Name of Faculty:Dr.Preeti Gupta Designation: Associate Professor Department: Engineering Chemistry Subject:Engineering Chemistry Unit: VII Topic: Periodic Properties

Total Page:16

File Type:pdf, Size:1020Kb

Name of Faculty:Dr.Preeti Gupta Designation: Associate Professor Department: Engineering Chemistry Subject:Engineering Chemistry Unit: VII Topic: Periodic Properties LNCT GROUP OF COLLEGES Name of Faculty:Dr.Preeti Gupta Designation: Associate professor Department: Engineering Chemistry Subject:Engineering Chemistry Unit: VII Topic: Periodic properties LNCT GROUP OF COLLEGES CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES Need for classification: It is very difficult to study individually the chemistry of all the elements and millions of their compounds, Hence to simplify and systematize the study of chemistry of the elements and their compounds, they are classified into groups and periods. Early attempt to classify the elements: Classification of Lavoiser Elements had been classified into two major groups by Lavoiser 1. Metals 2. Non–metals This classification was based on the differences in their properties. Dobereiner’s law of traids: It was first attempt towards classification. He arranged similar elements in a group of three elements called triad and the atomic mass of the middle elements of the traid is approximately the arithmetic mean of the other two. Newland’s law of octaves: When the lighter elements are arranged in order of their increasing atomic weights, then every eighth element is similar to the first element in its properties, similarly as the eighth node of a musical scale is similar to first one. E.g. Na 8thelement resembles in their properties with Li. Similarly, K the 8th element with Na and so on. Lother Meyer arrangement: LNCT GROUP OF COLLEGES The graphs plotting the atomic volumes against atomic weights are known as Lothar Mayer volume curves. The alkali metals have highest atomic volumes. Alkaline earth metals (Be, Mg Ca, Sr, Ba, etc.) which are relatively a little less electropositive. Occupy positions on the descending part of the curve. Halogens and the noble gases (except helium) occupy positions on the ascending part of the curve. Transition elements have very small volumes and therefore these are present at the bottoms of the curve. MENDELEEV’S PERIODIC LAW Mendeleev’s Periodic Law - The physical and chemical properties of elements are the periodic function of their atomic weight ii. Characteristic of Mendeleev’s Periodic Table (a)It is based on atomic weight (b) 63 elements were known, noble gases were not discovered. (c) 12 Horizontal rows are called periods. (d) Vertical columns are called groups and there were 8 groups in Mendeleev’s Periodic table. (e) Each group up to VIIth is divided into A & B subgroups. ‘A’sub groups element are called normal elements and ‘B’sub group’s elements are called transition elements. (f) The VIIIth group was consists of 9 elements in three rows (Transition metals group). (g) The elements belonging to same group exhibit similar properties. Merits or advantages of Mendeleev’s periodic table (a)Study of elements - First time all known elements were classified in groups according to theirsimilar properties. So study of the properties becomes easier of elements. (b) Prediction of new elements - It gave encouragement to the discovery of new elements as some gaps were left init. Sc(Scandium), Ga (Gallium), Ge (Germanium), Tc(Technetium) were the elements for whom position and properties were defined by Mendeleev even before LNCT GROUP OF COLLEGES their discoveries and he left the blank spaces for them . e.g.- Blank space at atomic weight 72 in silicon group was called Eka silicon (means properties like silicon) and element discovered later was named Germanium. Similarly, other elements discovered after Mendeleev periodic table were. Eka aluminium- Gallium(Ga) Eka Boron - Scandium (Sc) Eka Silicon - Germanium(Ge) Eka Manganese - Technetium(Tc) (c) Correction of doubtful atomic weights - Correction was done in atomic weight of some elements. Atomic Weight =Valency × Equivalent weight. Initially, it was found that equivalent weight of Be is 4.5and it is trivalent (V=3), so the weight of Be was 13.5 and there is no space in Mendeleev’s table for this element. So, after correction, it was found that Be is actually divalent (V= 2). So, the weight of Be became 2 × 4.5 = 9 and there was a space between Li and Bfor this element in Mendeleev’s table. – Corrections were done in atomic weight of elements are – U, Be, In, Au, Pt. Demerits of Mendeleev’s periodic table – (a) Position of hydrogen - Hydrogen resembles both, the alkali metals (IA) and the halogens (VIIA) in properties so Mendeleev could not decide where to place it. (b) Position of isotopes - As atomic weight of isotopes differs, they should have placed in different position in Mendeleev’s periodic table. But there were no such places for isotopes in Mendeleev’s table. (c) Anomalous pairs of elements - There were some pair of elements which did not follow the increasing order of atomic wts.eg. Ar and Co were placed before K and Ni respectively in the periodic table, but having higher atomic weights. (d) Like elements were placed in different groups. There were some elements like Platinum (Pt) and Gold (Au) which have similar properties but were placed in different groups in Mendeleev’s table. Pt – VIII Au – IB (e) Unlike elements were placed in same group. Like cu and Ag placed together. Ist group with Na. MODERN PERIODIC LAW LNCT GROUP OF COLLEGES Mosley proved that the square root of frequency of the rays, which are obtained from metal on showering high velocity electrons is proportional to the nuclear charge of the atom. This can be represented by the following expression. = a (Z–b) where Z is nuclear charge on the atom and a and b are constants. The nuclear charge on an atom is equal to the atomic number. According, to modern periodic law:”The properties of elements are the periodic functions of their atomic numbers”. Cause of periodicity: It is due to the repetition of similar outer shell electronic configuration at a certain regular intervals. Structural features of the long form of the periodic table: On the basic of the modern periodic law, a scientist named Bohr proposed a long form of periodic table that was prepared by Rang and Warner. (i) It consists of 18 vertical columns called groups and 7 horizontal rows called periods. (ii) Elements of groups, 1, 2, 13 – 17 are called normal or representative elements. (iii) Elements of groups 3 – 11 are called transition elements. (iv) The 14 elements with atomic numbers (Z) = 58 – 71 (occurring after lanthanum La in the periodic table) are called lanthanides or rare earth elements and are placed at the bottom of the periodic table. The 14 elements with atomic numbers (Z) = 90 – 103 (Occurring after actinium Ac in the periodic table) are called actinides and are placed at the bottom of the periodic table. (v) The Eleven elements with Z = 93 – 103 (93Np –Lr103) which occur in the periodic table after uranium and have been prepared from it by artificial means are called transuranics. These are all radioactive elements. (vi)The elements belonging to a particular group are said to constitute a chemical family which is usually named after the name of the first element. For example, Boron family (group 13), carbon family (group 14), nitrogen family (group 15), and oxygen family (group 16). In addition to this, some groups have typical names. For example, Elements of group 1 are called alkali metals Elements of group 2 are called alkaline earth metals Elements of group 16 are called chalcogens Elements of group 17 are called halogens LNCT GROUP OF COLLEGES LNCT GROUP OF COLLEGES Elements of group 18 are called zero group or noble gases. The long form of the periodic table contains seven periods. These are : 1st period (1H –He) contains only two elements. This is the shortest period. 2nd period (3 Li –10Ne) and third period (11Na –Ar) contain 8 elements each and are called short periods. 4th period (19K –36Kr) and 5th period (37Rb –54Xe) contain 18 elements each and are called long periods. 6th period ( 55Cs –86Rn) contains 32 elements and is the longest period. 7th period (87Li –) is, however, incomplete and contains at present only 24 elements. In yet another classification, the long form of the periodic table has been divided into four blocks (i.e. s, p, d and f ), depending upon the subshell to which the last electron enters. CLASSIFICATION IN BLOCKS s-block elements. Elements of groups 1 and 2 including He in which the last electron enters the s-orbital of the valence shell are called s-block elements. There are only 14 s-block elements in the periodic table. p-block elements. Elements of groups 13–18 in which the last electron enters the p-orbitals of the valence shell are called p-block elements. d-block elements. There are three complete series and one incomplete series of d-block elements. These are: 1st or 3dtransition series which contains ten elements which atomic numbers 21–30 (Sc- Zn). 2nd or 4d transition series contains ten elements with atomic numbers 39 – 48 (Y-Cd). 3rd or 5d transition series also contains ten elements which atomic numbers 57 and 72 –80 (57La, 72Hf –80Hg). 4th or 6d transition series is incomplete at present and contains only nine elements. Z = 111 has not been discovered so far. Thus, in all there are 39 d-block elements. f-Block elements are called inner-transition elements. In these elements, the f-subshell of the anti-penultimate is being progressively filled up. There are two series of f-block elements each containing 14 elements. The fourteen elements from 58 Ce –Lu in which 4 f-subshell is being progressively filled up are called lanthanides or rare elements. Similarly, the fourteen LNCT GROUP OF COLLEGES elements from 90Th –103Lr in which 5 f-subshell is being progressively filled up are called actinides.
Recommended publications
  • Historical Development of the Periodic Classification of the Chemical Elements
    THE HISTORICAL DEVELOPMENT OF THE PERIODIC CLASSIFICATION OF THE CHEMICAL ELEMENTS by RONALD LEE FFISTER B. S., Kansas State University, 1962 A MASTER'S REPORT submitted in partial fulfillment of the requirements for the degree FASTER OF SCIENCE Department of Physical Science KANSAS STATE UNIVERSITY Manhattan, Kansas 196A Approved by: Major PrafeLoor ii |c/ TABLE OF CONTENTS t<y THE PROBLEM AND DEFINITION 0? TEH-IS USED 1 The Problem 1 Statement of the Problem 1 Importance of the Study 1 Definition of Terms Used 2 Atomic Number 2 Atomic Weight 2 Element 2 Periodic Classification 2 Periodic Lav • • 3 BRIEF RtiVJiM OF THE LITERATURE 3 Books .3 Other References. .A BACKGROUND HISTORY A Purpose A Early Attempts at Classification A Early "Elements" A Attempts by Aristotle 6 Other Attempts 7 DOBEREBIER'S TRIADS AND SUBSEQUENT INVESTIGATIONS. 8 The Triad Theory of Dobereiner 10 Investigations by Others. ... .10 Dumas 10 Pettehkofer 10 Odling 11 iii TEE TELLURIC EELIX OF DE CHANCOURTOIS H Development of the Telluric Helix 11 Acceptance of the Helix 12 NEWLANDS' LAW OF THE OCTAVES 12 Newlands' Chemical Background 12 The Law of the Octaves. .........' 13 Acceptance and Significance of Newlands' Work 15 THE CONTRIBUTIONS OF LOTHAR MEYER ' 16 Chemical Background of Meyer 16 Lothar Meyer's Arrangement of the Elements. 17 THE WORK OF MENDELEEV AND ITS CONSEQUENCES 19 Mendeleev's Scientific Background .19 Development of the Periodic Law . .19 Significance of Mendeleev's Table 21 Atomic Weight Corrections. 21 Prediction of Hew Elements . .22 Influence
    [Show full text]
  • Chromium Compounds Hazard Summary
    Chromium Compounds Hazard Summary Chromium occurs in the environment primarily in two valence states, trivalent chromium (Cr III) and hexavalent chromium (Cr VI). Exposure may occur from natural or industrial sources of chromium. Chromium III is much less toxic than chromium (VI). The respiratory tract is also the major target organ for chromium (III) toxicity, similar to chromium (VI). Chromium (III) is an essential element in humans. The body can detoxify some amount of chromium (VI) to chromium (III). The respiratory tract is the major target organ for chromium (VI) toxicity, for acute (short-term) and chronic (long-term) inhalation exposures. Shortness of breath, coughing, and wheezing were reported from a case of acute exposure to chromium (VI), while perforations and ulcerations of the septum, bronchitis, decreased pulmonary function, pneumonia, and other respiratory effects have been noted from chronic exposure. Human studies have clearly established that inhaled chromium (VI) is a human carcinogen, resulting in an increased risk of lung cancer. Animal studies have shown chromium (VI) to cause lung tumors via inhalation exposure. Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (7), which contains information on inhalation chronic toxicity and the RfC and oral chronic toxicity and the RfD, and the carcinogenic effects of chromium including the unit cancer risk for inhalation exposure, EPA's Toxicological Review of Trivalent Chromium and Toxicological Review of Hexavalent Chromium (3), and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Chromium. (1) Uses The metal chromium is used mainly for making steel and other alloys.
    [Show full text]
  • The Quantum Mechanical Model of the Atom
    The Quantum Mechanical Model of the Atom Quantum Numbers In order to describe the probable location of electrons, they are assigned four numbers called quantum numbers. The quantum numbers of an electron are kind of like the electron’s “address”. No two electrons can be described by the exact same four quantum numbers. This is called The Pauli Exclusion Principle. • Principle quantum number: The principle quantum number describes which orbit the electron is in and therefore how much energy the electron has. - it is symbolized by the letter n. - positive whole numbers are assigned (not including 0): n=1, n=2, n=3 , etc - the higher the number, the further the orbit from the nucleus - the higher the number, the more energy the electron has (this is sort of like Bohr’s energy levels) - the orbits (energy levels) are also called shells • Angular momentum (azimuthal) quantum number: The azimuthal quantum number describes the sublevels (subshells) that occur in each of the levels (shells) described above. - it is symbolized by the letter l - positive whole number values including 0 are assigned: l = 0, l = 1, l = 2, etc. - each number represents the shape of a subshell: l = 0, represents an s subshell l = 1, represents a p subshell l = 2, represents a d subshell l = 3, represents an f subshell - the higher the number, the more complex the shape of the subshell. The picture below shows the shape of the s and p subshells: (notice the electron clouds) • Magnetic quantum number: All of the subshells described above (except s) have more than one orientation.
    [Show full text]
  • Essential Questions and Objectives
    Essential Questions and Objectives • How does the configuration of electrons affect the atom’s properties? You’ll be able to: – Draw an orbital diagram for an element – Determine the electron configuration for an element – Explain the Pauli exclusion principle, Aufbau principle and Hund’s Rule Warm up Set your goals and curiosities for the unit on your tracker. Have your comparison table out for a stamp Bohr v QMM What are some features of the quantum mechanical model of the atom that are not included in the Bohr model? Quantum Mechanical Model • Electrons do not travel around the nucleus of an atom in orbits • They are found in energy levels at different distances away from the nucleus in orbitals • Orbital – region in space where there is a high probability of finding an electron. Atomic Orbitals Electrons cannot exist between energy levels (just like the rungs of a ladder). Principal quantum number (n) indicates the relative size and energy of atomic orbitals. n specifies the atom’s major energy levels also called the principal energy levels. Energy sublevels are contained within the principal energy levels. Ground-State Electron Configuration The arrangement of electrons in the atom is called the electron configuration. Shows where the electrons are - which principal energy levels, which sublevels - and how many electrons in each available space Orbital Filling • The order that electrons fill up orbitals does not follow the order of all n=1’s, then all n=2’s, then all n=3’s, etc. Electron configuration for... Oxygen How many electrons? There are rules to follow to know where they go ..
    [Show full text]
  • The Influence of Heavy Metals and Organic Matter on Hexavalent
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca- Università di Roma La Sapienza 289 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 47, 2016 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Angelo Chianese, Luca Di Palma, Elisabetta Petrucci, Marco Stoller Copyright © 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-38-9; ISSN 2283-9216 DOI: 10.3303/CET1647049 The Influence of Heavy Metals and Organic Matter on Hexavalent Chromium Reduction by Nano Zero Valent Iron in Soil Mouhamadou Thierno Gueyea, Luca Di Palmab, Gunel Allahverdeyevac, Irene b b b b Bavasso , Elisabetta Petrucci , Marco Stoller , Giorgio Vilardi a Université Cheikh Anta Diop de Dakar (UCAD), Dakar Fann, Senegal b Sapienza Università di Roma, Dipartimento di Ingegneria Chimica Materiali Ambiente, via Eudossiana 18, 00184 Roma c Baku State University, 23 Khalilov St., Baku, Azerbaijan During the last decades great attention has been payed at evaluating the feasibility of Cr(VI) reduction in soil 0 by nano zero valent iron (nZVI). An inhibitory effect on the Cr(VI) reduction by Fe nanoparticles is generally shown in the presence of high level of heavy metals and natural organic matter in soil. Heavy metals in the environment can react with nZVI by redox reactions, precipitation/dissolution reactions, and adsorption/desorption phenomena. As a result of the presence of metals as Ni, Pb, a decrease in the rate of Cr(VI) reduction was observed. Hence, in the present study, experimental tests of Cr(VI) reduction by nZVI in the presence of selected heavy metals, such as nickel and lead, and in the presence of high level of organic matter, are presented and discussed.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Massachusetts Chemical Fact Sheet
    Massachusetts Chemical Fact Sheet Hexavalent Chromium Table 1: HEXAVALENT CHROMIUM COMPOUNDS: Compounds SELECTED EXAMPLES* Compound Chemical Formula CAS # This fact sheet is part of a series of chemical fact sheets Ammonium chromate (NH ) Cr0 7788-98-9 developed by TURI to help Massachusetts companies, 4 2 4 community organizations and residents understand the Ammonium dichromate (NH4)2Cr2O7 7789-09-5 chemical’s use and health and environmental effects, as Barium chromate BaCrO4 10294-40-3 well as the availability of safer alternatives. tert-Butyl Chromate [(CH3)3CO]2CrO2 1189-85-1 Hexavalent chromium compounds are a toxic form of Calcium chromate CaCrO4 13765-19-0 chromium and are used in a variety of industrial processes Chromic acid H2CrO4 7738-94-5 and products. Chromium VI chloride CrCl6 14986-48-2 Hexavalent chromium compounds are human carcinogens, Chromic trioxide CrO3 1333-82-0 mutagens and developmental toxicants and are acutely Hexavalent chromium ion Cr6+ 18540-29-9 toxic. Non-hexavalent chromium compounds do not pose Lead chromate PbCrO4 7758-97-6 the same level of concern with regard to either chronic or Lead chromate oxide PbCrO4-PbO 8454-12-1 acute toxicity. Potassium chlorochromate KCrO3Cl 16037-50-6 Until 2011, all chromium compounds were treated as Potassium chromate K2CrO4 7789-00-6 a single category under TURA. Beginning with Potassium dichromate K Cr O 7778-50-9 reporting year 2012, hexavalent chromium 2 2 7 compounds are reportable under TURA as a Silver chromate Ag2CrO4 7784-01-2 separate category and are designated as a Higher Sodium chromate Na2CrO4 7775-11-3 Hazard Substance, which lowers the reporting Sodium dichromate 7789-12-0 threshold to 1,000 lb/year.
    [Show full text]
  • Preparation of Alumina-Chromium Composites by Reactive Hot-Pressing A1 + Cr2o3 Based Powders D
    Preparation of alumina-chromium composites by reactive hot-pressing A1 + Cr2O3 based powders D. Osso, A. Mocellin, Gérard Le Caër, A. Pianelli To cite this version: D. Osso, A. Mocellin, Gérard Le Caër, A. Pianelli. Preparation of alumina-chromium composites by reactive hot-pressing A1 + Cr2O3 based powders. Journal de Physique IV Proceedings, EDP Sciences, 1993, 03 (C7), pp.C7-1311-C7-1316. 10.1051/jp4:19937202. jpa-00251836 HAL Id: jpa-00251836 https://hal.archives-ouvertes.fr/jpa-00251836 Submitted on 1 Jan 1993 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C7, supplement au Journal de Physique 111, Volume 3, novembre 1993 Preparation of alumina-chromium composites by reactive hot-pressing A1 + Cr203 based powders D. OSSO, A. MOCELLIN, G. LE CAER and A. PIANELLI LSG2M, URA I59 du CNRS, Ecole des Mines, 54042 Nancy cedex, France Chromium-Alumina based composites have been obtained by reactive sintering under load and vacuum of various powder blends. The starting mixtures have been prepared from commercially available aluminium metal, chromium and aluminium oxides, and a thermally unstable titanium compound respectively. Differential thermal analysis (DTA) and differential calorimetry (DSC) as well as X-ray diffraction were used to identify chemical transformations taking place within the system.
    [Show full text]
  • Unit 3 Electrons and the Periodic Table
    UNIT 3 ELECTRONS AND THE PERIODIC TABLE Chapter 5 & 6 CHAPTER 5: ELECTRONS IN ATOMS WHAT ARE THE CHEMICAL PROPERTIES OF ATOMS AND MOLECULES RELATED TO? • ELECTRONS! • Number of valence electrons • How much an atom wants to “gain” or “lose” electrons • How many electrons “gained” or “lost” ELECTRON HISTORY • Dalton’s Model • Didn’t even know of electrons or charge – just ratios of atoms. • Thomson’s Model • ELECTRONS EXIST!!!! • Where are they? No clue. • Plum Pudding? • Rutherford’s Model • Gold Foil Experiment • Electrons are found outside the nucleus. • Now knows where they are, but still doesn’t know how they are organized. Rutherford’s model BOHR’S MODEL • Electron’s are found in energy levels. Quantum: Specific energy values that have exact values in between them. • Pictured the atom like a solar system with electrons “orbiting” around the nucleus. • Each orbit path associated with a particular energy. • Now a better understanding of how electrons are organized, but it still isn’t quite correct. QUANTUM MECHANICAL MODEL ERWIN SCHRODINER (1926) • Electrons are found in regions of empty space around the nucleus. “electron clouds”. • Shape of the region corresponds to different energy levels. • Shape of the region represents the probability of the electron’s location 90% of the time. • PROBLEM? These are still called “atomic orbitals”. SCHRODINGER’S MODEL • Electrons are “wave functions”. • We can’t actually know exactly where an electron is at any moment. • We can know a probability of an electrons location based on its energy. • Ex: a windmill blade ATOMIC ORBITALS • Shape describing the probability of finding an electron at various locations around the nucleus.
    [Show full text]
  • Development of Copper-Chromium Electrical Contact Materials by Powder Forging
    Development of Copper-Chromium electrical contact materials by Powder Forging 1 2 3 N. N. Gotkhindikar , S.V.Vanjari , D. B. Nigade 1Department of Mechanical Engineering, SSPMCOE ,Kankavli, Maharashtra,(India) 2,3 Department of Mechanical Engineering, SSPMCOE, Kankavli, Maharashtra, (India) ABSTRACT The electrical contacts form an integral part of circuit interrupters for which the desirable properties of contact materials are high mechanical strength, high electrical and thermal conductivity, high wear and weld resistance. Despite of different manufacturing techniques like electro-slag crucible melting, vacuum arc smelting, vacuum continuous smelting etc.; the Powder Forging being a solid state process and having high densification factor is an efficient method for the production of electrical contact materials. In the present study Cu-Cr30 wt. % alloys are prepared from elemental powders by sinter-forging. Nb is also added in varying quantities to improve the electrical and mechanical properties and the forging temperature is also varied .The variation in contact material properties due to these changes are tabulated and compared. Keywords: Powder forging, SEM, XRD, EDS, Elemental mapping, Sinter-forging etc. I.INTRODUCTION Over past 50 years, contact materials based on Cu-Cr have become established for the use in vacuum interrupters for medium voltage switches. They are used as contactors and circuit breakers within a voltage range of 1 kV to 75 kV. The vacuum circuit breaker is such a kind of circuit breaking instrument where the arc quenching occurs in vacuum. For higher voltages vacuum technology has been developed but not commercially viable [1]. For current carrying contacts which material used plays vital role in performance of vacuum circuit breaker.
    [Show full text]
  • Testing Serum Cobalt and Chromium in People with Metal-On-Metal Hip Replacements
    Testing serum cobalt and chromium in people with metal-on-metal hip replacements Metal-on-metal hip replacements and resurfacings are associated with higher than acceptable failure rates, and particularly high-risk devices have been recalled. While the number of patients who have high-risk prostheses in New Zealand is low, the media coverage of the issue is likely to have caused anxiety in the large number of people who have received hip replacements. Identifying patients who have received a metal-on-metal hip prosthesis and regularly reviewing any symptoms and monitoring serum cobalt and chromium levels will help to detect those with potentially failing devices, and provide reassurance to others. Hip replacements and metal toxicity Modern prostheses rarely fail, regardless of construction material. Metal-on-metal hip prostheses have a failure A metal-on-metal hip prosthesis refers to a device in which rate that is higher than is generally acceptable for medical the head on top of the femoral stem and the bearing surface devices, however, the majority of people with a metal-on- of the acetabular cup are made of a cobalt-chromium alloy metal hip replacement will have few or no problems with rather than ceramic or polyethylene. In New Zealand the the prosthesis. number of people with metal-on-metal hip prostheses is low relative to other countries. Of the approximately 7000 Failure of a metal-on-metal prosthesis is a complex end- hip replacements performed in New Zealand each year,1 point, which primarily occurs due to one of two reasons. metal-on-metal implant prostheses account for only 8% Firstly, the level of natural lubrication that occurs in shallow of the total.2 A small percentage of these metal-on-metal artificial acetabular components, i.e.
    [Show full text]
  • The Scope of Inorganic Chemistry
    The Scope of Inorganic Chemistry Medicine Biochemistry/Biology Organic Chemistry •MRI • metalloproteins • organometallics •X-ray contrast imaging • metalloenzymes • metal compounds in •drugs (arthritis, cancer,… • O2 binding synthesis/catalysis • catalysis • ion transport INORGANIC CHEMISTRY • new compounds • geometrical and electronic structures • reactivity Materials Science Organometallic Geology/Geochemistry • electrical and magnetic Chemistry • synthesis and structure properties of solids • new compounds of minerals • solid state structures • structures • stellar evolution • semiconductors • catalysis • astrochemistry • superconductors (high Tc) If some universal catastrophe were to engulf the world, and humankind Could retain one scientific concept in order to rebuild civilization, what would that one concept be? Response for physicists (Richard Feynman in “Six Easy Pieces”): The modern idea of atoms. Response for chemists: The periodic table The periodic table encapsulates the concept of elements, organizes physical and chemical trends of substances, and compares the structure of the different atoms— All in a very small space. Inorganic Chemists think they own the Periodic Table. So, How did it all start? 4 8 Be with t1/2 of ca. 10-18 sec 6 2 4 3Li + 1H 2 2He + Energy Stable vs. Unstable or Fissionable Nuclei Project no. 1. Nuclear Reactions; Web Elements WebElementsTM Periodic Table Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Period 1 2 1 H He 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 3 Na Mg Al Si P
    [Show full text]