. / South African Journal of Botany 77 (2011) 175–183 Several Amaryllidaceae are used in traditional medicine for first isolated from the Caucasian snowdrop Galanthus wor- various illnesses (Neuwinger, 2000) including mental illnesses onowii Losinsk. and since from a range of other Amaryllidaceae (Sobiecki, 2002; Stafford et al., 2008). African Amaryllidaceae species, is approved as an AChE inhibitor in a number of constitutes 280–300 species in 20 genera, which are divided countries (Heinrich and Teoh, 2004). Galanthamine is a into three major clades corresponding to the tribes Amarylli- selective, reversible and competitive inhibitor of AChE, as deae, Cyrtantheae and Haemantheae (Meerow and Clayton, well as an allosteric modulator of the neural nicotinic receptor 2004; Meerow and Snijman, 1998, 2001, 2006; Meerow et al., for acetylcholine (Heinrich and Teoh, 2004). Crude extracts of a 1999). Most species used in traditional medicine belong to the number of Amaryllidaceae species have shown AChE inhibi- Amaryllidaceae tribe Amaryllideae. For example, Boophone tion, but most tested species belong to Crinum L. (Houghton et disticha (L.f.) Herb., is widely used to induce hallucinations, to al., 2004; Jäger et al., 2004) and Narcissus (López et al., 2002). treat headaches and anxiety, and to sedate hysterical, violent The most active alkaloids reported belong to the lycorine- and and psychotic patients (Neergaard et al., 2009). However, galanthamine types (Elgorashi et al., 2004, 2006a; López et al., Cyrtanthus Aiton (tribe Cyrtantheae) and Scadoxus Raf. (tribe 2002). Haementheae) species are also used in traditional medicine to Depression is associated with reduction of neurotransmitters treat mental illnesses (Stafford et al., 2008). Scadoxus puniceus in the brain. Several antidepressants exert their effect by (L.) Friis & Nordal is known to cause dizziness, visual selective inhibition of serotonin reuptake and affinity to the disturbances, CNS excitation or depression (Veale et al., serotonin reuptake inhibitor (SERT) is associated with possible 1992). In Eastern Tanzania, a bath with root infusion of antidepressant effect (SSRIs; Stahl, 1998). Crude extracts and Scadoxus multiflorus (Martyn) Raf. is used to treat mental isolated alkaloids of Boophone disticha have shown affinity to illness (Chhabra et al., 1987). Activities of plants in SERT (Nielsen et al., 2004; Sandager et al., 2005) as have a Amaryllidaceae related to the central nervous system are number of the tested alkaloids from other Amaryllidaceae ascribed to norbelladine-derived alkaloids restricted to the species, primarily of the crinine-type (Elgorashi et al., 2006b). Amaryllidaceae subfamily Amarylloideae (AGP III, 2009). The purpose of the present study is to use a phylogenetic Over 500 alkaloids have been described from various species hypothesis for Amaryllidaceae tribe Haemantheae to evaluate and have been subdivided into 18 major types based on their the distribution of (a) alkaloids, (b) acetylcholinesterase hypothetical biosynthetic pathways (Jin, 2009). inhibitory activity, and (c) affinity to the serotonin reuptake Efforts are continuously being made to identify and develop transport protein. new and improved herbal remedies and lead compounds for drug discovery. However, identification and isolation of 2. Materials and methods bioactive compounds is both time-consuming and costly and only a few of the Amaryllidaceae species and their alkaloids 2.1. Materials have been evaluated for their CNS-effects. New rational approaches are needed to enable the more effective selection Taxon sampling included representatives of all genera of of the most promising organisms for herbal remedies and drug tribe Haemantheae. Apodolirion was included in the phyloge- discovery programmes (Bohlin et al., 2007). netic analyses, but due to lack of material available for this In a study of Narcissus L. (Amaryllidaceae), we have shown study, no chemical or bioactivity data was obtained. For the that the distribution of alkaloids with AChE inhibitory activity phylogenetic hypothesis, we expanded the matrix of Meerow is significantly restricted within the phylogeny of Narcissus and and Clayton (2004) with 17 samples also used for chemical and can be used to predict the occurrence of active alkaloids in bioactivity evaluation in the present study. Of these, Gethyllis uninvestigated species (Rønsted et al., 2008). In the present afra L., G. grandiflora L.Bolus, Haemanthus amarylloides study we take a phylogenetic approach to explore and select Jacq., H. coccineus L., H. deformis Hook.f., H. hirsutus Baker, potential new target species of tribe Haemantheae for lead H. montanus Baker, H. sanguineus Jacq., and Scadoxus discovery of acetylcholinesterase and serotonin reuptake multiflorus, were not included in the earlier study by Meerow transport protein inhibitors. In the most recent formal and Clayton (2004). We did not include a set of sequences classification of Amaryllidaceae by Meerow and Snijman available in Genbank from Spies and Strydom as these were (1998), tribe Haemantheae included only the genera Clivia unpublished and we did therefore not feel we could trust their Lindl., Cryptostephanus Welw. ex Baker, Haemanthus L. and identity. Amaryllis belladonna L. was used as an outgroup Scadoxus. However, phylogenetic analyses have supported an following Meerow and Clayton (2004). We followed circum- expanded tribe Haemantheae including also the genera scriptions and
Recommended publications
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • Haemanthus Canaliculatus | Plantz Africa About:Reader?Url=
    Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus pza.sanbi.org Haemanthus canaliculatus | Plantz Africa Introduction In late summer or early autumn, after fires have swept through some of the swampy areas near the sea in the Hangklip area, you may be lucky enough to see the red paintbrushes of Haemanthus canaliculatus glowing brightly amongst the blackened remains of the vegetation. Description Description The bulbs are made up of a number of thick, fleshy, cream-coloured, overlapping, truncated bulb scales, arranged like a fan, with perennial fleshy roots. There are usually 2 (sometimes 1, 3 or 4) narrow smooth fleshy leaves up to 600 mm long, curved along 1 of 5 2016/12/14 03:51 PM Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus their length to form a channel. They are 5-27 mm wide, shiny green with reddish barred markings towards the base, especially on the lower surface. The smooth, thick, flattened, upright or curved flower stalks can be up to 200 mm long, 4-10 mm wide and are reddishpink to deep red, sometimes with deeper red spots especially near the base; 5-7 pointed, leathery bracts, called spathes, surround the 15-45 flowers clustered at the top of the stalk. The spathes and flowers are usually red but very occasionally may be pink. The flowers are topped with yellow anthers. The reddish berries are round and about 20 mm in diameter. Under natural conditions the flowering time is from February to March and the leaves usually appear after the flowers from May to December.
    [Show full text]
  • Boophone Disticha
    Micropropagation and pharmacological evaluation of Boophone disticha Lee Cheesman Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy Research Centre for Plant Growth and Development School of Life Sciences University of KwaZulu-Natal, Pietermaritzburg April 2013 COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCES DECLARATION 1 – PLAGIARISM I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research contained in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source being detailed in the thesis and in the reference section. Signed at………………………………....on the.....….. day of ……......……….2013 ______________________________ SIGNATURE i STUDENT DECLARATION Micropropagation and pharmacological evaluation of Boophone disticha I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research reported in this dissertation, except where otherwise indicated is the result of my own endeavours in the Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg.
    [Show full text]
  • Mountains of the Moon
    MOUNTAINS OF THE MOON Some names just resonate with mystery and one such place that does that for me is the Rwenzori or Mountains of the Moon, a spectacular equatorial range that straddles Uganda and the DRC. It has that ‘heart of Africa’ appeal, truly somewhere off the beaten path - and given the effort required to get there it’s no surprise so few tourists come here. Without doubt it is the domain of the serious trekker and climber, the trails penetrate dense mossy forests and climb steeply to breathless heights above the treeline, where the reward is some of the most remarkable alpine flora to be found anywhere. I undertook my own journey with a university friend. We walked first through sweaty sub-tropical forests where the striking orange tubes of Scadoxus cyrtanthiflorus stood out from the dense undergrowth. Heavy bamboo dominated above this and then it was into the subalpine zone where the otherworldly stuff began. Gorgeous broad corymbs of Helichrysum formosissimum appeared, with silvery phyllaries blushed pink - surely the ultimate everlasting daisy. Then we reached the alpine zone. Dendrosenecio adnivalis Interestingly, as with the Espletia of the Scadoxus cyrtanthiflorus northern Andes, the alpine equivalent here also belongs to Asteraceae. The dominant species in the Rwenzori (with similar species in other east African mountains) Dendrosenecio adnivalis, a magnificent plant that formed dense forests in places, clothing whole mountainsides. The most obvious difference between the two genera is Dendrosenecio branch and Espletia do not. I remember seeing a specimen of a Dendrosenecio at Kew, sitting beneath a strong sunlamp.
    [Show full text]
  • – the 2020 Horticulture Guide –
    – THE 2020 HORTICULTURE GUIDE – THE 2020 BULB & PLANT MART IS BEING HELD ONLINE ONLY AT WWW.GCHOUSTON.ORG THE DEADLINE FOR ORDERING YOUR FAVORITE BULBS AND SELECTED PLANTS IS OCTOBER 5, 2020 PICK UP YOUR ORDER OCTOBER 16-17 AT SILVER STREET STUDIOS AT SAWYER YARDS, 2000 EDWARDS STREET FRIDAY, OCTOBER 16, 2020 SATURDAY, OCTOBER 17, 2020 9:00am - 5:00pm 9:00am - 2:00pm The 2020 Horticulture Guide was generously underwritten by DEAR FELLOW GARDENERS, I am excited to welcome you to The Garden Club of Houston’s 78th Annual Bulb and Plant Mart. Although this year has thrown many obstacles our way, we feel that the “show must go on.” In response to the COVID-19 situation, this year will look a little different. For the safety of our members and our customers, this year will be an online pre-order only sale. Our mission stays the same: to support our community’s green spaces, and to educate our community in the areas of gardening, horticulture, conservation, and related topics. GCH members serve as volunteers, and our profits from the Bulb Mart are given back to WELCOME the community in support of our mission. In the last fifteen years, we have given back over $3.5 million in grants to the community! The Garden Club of Houston’s first Plant Sale was held in 1942, on the steps of The Museum of Fine Arts, Houston, with plants dug from members’ gardens. Plants propagated from our own members’ yards will be available again this year as well as plants and bulbs sourced from near and far that are unique, interesting, and well suited for area gardens.
    [Show full text]
  • Scanning Electron Microscopy of the Leaf Epicuticular Waxes of the Genus Gethyllis L
    Soulh Afnc.1n Journal 01 Bol811Y 2001 67 333-343 Copynghl €I NISC Ply LId Pnmed In South Alnca - All ngills leserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254- 5299 Scanning electron microscopy of the leaf epicuticular waxes of the genus Gethyllis L. (Amaryllidaceae) and prospects for a further subdivision C Weiglin Technische Universitat Berlin, Herbarium BTU, Sekr. FR I- I, Franklinstrasse 28-29, 0-10587 Berlin, Germany e-mail: [email protected] Recei ved 23 August 2000, accepled in revised form 19 January 2001 The leaf epicuticular wax ultrastructure of 32 species of ridged rodlets is conspicuous and is interpreted as the genus Gethyllis are for the first time investigated being convergent. In three species wax dimorphism was and discussed. Non-entire platelets were observed in discovered, six species show a somewhat rosette-like 12 species, entire platelets with transitions to granules orientation of non-entire or entire platelets and in four in seven species, membranous platelets in nine species a tendency to parallel orientation of non-entire species and smooth layers in eight species, Only or entire platelets was evident. It seems that Gethyllis, GethyJlis transkarooica is distinguished by its trans­ from its wax morphology, is highly diverse and versely ridged rodlets. The occurrence of transversely deserves further subdivision. Introduction The outer epidermal cell walls of nearly all land plants are gle species among larger taxa, cu ltivated plants , varieties covered by a cuticle cons isting mainly of cutin, an insoluble and mutants (Juniper 1960, Leigh and Matthews 1963, Hall lipid pOlyester of substituted aliphatic acids and long chain et al.
    [Show full text]
  • Alpine Garden Society Tour Scheme 2012
    Merlin Trust – Alpine Garden Society Tour Scheme 2012 South Africa – Tour to the Eastern Cape 6th – 21st February 2012 By: Merlin recipient, Carol Hart The author photographing Crassula vaginata, Aurora Peak, Maclear For Granny Grace ii Contents Acknowledgements iv Introduction 1 The Merlin Award 1 Our Guides 1 The Tour Area 2 Map 3 The Biomes 4 The Pictures 5 Highlights of the Tour 6 Itinerary 7 A Few More Highlights 8 Conclusion 9 References 10 Ode to the Flowers of the Eastern Cape 11-12 The Tour in Pictures 13-93 iii Acknowledgements With great thanks to the Merlin Trust for enabling me to be a part of this tour to the Eastern Cape. What an eye-opening first ever botanical trip to such a diverse rich country! Huge, huge thanks to Cameron McMaster, for his passionate wealth of natural history knowledge which he so keenly and positively shares. His experience, interest and expertise at flora identification are a real inspiration and have helped to protect threatened species. His website; his photos are an amazing resource to reference (http://www.africanbulbs.com). Huge big thanks also go to Dawie Human, our other guide, whose added experience and knowledge of natural history complemented our whole tour experience of the Eastern Cape. I’d like to thank all the hosts for their hospitality and care and all the other group members who made the trip an even more memorable and enjoyable event and shared and cared for each other. Thank you to my employers, The Royal Botanic Gardens Kew, and colleagues, for being supportive and encouraging; Peter Colbourne, and Sarah Bell for helping with my IT deficiencies and lastly a loving thank you to my parents for all your invaluable support, especially for getting me to the train station in the snow! I’d like to dedicate this work in loving memory of my Gran, Grace Hart (1914-2011), whose interest in horticulture, gardens and travel was an inspiration.
    [Show full text]
  • Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins Nathaniel J
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Summer 7-26-2008 Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins Nathaniel J. Dominy Erin R. Vogel Justin D. Yeakel Paul J. Constantino Biological Sciences, [email protected] Peter W. Lucas Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons, and the Paleontology Commons Recommended Citation Dominy NJ, Vogel ER, Yeakel JD, Constantino P, and Lucas PW. The mechanical properties of plant underground storage organs and implications for the adaptive radiation and resource partitioning of early hominins. Evolutionary Biology 35(3): 159-175. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Evol Biol (2008) 35:159–175 DOI 10.1007/s11692-008-9026-7 RESEARCH ARTICLE Mechanical Properties of Plant Underground Storage Organs and Implications for Dietary Models of Early Hominins Nathaniel J. Dominy Æ Erin R. Vogel Æ Justin D. Yeakel Æ Paul Constantino Æ Peter W. Lucas Received: 16 April 2008 / Accepted: 15 May 2008 / Published online: 26 July 2008 Ó Springer Science+Business Media, LLC 2008 Abstract The diet of early human ancestors has received 98 plant species from across sub-Saharan Africa. We found renewed theoretical interest since the discovery of elevated that rhizomes were the most resistant to deformation and d13C values in the enamel of Australopithecus africanus fracture, followed by tubers, corms, and bulbs.
    [Show full text]
  • (Tribe Haemantheae) Inferred from Plastid and Nuclear Non-Coding DNA Sequences
    Plant Syst. Evol. 244: 141–155 (2004) DOI 10.1007/s00606-003-0085-z Generic relationships among the baccate-fruited Amaryllidaceae (tribe Haemantheae) inferred from plastid and nuclear non-coding DNA sequences A. W. Meerow1, 2 and J. R. Clayton1 1 USDA-ARS-SHRS, National Germplasm Repository, Miami, Florida, USA 2 Fairchild Tropical Garden, Miami, Florida, USA Received October 22, 2002; accepted September 3, 2003 Published online: February 12, 2004 Ó Springer-Verlag 2004 Abstract. Using sequences from the plastid trnL-F Key words: Amaryllidaceae, Haemantheae, geo- region and nrDNA ITS, we investigated the phy- phytes, South Africa, monocotyledons, DNA, logeny of the fleshy-fruited African tribe Haeman- phylogenetics, systematics. theae of the Amaryllidaceae across 19 species representing all genera of the tribe. ITS and a Baccate fruits have evolved only once in the combined matrix produce the most resolute and Amaryllidaceae (Meerow et al. 1999), and well-supported tree with parsimony analysis. Two solely in Africa, but the genera possessing main clades are resolved, one comprising the them have not always been recognized as a monophyletic rhizomatous genera Clivia and Cryp- monophyletic group. Haemanthus L. and tostephanus, and a larger clade that unites Haemanthus and Scadoxus as sister genera to an Gethyllis L. were the first two genera of the Apodolirion/Gethyllis subclade. One of four group to be described (Linneaus 1753). Her- included Gethyllis species, G. lanuginosa, resolves bert (1837) placed Haemanthus (including as sister to Apodolirion with ITS. Relationships Scadoxus Raf.) and Clivia Lindl. in the tribe among the Clivia species are not in agreement with Amaryllidiformes, while Gethyllis was classi- a previous published phylogeny.
    [Show full text]
  • Semester Course Hours Cred It Subject CODE Marks III CC9 6 5 18KP3BO9 25+75=100
    Semester Course Hours Cred Subject Marks it CODE III CC9 6 5 18KP3BO9 25+75=100 PLANT SYSTEMATICS AND ECONOMIC BOTANY UNIT II : Taxonomical studies of selected families and their economic importance and medicinal uses. Polypetalae : Menispermaceae, Carryophyllaceae, Portulacaceae, Rhamnaceae, Sapindaceae, Anacardiaceae, Combretaceae, Myrtaceae, Umbelliferae. UNIT IV : Taxonomical studies of selectd families and their economic importance and medicinal uses. Monochylamydeae: Chenopodiaceae, Aristolociaceae, Lorantheceae, Orchidaceae. Monocotyledons: Amarylidaceae, Commelineceae, Arecaceae and Cyperaceae UNIT V: Economic Botany: Cereals(Wheat,Maize), Pulses(Red Gram,Black gram),Vegetable oil(groundnut and oil palm), fibers(gossypium and corchorus),Nuts(cashew,walnut),Spices(pepper,clove), Wood(teak,pine) REFERENCES 1.Lawrence, G.H.M., 1955, The taxonomy of Vascular Plants, Central Book Ddepot, Mac Millan, New York. 2. Vashista, P.C., 1990, Taxonomy of angiosperms- S.Chand & co, New Delhi. 3.B.P.Pandey and Anitha., 1990, Economic Botany, S.Chand & Co, New Delhi 4.Sharma O.P., 2000, Economic Botany, Tata Mc Graw Hill Publications, New Delhi. Prepared by UNIT II : Dr.G.Subasri, Asst. Professor, Dept. of Botany, KNGAC, Thanjavur. UNIT IV & V: Dr.G.Santhi, Asst. Professor, Dept. of Botany, KNGAC, Thanjavur. UNIT II Menispermaceae: Distribution of Menispermaceae: It is commonly known as Moonseed family, includes 70 genera and 400 species, distributed largely throughout paleotropic regions and a few genera extend into the eastern Mediterranean region and eastern Asia Characters of Menispermaceae: Mostly woody vines – lianas, dioecious; flowers trimerous, unisexual; double whorls of sepals and petals; curved seed. Habit: Mostly twining, woody vines (lianas), rarely erect shrubs or small trees. Root – Tap and branched.
    [Show full text]
  • TELOPEA Publication Date: 13 October 1983 Til
    Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance.
    [Show full text]
  • Listado De Todas Las Plantas Que Tengo Fotografiadas Ordenado Por Familias Según El Sistema APG III (Última Actualización: 2 De Septiembre De 2021)
    Listado de todas las plantas que tengo fotografiadas ordenado por familias según el sistema APG III (última actualización: 2 de Septiembre de 2021) GÉNERO Y ESPECIE FAMILIA SUBFAMILIA GÉNERO Y ESPECIE FAMILIA SUBFAMILIA Acanthus hungaricus Acanthaceae Acanthoideae Metarungia longistrobus Acanthaceae Acanthoideae Acanthus mollis Acanthaceae Acanthoideae Odontonema callistachyum Acanthaceae Acanthoideae Acanthus spinosus Acanthaceae Acanthoideae Odontonema cuspidatum Acanthaceae Acanthoideae Aphelandra flava Acanthaceae Acanthoideae Odontonema tubaeforme Acanthaceae Acanthoideae Aphelandra sinclairiana Acanthaceae Acanthoideae Pachystachys lutea Acanthaceae Acanthoideae Aphelandra squarrosa Acanthaceae Acanthoideae Pachystachys spicata Acanthaceae Acanthoideae Asystasia gangetica Acanthaceae Acanthoideae Peristrophe speciosa Acanthaceae Acanthoideae Barleria cristata Acanthaceae Acanthoideae Phaulopsis pulchella Acanthaceae Acanthoideae Barleria obtusa Acanthaceae Acanthoideae Pseuderanthemum carruthersii ‘Rubrum’ Acanthaceae Acanthoideae Barleria repens Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. atropurpureum Acanthaceae Acanthoideae Brillantaisia lamium Acanthaceae Acanthoideae Pseuderanthemum carruthersii var. reticulatum Acanthaceae Acanthoideae Brillantaisia owariensis Acanthaceae Acanthoideae Pseuderanthemum laxiflorum Acanthaceae Acanthoideae Brillantaisia ulugurica Acanthaceae Acanthoideae Pseuderanthemum laxiflorum ‘Purple Dazzler’ Acanthaceae Acanthoideae Crossandra infundibuliformis Acanthaceae Acanthoideae Ruellia
    [Show full text]