Maps and Globes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TYPHOONS and DEPRESSIONS OVER the FAR EAST Morning Observation, Sep Teinber 6, from Rasa Jima Island by BERNARDF
SEPTEMBER1940 MONTHLY WEATHER REVIEW 257 days west of the 180th meridian. In American coastal appear to be independent of the typhoon of August 28- waters fog was noted on 10 days each off Washington and September 5, are the following: The S. S. Steel Exporter California; on 4 days off Oregon; and on 3 days off Lower reported 0700 G. C. T. September 6, from latitude 20'18' California. N., longitude 129'30'E.) a pressure of 744.8 mm. (993.0 nib.) with west-northwest winds of force 9. Also, the TYPHOONS AND DEPRESSIONS OVER THE FAR EAST morning observation, Sep teinber 6, from Rasa Jima Island By BERNARDF. DOUCETTE, J. (one of the Nansei Island group) was 747.8 mm. (997.0 5. mb.) for pressure and east-northeast, force 4, for winds. [Weather Bureau, Manila, P. I.] Typhoon, September 11-19) 1940.-A depression, moving Typhoon, August %!-September 6,1940.-A low-pressure westerly, passed about 200 miles south of Guam and area far to the southeast of Guam moved west-northwest, quickly inclined to the north, intensifying to typhoon rapidly developing to typhoon intensity as it proceeded. strength, September 11 to 13. It was stationary, Sep- When the center reached the regions about 250 miles tember 13 and 14, about 150 miles west-northwest of west of Guam, the direction changed to the northwest, Guam, and then began a northwesterly and northerly and the storm continued along this course until it reached course to the ocean regions about 300 miles west of the the latitude of southern Formosa. -
AIM: Latitude and Longitude
AIM: Latitude and Longitude Latitude lines run east/west but they measure north or south of the equator (0°) splitting the earth into the Northern Hemisphere and Southern Hemisphere. Latitude North Pole 90 80 Lines of 70 60 latitude are 50 numbered 40 30 from 0° at 20 Lines of [ 10 the equator latitude are 10 to 90° N.L. 20 numbered 30 at the North from 0° at 40 Pole. 50 the equator ] 60 to 90° S.L. 70 80 at the 90 South Pole. South Pole Latitude The North Pole is at 90° N 40° N is the 40° The equator is at 0° line of latitude north of the latitude. It is neither equator. north nor south. It is at the center 40° S is the 40° between line of latitude north and The South Pole is at 90° S south of the south. equator. Longitude Lines of longitude begin at the Prime Meridian. 60° W is the 60° E is the 60° line of 60° line of longitude west longitude of the Prime east of the W E Prime Meridian. Meridian. The Prime Meridian is located at 0°. It is neither east or west 180° N Longitude West Longitude West East Longitude North Pole W E PRIME MERIDIAN S Lines of longitude are numbered east from the Prime Meridian to the 180° line and west from the Prime Meridian to the 180° line. Prime Meridian The Prime Meridian (0°) and the 180° line split the earth into the Western Hemisphere and Eastern Hemisphere. Prime Meridian Western Eastern Hemisphere Hemisphere Places located east of the Prime Meridian have an east longitude (E) address. -
Why Do We Use Latitude and Longitude? What Is the Equator?
Where in the World? This lesson teaches the concepts of latitude and longitude with relation to the globe. Grades: 4, 5, 6 Disciplines: Geography, Math Before starting the activity, make sure each student has access to a globe or a world map that contains latitude and longitude lines. Why Do We Use Latitude and Longitude? The Earth is divided into degrees of longitude and latitude which helps us measure location and time using a single standard. When used together, longitude and latitude define a specific location through geographical coordinates. These coordinates are what the Global Position System or GPS uses to provide an accurate locational relay. Longitude and latitude lines measure the distance from the Earth's Equator or central axis - running east to west - and the Prime Meridian in Greenwich, England - running north to south. What Is the Equator? The Equator is an imaginary line that runs around the center of the Earth from east to west. It is perpindicular to the Prime Meridan, the 0 degree line running from north to south that passes through Greenwich, England. There are equal distances from the Equator to the north pole, and also from the Equator to the south pole. The line uniformly divides the northern and southern hemispheres of the planet. Because of how the sun is situated above the Equator - it is primarily overhead - locations close to the Equator generally have high temperatures year round. In addition, they experience close to 12 hours of sunlight a day. Then, during the Autumn and Spring Equinoxes the sun is exactly overhead which results in 12-hour days and 12-hour nights. -
The Controversy Over Slavery 3
The Controversy Over Slavery 3 Lesson Objectives Core Content Objectives Students will: Demonstrate familiarity with slavery and the controversy over slavery in the United States Describe the life and contributions of Harriet Tubman Differentiate between the North and the South Language Arts Objectives The following language arts objectives are addressed in this lesson. Objectives aligning with the Common Core State Standards are noted with the corresponding standard in parentheses. Refer to the Alignment Chart for additional standards addressed in all lessons in this domain. Students will: Interpret information from the North and the South T-Chart to explain the differences between the North and the South as described in the read-aloud “The Controversy Over Slavery” (RI.2.7) Compare and contrast the North and the South (RI.2.9) Write simple sentences to represent details or information from “The Controversy Over Slavery” (W.2.2) With assistance, categorize and organize facts and information about the North and the South to answer questions (W.2.8) Interpret information presented, and then ask a question beginning with the word what to clarify information in “The Controversy Over Slavery” (SL.2.3) Share writing with others 40 The U.S. Civil War 3 | The Controversy Over Slavery © 2013 Core Knowledge Foundation Core Vocabulary abolitionists, n. People who worked to abolish, or end, slavery Example: The abolitionists met together often to talk about their plans to end slavery. Variation(s): abolitionist agriculture, n. The science of producing crops; farming Example: Joey studied agriculture in college so he could learn how to produce more food on his family farm. -
The Longitude of the Mediterranean Throughout History: Facts, Myths and Surprises Luis Robles Macías
The longitude of the Mediterranean throughout history: facts, myths and surprises Luis Robles Macías To cite this version: Luis Robles Macías. The longitude of the Mediterranean throughout history: facts, myths and sur- prises. E-Perimetron, National Centre for Maps and Cartographic Heritage, 2014, 9 (1), pp.1-29. hal-01528114 HAL Id: hal-01528114 https://hal.archives-ouvertes.fr/hal-01528114 Submitted on 27 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. e-Perimetron, Vol. 9, No. 1, 2014 [1-29] www.e-perimetron.org | ISSN 1790-3769 Luis A. Robles Macías* The longitude of the Mediterranean throughout history: facts, myths and surprises Keywords: History of longitude; cartographic errors; comparative studies of maps; tables of geographical coordinates; old maps of the Mediterranean Summary: Our survey of pre-1750 cartographic works reveals a rich and complex evolution of the longitude of the Mediterranean (LongMed). While confirming several previously docu- mented trends − e.g. the adoption of erroneous Ptolemaic longitudes by 15th and 16th-century European cartographers, or the striking accuracy of Arabic-language tables of coordinates−, we have observed accurate LongMed values largely unnoticed by historians in 16th-century maps and noted that widely diverging LongMed values coexisted up to 1750, sometimes even within the works of one same author. -
K-12 Oysters in the Chesapeake Bay
K-12 Oysters in the Chesapeake Bay Module I Grade Level : Middle School Teaching Time : 2-3 class periods Materials: Student handouts 1-3 For each group doing the Trilateration activity: • 4 pieces of different colored string • pencil or pen • large map GPS receivers or smart phones II. Where Am I? Activity Summary This activity explores geospatial systems so that students can create waypoints and record latitude and longitude of places in a watershed as a first step in monitoring a local waterway. These skills are basic to understanding how locations are found on earth with the use of maps, coordinates, and technology. Learning Objectives: Students will be able to: • Explain the concept of locating a site on Earth with 3 satellites. • Use latitude and longitude coordinates to identify features on a map. 1 Oceanservice.noaa.gov • Use a GPS receiver or a smart phone to locate the waypoint of a local feature on the school grounds. Background Information Humans have looked to the skies to find their way since ancient times. Ancient sailors used the constellations in the night sky to figure out where they were and where they were going. Today, all we need is a simple hand-held GPS (short for Global Positioning System) receiver to figure out exactly where we are anywhere in the world. However, we still need instruments high in the sky to figure out where we are and how we get to other places. Instead of stars, we use Global Positioning System (GPS) satellites, to help determine a location on the planet. The concepts behind GPS positioning are very simple, but the application and implementation require amazing precision. -
Prime Meridian ×
This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more × security, comfort and the best experience on this site. Encyclopedic Entry prime meridian For the complete encyclopedic entry with media resources, visit: http://education.nationalgeographic.com/encyclopedia/prime-meridian/ The prime meridian is the line of 0 longitude, the starting point for measuring distance both east and west around the Earth. The prime meridian is arbitrary, meaning it could be chosen to be anywhere. Any line of longitude (a meridian) can serve as the 0 longitude line. However, there is an international agreement that the meridian that runs through Greenwich, England, is considered the official prime meridian. Governments did not always agree that the Greenwich meridian was the prime meridian, making navigation over long distances very difficult. Different countries published maps and charts with longitude based on the meridian passing through their capital city. France would publish maps with 0 longitude running through Paris. Cartographers in China would publish maps with 0 longitude running through Beijing. Even different parts of the same country published materials based on local meridians. Finally, at an international convention called by U.S. President Chester Arthur in 1884, representatives from 25 countries agreed to pick a single, standard meridian. They chose the meridian passing through the Royal Observatory in Greenwich, England. The Greenwich Meridian became the international standard for the prime meridian. UTC The prime meridian also sets Coordinated Universal Time (UTC). UTC never changes for daylight savings or anything else. Just as the prime meridian is the standard for longitude, UTC is the standard for time. -
Spherical Coordinate Systems
Spherical Coordinate Systems Exploring Space Through Math Pre-Calculus let's examine the Earth in 3-dimensional space. The Earth is a large spherical object. In order to find a location on the surface, The Global Pos~ioning System grid is used. The Earth is conventionally broken up into 4 parts called hemispheres. The North and South hemispheres are separated by the equator. The East and West hemispheres are separated by the Prime Meridian. The Geographic Coordinate System grid utilizes a series of horizontal and vertical lines. The horizontal lines are called latitude lines. The equator is the center line of latitude. Each line is measured in degrees to the North or South of the equator. Since there are 360 degrees in a circle, each hemisphere is 180 degrees. The vertical lines are called longitude lines. The Prime Meridian is the center line of longitude. Each hemisphere either East or West from the center line is 180 degrees. These lines form a grid or mapping system for the surface of the Earth, This is how latitude and longitude lines are represented on a flat map called a Mercator Projection. Lat~ude , l ong~ude , and elevalion allows us to uniquely identify a location on Earth but, how do we identify the pos~ion of another point or object above Earth's surface relative to that I? NASA uses a spherical Coordinate system called the Topodetic coordinate system. Consider the position of the space shuttle . The first variable used for position is called the azimuth. Azimuth is the horizontal angle Az of the location on the Earth, measured clockwise from a - line pointing due north. -
Coriolis Effect
Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents who provide nationwide leadership in precollege atmospheric environment education. To support these agents in their teacher training, Project ATMOSPHERE develops and produces teacher’s guides and other educational materials. For further information, and additional background on the American Meteorological Society’s Education Program, please contact: American Meteorological Society Education Program 1200 New York Ave., NW, Ste. 500 Washington, DC 20005-3928 www.ametsoc.org/amsedu This material is based upon work initially supported by the National Science Foundation under Grant No. TPE-9340055. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. © 2012 American Meteorological Society (Permission is hereby granted for the reproduction of materials contained in this publication for non-commercial use in schools on the condition their source is acknowledged.) 2 Foreword This guide has been prepared to introduce fundamental understandings about the guide topic. This guide is organized as follows: Introduction This is a narrative summary of background information to introduce the topic. Basic Understandings Basic understandings are statements of principles, concepts, and information. The basic understandings represent material to be mastered by the learner, and can be especially helpful in devising learning activities in writing learning objectives and test items. They are numbered so they can be keyed with activities, objectives and test items. Activities These are related investigations. -
THE EARTH. MERIDIANS and PARALLELS 2=Meridian (Geography)
THE EARTH. MERIDIANS AND PARALLELS 1=Circle of latitude 2=Meridian (geography) A circle of latitude , on the Earth , is an imaginary east -west circle connecting all locations (not taking into account elevation) that share a given latitude . A location's position along a circle of latitude is given by its longitude . Circles of latitude are often called parallels because they are parallel to each other. On some map projections, including the Equirectangular projection , they are drawn at equidistant intervals. Circles of latitude become smaller the farther they are from the equator and the closer they are to the poles . A circle of latitude is perpendicular to all meridians at the points of intersection, and is hence a special case of a loxodrome . Contrary to what might be assumed from their straight-line representation on some map projections, a circle of latitude is not, with the sole exception of the Equator, the shortest distance between two points lying on the Earth. In other words, circles of latitude (except for the Equator) are not great circles (see also great-circle distance ). It is for this reason that an airplane traveling between a European and North American city that share the same latitude will fly farther north, over Greenland for example. Arcs of circles of latitude are sometimes used as boundaries between countries or regions where distinctive natural borders are lacking (such as in deserts), or when an artificial border is drawn as a "line on a map", as happened in Korea . Longitude (λ) Lines of longitude appear vertical with varying curvature in this projection; but are actually halves of great ellipses, with identical radii at a given latitude. -
Latitude and Longitude
Latitude and Longitude D.Knauss RRHS 2009 Coordinates • The location of any object can be located by the intersection of two lines. • The Earth is divided into two sets of lines. Latitude Lines and Longitude Lines Longitude Lines • Longitude Lines run from the North to the South pole and are equal in length. They tell you where you are East and West of the Prime Meridian (runs through Greenwich, England). 0o longitude 30o East longitude 30o West longitude Longitude Lines • Looking at the Earth from above the North Pole, you can see the Prime Meridian and the International Date Line. 0o Prime Meridian 90o East 90o West 180o International Date Line International Date Line • The International Date Line sits on the 180º line of longitude in the middle of the Pacific Ocean. It is the imaginary line that separates two consecutive calendar days. - It is not a perfectly straight line and has been moved slightly over the years to accommodate needs of varied countries in the Pacific Ocean. International Date Line • Immediately to the left of the International Date Line (the date) is always one day ahead of the date (or day) immediately to the right of the International Date Line in the Western Hemisphere. So, travelling east across the International Date Line results in a day, or 24 hours being subtracted. Travelling west across the International Date Line results in a day being added. International Date Line and the Prime Meridian Not a Straight Line! Latitude Lines • Latitude lines run from East to West and tell you where you are North and South of the Equator. -
The Equator Principles July 2020
__________________________________________________________________________________ THE EQUATOR PRINCIPLES JULY 2020 A financial industry benchmark for determining, assessing and managing environmental and social risk in projects www.equator-principles.com 0 __________________________________________________________________________________ CONTENTS PREAMBLE ................................................................................................................................... 3 SCOPE .......................................................................................................................................... 5 APPROACH .................................................................................................................................. 6 STATEMENT OF PRINCIPLES .......................................................................................................... 8 Principle 1: Review and Categorisation .............................................................................................. 8 Principle 2: Environmental and Social Assessment ............................................................................ 8 Principle 3: Applicable Environmental and Social Standards............................................................ 10 Principle 4: Environmental and Social Management System and Equator Principles Action Plan ... 11 Principle 5: Stakeholder Engagement ............................................................................................... 11 Principle 6: Grievance Mechanism...................................................................................................