Latitude- Longitude Coordinate System A

Total Page:16

File Type:pdf, Size:1020Kb

Latitude- Longitude Coordinate System A Latitude- Longitude Coordinate System A. Coordinate System- system of locating a point on a surface by means of 2 numbers. B. Latitude- Longitude Coordinate System- - used to locate positions on Earth (curved surface) 1) Latitude- Angular distance North and South of the Equator. A) North –South lines above and below Equator B) Parallels- lines of latitude are parallel to the Equator. C) All parallels are smaller than the Equator Lines of Latitude These parallel lines on the globe are lines of latitude. http://plantwatch.sunsite.ualberta.ca/library/images/lat.jpg LATITUDE Latitude (lines of parallel) distance in degrees north or south of the equator. Lines of latitude are horizontal. 0o - equator 90o N- North pole 90o S- South Pole Latitude Latitude angles are measured from the center of the earth (vertex of the angle) http://www.csmate.colostate.edu/cltw/cohortpages/viney/latitude.html Degrees, Minutes, Seconds 360 degrees in a circle 1 degree is 60 minutes 1 minute is 60 seconds 2) Longitude- Angular distance east or west of the Prime Meridian a) Prime Meridian- reference line 0° b) Connects North and South Poles c) Meridian- longitude lines d) non-parallel e) International Date Line (180°) Prime Meridian The Prime Meridian passes through Greenwich, England http://www.mrsciguy.com/sciimages/longitude1.jpg Prime Meridian Marker A marker showing the actual location of the Prime Meridian in Greenwich, England http://www.cavinguk.co.uk/holidays/London200 6/normal/PrimeMeridian.jpg Lines of Longitude http://plantwatch.sunsite.ualberta.ca/library/images/long.jpg Longitude Angles •Longitude is measured in degrees east or west of the Prime Meridian •Angles are measured from the center of the earth (vertex of angle) east or west of the Prime Meridian http://www.csmate.colostate.edu/cltw/cohortpages/viney/latitude.html Positioning on the Earth’s Surface East is the direction of Latitude: (90oN to 90oS) rotation of the Earth North Pole o o Prime Meridian Longitude: (180 E to 180 W) 0o Longitude Tropic of Cancer Latitude 23½o North st 21 June 9060ooE 6090303090WEo o nd 66½23½o 22 Sept o Equator 0 o Latitude 0 20th March 90 23½ 22nd December Tropic of Capricorn Latitude 23½o South Longitude 90o West Longitude 90oEast o Longitude 60 West Longitude 60o East Longitude 30o West Longitude 30o East South Pole Latitude and Longitude together enable the fixing of position on the Earth’s surface. Now you’re ready to find some locations on a map!.
Recommended publications
  • QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata
    QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata The Property Profile Form (PPF) requests the property name, address, city, state and zip. From these address fields, ACRES interfaces with Google Maps and extracts the latitude and longitude (lat/long) for the property location. ACRES sets the remaining property geographic information to default values. The data (known collectively as “metadata”) are required by EPA Data Standards. Should an ACRES user need to be update the metadata, the Edit Fields link on the PPF provides the ability to change the information. Before the metadata were populated by ACRES, the data were entered manually. There may still be the need to do so, for example some properties do not have a specific street address (e.g. a rural property located on a state highway) or an ACRES user may have an exact lat/long that is to be used. This Quick Reference Guide covers how to find latitude and longitude, define the metadata, fill out the associated fields in a Property Work Package, and convert latitude and longitude to decimal degree format. This explains how the metadata were determined prior to September 2011 (when the Google Maps interface was added to ACRES). Definitions Below are definitions of the six data elements for latitude and longitude data that are collected in a Property Work Package. The definitions below are based on text from the EPA Data Standard. Latitude: Is the measure of the angular distance on a meridian north or south of the equator. Latitudinal lines run horizontal around the earth in parallel concentric lines from the equator to each of the poles.
    [Show full text]
  • AIM: Latitude and Longitude
    AIM: Latitude and Longitude Latitude lines run east/west but they measure north or south of the equator (0°) splitting the earth into the Northern Hemisphere and Southern Hemisphere. Latitude North Pole 90 80 Lines of 70 60 latitude are 50 numbered 40 30 from 0° at 20 Lines of [ 10 the equator latitude are 10 to 90° N.L. 20 numbered 30 at the North from 0° at 40 Pole. 50 the equator ] 60 to 90° S.L. 70 80 at the 90 South Pole. South Pole Latitude The North Pole is at 90° N 40° N is the 40° The equator is at 0° line of latitude north of the latitude. It is neither equator. north nor south. It is at the center 40° S is the 40° between line of latitude north and The South Pole is at 90° S south of the south. equator. Longitude Lines of longitude begin at the Prime Meridian. 60° W is the 60° E is the 60° line of 60° line of longitude west longitude of the Prime east of the W E Prime Meridian. Meridian. The Prime Meridian is located at 0°. It is neither east or west 180° N Longitude West Longitude West East Longitude North Pole W E PRIME MERIDIAN S Lines of longitude are numbered east from the Prime Meridian to the 180° line and west from the Prime Meridian to the 180° line. Prime Meridian The Prime Meridian (0°) and the 180° line split the earth into the Western Hemisphere and Eastern Hemisphere. Prime Meridian Western Eastern Hemisphere Hemisphere Places located east of the Prime Meridian have an east longitude (E) address.
    [Show full text]
  • Latitude/Longitude Data Standard
    LATITUDE/LONGITUDE DATA STANDARD Standard No.: EX000017.2 January 6, 2006 Approved on January 6, 2006 by the Exchange Network Leadership Council for use on the Environmental Information Exchange Network Approved on January 6, 2006 by the Chief Information Officer of the U. S. Environmental Protection Agency for use within U.S. EPA This consensus standard was developed in collaboration by State, Tribal, and U. S. EPA representatives under the guidance of the Exchange Network Leadership Council and its predecessor organization, the Environmental Data Standards Council. Latitude/Longitude Data Standard Std No.:EX000017.2 Foreword The Environmental Data Standards Council (EDSC) identifies, prioritizes, and pursues the creation of data standards for those areas where information exchange standards will provide the most value in achieving environmental results. The Council involves Tribes and Tribal Nations, state and federal agencies in the development of the standards and then provides the draft materials for general review. Business groups, non- governmental organizations, and other interested parties may then provide input and comment for Council consideration and standard finalization. Standards are available at http://www.epa.gov/datastandards. 1.0 INTRODUCTION The Latitude/Longitude Data Standard is a set of data elements that can be used for recording horizontal and vertical coordinates and associated metadata that define a point on the earth. The latitude/longitude data standard establishes the requirements for documenting latitude and longitude coordinates and related method, accuracy, and description data for all places used in data exchange transaction. Places include facilities, sites, monitoring stations, observation points, and other regulated or tracked features. 1.1 Scope The purpose of the standard is to provide a common set of data elements to specify a point by latitude/longitude.
    [Show full text]
  • Why Do We Use Latitude and Longitude? What Is the Equator?
    Where in the World? This lesson teaches the concepts of latitude and longitude with relation to the globe. Grades: 4, 5, 6 Disciplines: Geography, Math Before starting the activity, make sure each student has access to a globe or a world map that contains latitude and longitude lines. Why Do We Use Latitude and Longitude? The Earth is divided into degrees of longitude and latitude which helps us measure location and time using a single standard. When used together, longitude and latitude define a specific location through geographical coordinates. These coordinates are what the Global Position System or GPS uses to provide an accurate locational relay. Longitude and latitude lines measure the distance from the Earth's Equator or central axis - running east to west - and the Prime Meridian in Greenwich, England - running north to south. What Is the Equator? The Equator is an imaginary line that runs around the center of the Earth from east to west. It is perpindicular to the Prime Meridan, the 0 degree line running from north to south that passes through Greenwich, England. There are equal distances from the Equator to the north pole, and also from the Equator to the south pole. The line uniformly divides the northern and southern hemispheres of the planet. Because of how the sun is situated above the Equator - it is primarily overhead - locations close to the Equator generally have high temperatures year round. In addition, they experience close to 12 hours of sunlight a day. Then, during the Autumn and Spring Equinoxes the sun is exactly overhead which results in 12-hour days and 12-hour nights.
    [Show full text]
  • Prime Meridian ×
    This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more × security, comfort and the best experience on this site. Encyclopedic Entry prime meridian For the complete encyclopedic entry with media resources, visit: http://education.nationalgeographic.com/encyclopedia/prime-meridian/ The prime meridian is the line of 0 longitude, the starting point for measuring distance both east and west around the Earth. The prime meridian is arbitrary, meaning it could be chosen to be anywhere. Any line of longitude (a meridian) can serve as the 0 longitude line. However, there is an international agreement that the meridian that runs through Greenwich, England, is considered the official prime meridian. Governments did not always agree that the Greenwich meridian was the prime meridian, making navigation over long distances very difficult. Different countries published maps and charts with longitude based on the meridian passing through their capital city. France would publish maps with 0 longitude running through Paris. Cartographers in China would publish maps with 0 longitude running through Beijing. Even different parts of the same country published materials based on local meridians. Finally, at an international convention called by U.S. President Chester Arthur in 1884, representatives from 25 countries agreed to pick a single, standard meridian. They chose the meridian passing through the Royal Observatory in Greenwich, England. The Greenwich Meridian became the international standard for the prime meridian. UTC The prime meridian also sets Coordinated Universal Time (UTC). UTC never changes for daylight savings or anything else. Just as the prime meridian is the standard for longitude, UTC is the standard for time.
    [Show full text]
  • Civil Twilight Duration (Sunset to Solar Depression
    Civil Twilight Duration (sunset to solar depression 6°) at the Prime Meridian, Sea Level, Northern Hemisphere (March 1, 2007 to March 31, 2008) Mar 1 Mar 15 Mar 29 Apr 12 Apr 26 May 10 May 24 7 Jun 21 Jun Jul 5 Jul 19 Aug 2 Aug 16 Aug 30 Sep 13 Sep 27 11 Oct 25 Oct Nov 8 Nov 22 Dec 6 Dec 20 Jan 3 Jan 17 Jan 31 14 Feb 28 Feb Mar 13 Mar 27 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Civil Twilight Duration (daytime temporal minutes after sunset) after minutes temporal (daytime Duration Civil Twilight 23.5° N 30° N 100 40° N 45° N 105 50° N 55° N 58° N 59° N 110 60° N 61° N Northward Equinox North Solstice 115 Southward Equinox South Solstice 120 Analysis by Dr. Irv Bromberg, University of Toronto, Canada http://www.sym454.org/twilight/ Civil Twilight Duration (sunset to solar depression 6°) at the Prime Meridian, Sea Level, Southern Hemisphere (March 1, 2007 to March 31, 2008) Mar 1 Mar 15 Mar 29 Apr 12 Apr 26 May 10 May 24 7 Jun 21 Jun Jul 5 Jul 19 Aug 2 Aug 16 Aug 30 Sep 13 Sep 27 11 Oct 25 Oct Nov 8 Nov 22 Dec 6 Dec 20 Jan 3 Jan 17 Jan 31 14 Feb 28 Feb Mar 13 Mar 27 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 23.5° S 30° S Civil Twilight Duration (daytime temporal minutes after sunset) after minutes temporal (daytime Duration Civil Twilight 100 40° S 45° S 50° S 55° S 105 58° S 59° S 110 60° S 61° S Northward Equinox North Solstice 115 Southward Equinox South Solstice 120 Analysis by Dr.
    [Show full text]
  • Coordinates James R
    Coordinates James R. Clynch Naval Postgraduate School, 2002 I. Coordinate Types There are two generic types of coordinates: Cartesian, and Curvilinear of Angular. Those that provide x-y-z type values in meters, kilometers or other distance units are called Cartesian. Those that provide latitude, longitude, and height are called curvilinear or angular. The Cartesian and angular coordinates are equivalent, but only after supplying some extra information. For the spherical earth model only the earth radius is needed. For the ellipsoidal earth, two parameters of the ellipsoid are needed. (These can be any of several sets. The most common is the semi-major axis, called "a", and the flattening, called "f".) II. Cartesian Coordinates A. Generic Cartesian Coordinates These are the coordinates that are used in algebra to plot functions. For a two dimensional system there are two axes, which are perpendicular to each other. The value of a point is represented by the values of the point projected onto the axes. In the figure below the point (5,2) and the standard orientation for the X and Y axes are shown. In three dimensions the same process is used. In this case there are three axis. There is some ambiguity to the orientation of the Z axis once the X and Y axes have been drawn. There 1 are two choices, leading to right and left handed systems. The standard choice, a right hand system is shown below. Rotating a standard (right hand) screw from X into Y advances along the positive Z axis. The point Q at ( -5, -5, 10) is shown.
    [Show full text]
  • Spherical Coordinate Systems
    Spherical Coordinate Systems Exploring Space Through Math Pre-Calculus let's examine the Earth in 3-dimensional space. The Earth is a large spherical object. In order to find a location on the surface, The Global Pos~ioning System grid is used. The Earth is conventionally broken up into 4 parts called hemispheres. The North and South hemispheres are separated by the equator. The East and West hemispheres are separated by the Prime Meridian. The Geographic Coordinate System grid utilizes a series of horizontal and vertical lines. The horizontal lines are called latitude lines. The equator is the center line of latitude. Each line is measured in degrees to the North or South of the equator. Since there are 360 degrees in a circle, each hemisphere is 180 degrees. The vertical lines are called longitude lines. The Prime Meridian is the center line of longitude. Each hemisphere either East or West from the center line is 180 degrees. These lines form a grid or mapping system for the surface of the Earth, This is how latitude and longitude lines are represented on a flat map called a Mercator Projection. Lat~ude , l ong~ude , and elevalion allows us to uniquely identify a location on Earth but, how do we identify the pos~ion of another point or object above Earth's surface relative to that I? NASA uses a spherical Coordinate system called the Topodetic coordinate system. Consider the position of the space shuttle . The first variable used for position is called the azimuth. Azimuth is the horizontal angle Az of the location on the Earth, measured clockwise from a - line pointing due north.
    [Show full text]
  • Coriolis Effect
    Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents who provide nationwide leadership in precollege atmospheric environment education. To support these agents in their teacher training, Project ATMOSPHERE develops and produces teacher’s guides and other educational materials. For further information, and additional background on the American Meteorological Society’s Education Program, please contact: American Meteorological Society Education Program 1200 New York Ave., NW, Ste. 500 Washington, DC 20005-3928 www.ametsoc.org/amsedu This material is based upon work initially supported by the National Science Foundation under Grant No. TPE-9340055. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. © 2012 American Meteorological Society (Permission is hereby granted for the reproduction of materials contained in this publication for non-commercial use in schools on the condition their source is acknowledged.) 2 Foreword This guide has been prepared to introduce fundamental understandings about the guide topic. This guide is organized as follows: Introduction This is a narrative summary of background information to introduce the topic. Basic Understandings Basic understandings are statements of principles, concepts, and information. The basic understandings represent material to be mastered by the learner, and can be especially helpful in devising learning activities in writing learning objectives and test items. They are numbered so they can be keyed with activities, objectives and test items. Activities These are related investigations.
    [Show full text]
  • Paper 2017026
    IMMC2017026 Page 1 of 18 (+4) From Eliminating Irrelevant Factors to Determining the Meeting Venue—A Computational Approach —“I’m feeling tired.” ※ Abstract International meetings are increasingly common in business and academic communities due to globalisation and the demand of cooperation in all kinds of industries. Therefore, a problem of paramount importance is to decide the host city for such meetings. The organiser of these international meetings may first receive the list of all attendees and where they are from and then choose the optimal host city in consideration of the productivity in the meeting. To study the effect of different factors to the productivity of attendees from different countries, we can first refer to the result of the International Olympiad in Informatics (IOI) as its nature is similar to the meeting mentioned above, and each contestant has already been assigned a score. We calculate the difference of a country’s relative ranking and its average relative ranking in the three most recent years to isolate the effect of factors that varies each year from those that have a permanent effect. We then forcibly do linear regression on this measure of performance against different factors, including time zone difference, temperature difference, sunshine duration difference, flight distance, and elevation difference between a contestant’s home city and the host city. Student’s t-test then show that we have no evidence to reject the null hypothesis that the regressions of productivity against temperature difference, sunshine duration difference and elevation difference each has zero slope. Then we focus on minimising the total time difference between contestants’ home cities and the host city, and also minimising the flight distance in order to lower the cost with the premise that we do not violate the former constraint.
    [Show full text]
  • The Equator Principles July 2020
    __________________________________________________________________________________ THE EQUATOR PRINCIPLES JULY 2020 A financial industry benchmark for determining, assessing and managing environmental and social risk in projects www.equator-principles.com 0 __________________________________________________________________________________ CONTENTS PREAMBLE ................................................................................................................................... 3 SCOPE .......................................................................................................................................... 5 APPROACH .................................................................................................................................. 6 STATEMENT OF PRINCIPLES .......................................................................................................... 8 Principle 1: Review and Categorisation .............................................................................................. 8 Principle 2: Environmental and Social Assessment ............................................................................ 8 Principle 3: Applicable Environmental and Social Standards............................................................ 10 Principle 4: Environmental and Social Management System and Equator Principles Action Plan ... 11 Principle 5: Stakeholder Engagement ............................................................................................... 11 Principle 6: Grievance Mechanism...................................................................................................
    [Show full text]
  • Latitude and Longitude
    Latitude and Longitude Finding your location throughout the world! What is Latitude? • Latitude is defined as a measurement of distance in degrees north and south of the equator • The word latitude is derived from the Latin word, “latus”, meaning “wide.” What is Latitude • There are 90 degrees of latitude from the equator to each of the poles, north and south. • Latitude lines are parallel, that is they are the same distance apart • These lines are sometimes refered to as parallels. The Equator • The equator is the longest of all lines of latitude • It divides the earth in half and is measured as 0° (Zero degrees). North and South Latitudes • Positions on latitude lines above the equator are called “north” and are in the northern hemisphere. • Positions on latitude lines below the equator are called “south” and are in the southern hemisphere. Let’s take a quiz Pull out your white boards Lines of latitude are ______________Parallel to the equator There are __________90 degrees of latitude north and south of the equator. The equator is ___________0 degrees. Another name for latitude lines is ______________.Parallels The equator divides the earth into ___________2 equal parts. Great Job!!! Lets Continue! What is Longitude? • Longitude is defined as measurement of distance in degrees east or west of the prime meridian. • The word longitude is derived from the Latin word, “longus”, meaning “length.” What is Longitude? • The Prime Meridian, as do all other lines of longitude, pass through the north and south pole. • They make the earth look like a peeled orange. The Prime Meridian • The Prime meridian divides the earth in half too.
    [Show full text]