Algorithms and Data Structures for IP Lookup, Packet Classification And

Total Page:16

File Type:pdf, Size:1020Kb

Algorithms and Data Structures for IP Lookup, Packet Classification And Dissertation zur Erlangung des Doktorgrades der FakultÄatfÄurAngewandte Wissenschaften der Albert-Ludwigs-UniversitÄatFreiburg Algorithms and Data Structures for IP Lookup, Packet Classi¯cation and Conflict Detection Christine Maindorfer Betreuer: Prof. Dr. Thomas Ottmann Dekan der FakultÄatfÄurAngewandte Wissenschaften: Prof. Dr. Hans Zappe Betreuer: Prof. Dr. Thomas Ottmann Zweitgutachterin: Prof. Dr. Susanne Albers Tag der Disputation: 2.3.2009 Zusammenfassung Die Hauptaufgabe eines Internet-Routers besteht in der Weiterleitung von Paketen. Um den nÄachsten Router auf dem Weg zum Ziel zu bestimmen, wird der Header, welcher u.a. die Zieladresse enthÄalt,eines jeden Datenpaketes inspiziert und gegen eine Routertabelle abgeglichen. Im Falle, dass mehrere PrÄa¯xein der Routertabelle mit der Zieladresse Äubereinstimmen, wird in der Regel eine Strategie gewÄahlt,die als \Longest Pre¯x Matching" bekannt ist. Hierbei wird von allen mÄoglichen Aktio- nen diejenige ausgewÄahlt,die durch das lÄangstemit der Adresse Äubereinstimmende PrÄa¯xfestgelegt ist. Zur LÄosungdieses sogenannten IP-Lookup-Problems sind zahlreiche Algorithmen und Datenstrukturen vorgeschlagen worden. AnderungenÄ in der Netzwerktopologie aufgrund von physikalischen Verbindungsaus- fÄallen,der Hinzunahme von neuen Routern oder Verbindungen fÄuhrenzu Aktu- alisierungen in den Routertabellen. Da die Performanz der IP-Lookup-Einheit einen entscheidenden Einfluss auf die Gesamtperformanz des Internets hat, ist es entscheidend, dass IP-Lookup sowie Aktualisierungen so schnell wie mÄoglich durchgefÄuhrtwerden. Um diese Operationen zu beschleunigen, sollten Routerta- bellen so implementiert werden, dass Lookup und Aktualisierungen gleichzeitig ausgefÄuhrtwerden kÄonnen.Um zu sichern, dass auf SuchbÄaumenbasierte dynami- sche Routertabellen nicht durch Updates degenerieren, unterlegt man diese mit einer balancierten Suchbaumklasse. Relaxierte Balancierung ist ein gebrÄauchliches Konzept im Design von nebenlÄau¯gimplementierten SuchbÄaumen. Hierbei wer- den die Balanceoperationen ggf. auf Zeitpunkte verschoben, in denen keine Such- prozesse im gleichen Teil des Baumes durchgefÄuhrtwerden. Der erste Teil dieser Dissertation untersucht die Hypothese, dass ein relaxiert balanciertes Schema fÄurdynamische Routertabellen besser geeignet ist als ein Schema, welches strikte Balancierung verwendet. Dazu schlagen wir den relax- iert balancierten min-augmentierten Bereichssuchbaum vor und vergleichen diesen mit der strikt balancierten Variante im Rahmen eines Benchmarks, wobei echte IPv4 Routerdaten verwendet werden. Um eine PlausibilitÄatsbetrachtung anstellen zu kÄonnen,welche die Korrektheit der verschiedenen Lockingstrategien untermauert, wird darÄuberhinaus eine interaktive Visualisierung des relaxiert balancierten min-augmentierten Bereichssuchbaums prÄasentiert. Des Weiteren stellen IP-Router \Policy basierte" Routing-Mechanismen (PBR) zur VerfÄugung,welche das bestehende, auf Zieladressen basierende Routing, ergÄanzen. PBR bietet unter anderem die MÄoglichkeit, \Quality of Service" (QoS) sowie Netz- werksicherheitsbestimmungen, sogenannte Firewalls, zu unterstÄutzen. Um PBR zur VerfÄugungstellen zu kÄonnen,mÄussenRouter mehrere Paketfelder wie zum Beispiel die Quell- und Zieladresse, Port und Protokoll inspizieren, um Pakete in sogenannte \Flows" zu klassi¯zieren. Dies erfordert eine gegebene Menge von vorde¯nierten d-dimensionalen Filtern zu durchsuchen, wobei die Anzahl der zu in- spizierenden Paketfelder der Dimension d entspricht. Geometrisch gesprochen wer- den Filter durch d-dimensionale Hyperrechtecke und Pakete durch d-dimensionale Punkte reprÄasentiert. Paketklassi¯kation bedeutet nun, fÄurein weiterzuleiten- des Paket das am besten passende Hyperrechteck zu ¯nden, welches den Punkt enthÄalt. Der R-Baum ist eine mehrdimensionale Indexstruktur zur dynamischen Verwal- tung von rÄaumlichen Daten, welcher Punkt- und Enthaltenseinanfragen unterstÄutzt. Der R-Baum und dessen Varianten wurden bis dato noch nicht auf deren Eignung fÄurdas Paketklassi¯zierungsproblem hin untersucht. Im zweiten Teil werden wir eruieren, ob der weitverbreitete R*-Baum zur LÄosung dieses Problems geeignet ist. Dazu wird dieser mit zwei reprÄasentativen Klassi- ¯zierungsalgorithmen im Rahmen eines Benchmark-Tests verglichen. Die Simu- lationsumgebung ist statisch, d.h. es ¯nden keine Filteraktualisierungen statt. Die Mehrheit der vorgeschlagenen Klassi¯zierungsalgorithmen unterstÄutztinkre- mentelle Aktualisierungen nicht auf eine e±ziente Weise. Erweist sich der R*- Baum als geeignet, ist dieses Benchmark ein Sprungbrett fÄureine Untersuchung im dynamischen Fall. Falls mehrere Filter auf ein weiterzuleitendes Paket anwendbar sind, wird ein soge- nannter Tiebreaker verwendet, um den am besten passenden Filter zu bestimmen. UblicheÄ Tiebreaker sind (i) wÄahleden \ersten passenden" Filter, (ii) den Filter mit hÄochster PrioritÄatund (iii) den \spezi¯schsten" Filter. Es wurde festgestellt, dass nicht jede Policy durch die Vergabe von PrioritÄatendurchgesetzt werden kann und vorgeschlagen, in jenen FÄallenden \spezi¯schsten Filter" Tiebreaker anzuwenden. Jedoch ist dieser Tiebreaker nur realisierbar, wenn fÄurjedes Paket der spezi¯sch- ste Filter wohlde¯niert ist. Ist dies nicht der Fall, sagt man, die Filtermenge sei widersprÄuchlich. Im letzten Teil dieser Dissertation schlagen wir einen Algorithmus zur Konflikt- aufdeckung und Beseitigung fÄurden statischen eindimensionalen Fall vor, wobei jeder Filter durch ein beliebiges Intervall spezi¯ziert ist. Weiterhin zeigen wir, dass wenn zur LÄosungdieses Problems eine partiell persistente Datenstruktur verwendet wird, diese Struktur auch IP-Lookup unterstÄutzt. Abstract The major task of an Internet router is to forward packets towards their ¯nal destination. When a router receives a packet from an input link interface, it uses its destination address to look up a routing database. The result of the lookup provides the next hop address to which the packet is forwarded. Routers only need to determine the next best hop toward a destination, not the complete path to the destination. Changes in network topologies due to physical link failures, link repairs or the addition of new routers and links lead to updates in the routing database. Since the performance of the lookup device plays a crucial role in the overall performance of the Internet, it is important that lookup and route update operations are performed as fast as possible. To accelerate lookup and update operations, routing tables must be implemented in a way that they can be queried and modi¯ed concurrently by several processes. Relaxed balancing has become a commonly used concept in the design of concurrent search tree algorithms. The ¯rst part investigates the hypothesis that a relaxed balancing scheme is better suited for search-tree based dynamic IP router tables than a scheme that utilizes strict balancing. To this end we propose the relaxed balanced min-augmented range tree and benchmark it with the strictly balanced variant using real IPv4 routing data. Further, in order to carry out a plausibility consideration, which corroborates the correctness of the proposed locking schemes, we present an inter- active visualization of the relaxed balanced min-augmented range tree. Enhanced IP routers further provide policy-based routing (PBR) mechanisms, complementing the existing destination-based routing scheme. PBR provides a mechanism for implementing Quality of Service (QoS), i.e., certain kinds of tra±c receive di®erentiated, preferential service. For example, time-sensitive tra±c such as voice should receive higher QoS guarantees than less time-sensitive tra±c such as ¯le transfers or e-mail. Besides QoS, PBR further provides a mechanism to en- force network security policies. PBR requires network routers to examine multiple ¯elds of the packet header in order to classify them into “flows". Flow identi¯ca- tion entails searching a table of prede¯ned ¯lters to identify the appropriate flow based on criteria including source and destination IP address, ports, and proto- col type. Geometrically speaking, classifying an arriving packet is equivalent to ¯nding the best matching hyperrectangle among all hyperrectangles that contain the point representing the packet. The R-tree and its variants have not been experimentally evaluated and bench- marked for their eligibility for the packet classi¯cation problem. In the second part we investigate if the popular R*-tree is suited for packet classi- ¯cation. For this purpose we will benchmark the R*-tree with two representative classi¯cation algorithms in a static environment. Most of the proposed classi¯ca- tion algorithms do not support fast incremental updates. If the R*-tree shows to be suitable in a static classi¯cation scenario, then the benchmark is a stepping stone for benchmarking R*-trees in a dynamic classi¯cation environment, i.e., where classi¯cation is intermixed with ¯lter updates. If a packet matches multiple ¯lters, a tiebreaker is used in order to determine the best matching ¯lter among all matching ¯lters. Common tiebreakers are: (i) First matching ¯lter, (ii) highest priority ¯lter (HPF) and (iii) most speci¯c ¯lter (MSTB). However, not every policy can be enforced by assigning priorities. In these cases, MSTB should be used instead. Yet, the most speci¯c tiebreaker is only feasible if for each packet p the most speci¯c ¯lter that applies to p is well-de¯ned. If this is not the case, the ¯lter set is said to be conflicting. In the last
Recommended publications
  • Interval Trees Storing and Searching Intervals
    Interval Trees Storing and Searching Intervals • Instead of points, suppose you want to keep track of axis-aligned segments: • Range queries: return all segments that have any part of them inside the rectangle. • Motivation: wiring diagrams, genes on genomes Simpler Problem: 1-d intervals • Segments with at least one endpoint in the rectangle can be found by building a 2d range tree on the 2n endpoints. - Keep pointer from each endpoint stored in tree to the segments - Mark segments as you output them, so that you don’t output contained segments twice. • Segments with no endpoints in range are the harder part. - Consider just horizontal segments - They must cross a vertical side of the region - Leads to subproblem: Given a vertical line, find segments that it crosses. - (y-coords become irrelevant for this subproblem) Interval Trees query line interval Recursively build tree on interval set S as follows: Sort the 2n endpoints Let xmid be the median point Store intervals that cross xmid in node N intervals that are intervals that are completely to the completely to the left of xmid in Nleft right of xmid in Nright Another view of interval trees x Interval Trees, continued • Will be approximately balanced because by choosing the median, we split the set of end points up in half each time - Depth is O(log n) • Have to store xmid with each node • Uses O(n) storage - each interval stored once, plus - fewer than n nodes (each node contains at least one interval) • Can be built in O(n log n) time. • Can be searched in O(log n + k) time [k = #
    [Show full text]
  • 14 Augmenting Data Structures
    14 Augmenting Data Structures Some engineering situations require no more than a “textbook” data struc- ture—such as a doubly linked list, a hash table, or a binary search tree—but many others require a dash of creativity. Only in rare situations will you need to cre- ate an entirely new type of data structure, though. More often, it will suffice to augment a textbook data structure by storing additional information in it. You can then program new operations for the data structure to support the desired applica- tion. Augmenting a data structure is not always straightforward, however, since the added information must be updated and maintained by the ordinary operations on the data structure. This chapter discusses two data structures that we construct by augmenting red- black trees. Section 14.1 describes a data structure that supports general order- statistic operations on a dynamic set. We can then quickly find the ith smallest number in a set or the rank of a given element in the total ordering of the set. Section 14.2 abstracts the process of augmenting a data structure and provides a theorem that can simplify the process of augmenting red-black trees. Section 14.3 uses this theorem to help design a data structure for maintaining a dynamic set of intervals, such as time intervals. Given a query interval, we can then quickly find an interval in the set that overlaps it. 14.1 Dynamic order statistics Chapter 9 introduced the notion of an order statistic. Specifically, the ith order statistic of a set of n elements, where i 2 f1;2;:::;ng, is simply the element in the set with the ith smallest key.
    [Show full text]
  • Search Trees
    Lecture III Page 1 “Trees are the earth’s endless effort to speak to the listening heaven.” – Rabindranath Tagore, Fireflies, 1928 Alice was walking beside the White Knight in Looking Glass Land. ”You are sad.” the Knight said in an anxious tone: ”let me sing you a song to comfort you.” ”Is it very long?” Alice asked, for she had heard a good deal of poetry that day. ”It’s long.” said the Knight, ”but it’s very, very beautiful. Everybody that hears me sing it - either it brings tears to their eyes, or else -” ”Or else what?” said Alice, for the Knight had made a sudden pause. ”Or else it doesn’t, you know. The name of the song is called ’Haddocks’ Eyes.’” ”Oh, that’s the name of the song, is it?” Alice said, trying to feel interested. ”No, you don’t understand,” the Knight said, looking a little vexed. ”That’s what the name is called. The name really is ’The Aged, Aged Man.’” ”Then I ought to have said ’That’s what the song is called’?” Alice corrected herself. ”No you oughtn’t: that’s another thing. The song is called ’Ways and Means’ but that’s only what it’s called, you know!” ”Well, what is the song then?” said Alice, who was by this time completely bewildered. ”I was coming to that,” the Knight said. ”The song really is ’A-sitting On a Gate’: and the tune’s my own invention.” So saying, he stopped his horse and let the reins fall on its neck: then slowly beating time with one hand, and with a faint smile lighting up his gentle, foolish face, he began..
    [Show full text]
  • Lock-Free Search Data Structures: Throughput Modeling with Poisson Processes
    Lock-Free Search Data Structures: Throughput Modeling with Poisson Processes Aras Atalar Chalmers University of Technology, S-41296 Göteborg, Sweden [email protected] Paul Renaud-Goud Informatics Research Institute of Toulouse, F-31062 Toulouse, France [email protected] Philippas Tsigas Chalmers University of Technology, S-41296 Göteborg, Sweden [email protected] Abstract This paper considers the modeling and the analysis of the performance of lock-free concurrent search data structures. Our analysis considers such lock-free data structures that are utilized through a sequence of operations which are generated with a memoryless and stationary access pattern. Our main contribution is a new way of analyzing lock-free concurrent search data structures: our execution model matches with the behavior that we observe in practice and achieves good throughput predictions. Search data structures are formed of basic blocks, usually referred to as nodes, which can be accessed by two kinds of events, characterized by their latencies; (i) CAS events originated as a result of modifications of the search data structure (ii) Read events that occur during traversals. An operation triggers a set of events, and the running time of an operation is computed as the sum of the latencies of these events. We identify the factors that impact the latency of such events on a multi-core shared memory system. The main challenge (though not the only one) is that the latency of each event mainly depends on the state of the caches at the time when it is triggered, and the state of caches is changing due to events that are triggered by the operations of any thread in the system.
    [Show full text]
  • Persistent Predecessor Search and Orthogonal Point Location on the Word
    Persistent Predecessor Search and Orthogonal Point Location on the Word RAM∗ Timothy M. Chan† August 17, 2012 Abstract We answer a basic data structuring question (for example, raised by Dietz and Raman [1991]): can van Emde Boas trees be made persistent, without changing their asymptotic query/update time? We present a (partially) persistent data structure that supports predecessor search in a set of integers in 1,...,U under an arbitrary sequence of n insertions and deletions, with O(log log U) { } expected query time and expected amortized update time, and O(n) space. The query bound is optimal in U for linear-space structures and improves previous near-O((log log U)2) methods. The same method solves a fundamental problem from computational geometry: point location in orthogonal planar subdivisions (where edges are vertical or horizontal). We obtain the first static data structure achieving O(log log U) worst-case query time and linear space. This result is again optimal in U for linear-space structures and improves the previous O((log log U)2) method by de Berg, Snoeyink, and van Kreveld [1995]. The same result also holds for higher-dimensional subdivisions that are orthogonal binary space partitions, and for certain nonorthogonal planar subdivisions such as triangulations without small angles. Many geometric applications follow, including improved query times for orthogonal range reporting for dimensions 3 on the RAM. ≥ Our key technique is an interesting new van-Emde-Boas–style recursion that alternates be- tween two strategies, both quite simple. 1 Introduction Van Emde Boas trees [60, 61, 62] are fundamental data structures that support predecessor searches in O(log log U) time on the word RAM with O(n) space, when the n elements of the given set S come from a bounded integer universe 1,...,U (U n).
    [Show full text]
  • Indexing Tree-Based Indexing
    Indexing Chapter 8, 10, 11 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Tree-Based Indexing The data entries are arranged in sorted order by search key value. A hierarchical search data structure (tree) is maintained that directs searches to the correct page of data entries. Tree-structured indexing techniques support both range searches and equality searches. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2 Trees Tree A structure with a unique starting node (the root), in which each node is capable of having child nodes and a unique path exists from the root to every other node Root The top node of a tree structure; a node with no parent Leaf Node A tree node that has no children Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3 Trees Level Distance of a node from the root Height The maximum level Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4 Time Complexity of Tree Operations Time complexity of Searching: . O(height of the tree) Time complexity of Inserting: . O(height of the tree) Time complexity of Deleting: . O(height of the tree) Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5 Multi-way Tree If we relax the restriction that each node can have only one key, we can reduce the height of the tree. A multi-way search tree is a tree in which the nodes hold between 1 to m-1 distinct keys Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6 Range Searches ``Find all students with gpa > 3.0’’ .
    [Show full text]
  • Lecture III BALANCED SEARCH TREES
    §1. Keyed Search Structures Lecture III Page 1 Lecture III BALANCED SEARCH TREES Anthropologists inform that there is an unusually large number of Eskimo words for snow. The Computer Science equivalent of snow is the tree word: we have (a,b)-tree, AVL tree, B-tree, binary search tree, BSP tree, conjugation tree, dynamic weighted tree, finger tree, half-balanced tree, heaps, interval tree, kd-tree, quadtree, octtree, optimal binary search tree, priority search tree, R-trees, randomized search tree, range tree, red-black tree, segment tree, splay tree, suffix tree, treaps, tries, weight-balanced tree, etc. The above list is restricted to trees used as search data structures. If we include trees arising in specific applications (e.g., Huffman tree, DFS/BFS tree, Eskimo:snow::CS:tree alpha-beta tree), we obtain an even more diverse list. The list can be enlarged to include variants + of these trees: thus there are subspecies of B-trees called B - and B∗-trees, etc. The simplest search tree is the binary search tree. It is usually the first non-trivial data structure that students encounter, after linear structures such as arrays, lists, stacks and queues. Trees are useful for implementing a variety of abstract data types. We shall see that all the common operations for search structures are easily implemented using binary search trees. Algorithms on binary search trees have a worst-case behaviour that is proportional to the height of the tree. The height of a binary tree on n nodes is at least lg n . We say that a family of binary trees is balanced if every tree in the family on n nodes has⌊ height⌋ O(log n).
    [Show full text]
  • 2 Dynamization
    6.851: Advanced Data Structures Spring 2010 Lecture 4 — February 11, 2010 Prof. Andr´eSchulz Scribe: Peter Caday 1 Overview In the previous lecture, we studied range trees and kd-trees, two structures which support efficient orthogonal range queries on a set of points. In this second of four lectures on geometric data structures, we will tie up a loose end from the last lecture — handling insertions and deletions. The main topic, however, will be two new structures addressing the vertical line stabbing problem: interval trees and segment trees. We will conclude with an application of vertical line stabbing to a windowing problem. 2 Dynamization In our previous discussion of range trees, we assumed that the point set was static. On the other hand, we may be interested in supporting insertions and deletions as time progresses. Unfortunately, it is not trivial to modify our data structures to handle this dynamic scenario. We can, however, dynamize them using general techniques; the techniques and their application here are due to Overmars [1]. Idea. Overmars’ dynamization is based on the idea of decomposable searches. A search (X,q) for the value q among the keys X is decomposable if the search result can be obtained in O(1) time from the results of searching (X1,q) and (X2,q), where X1 ∪ X2 = X. For instance, in the 2D kd-tree, the root node splits R2 into two halves. If we want to search for all points lying in a rectangle q, we may do this by combining the results of searching for q in each half.
    [Show full text]
  • Finger Search Trees
    11 Finger Search Trees 11.1 Finger Searching....................................... 11-1 11.2 Dynamic Finger Search Trees ....................... 11-2 11.3 Level Linked (2,4)-Trees .............................. 11-3 11.4 Randomized Finger Search Trees ................... 11-4 Treaps • Skip Lists 11.5 Applications............................................ 11-6 Optimal Merging and Set Operations • Arbitrary Gerth Stølting Brodal Merging Order • List Splitting • Adaptive Merging and University of Aarhus Sorting 11.1 Finger Searching One of the most studied problems in computer science is the problem of maintaining a sorted sequence of elements to facilitate efficient searches. The prominent solution to the problem is to organize the sorted sequence as a balanced search tree, enabling insertions, deletions and searches in logarithmic time. Many different search trees have been developed and studied intensively in the literature. A discussion of balanced binary search trees can e.g. be found in [4]. This chapter is devoted to finger search trees which are search trees supporting fingers, i.e. pointers, to elements in the search trees and supporting efficient updates and searches in the vicinity of the fingers. If the sorted sequence is a static set of n elements then a simple and space efficient representation is a sorted array. Searches can be performed by binary search using 1+⌊log n⌋ comparisons (we throughout this chapter let log x denote log2 max{2, x}). A finger search starting at a particular element of the array can be performed by an exponential search by inspecting elements at distance 2i − 1 from the finger for increasing i followed by a binary search in a range of 2⌊log d⌋ − 1 elements, where d is the rank difference in the sequence between the finger and the search element.
    [Show full text]
  • Lecture Notes of CSCI5610 Advanced Data Structures
    Lecture Notes of CSCI5610 Advanced Data Structures Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong July 17, 2020 Contents 1 Course Overview and Computation Models 4 2 The Binary Search Tree and the 2-3 Tree 7 2.1 The binary search tree . .7 2.2 The 2-3 tree . .9 2.3 Remarks . 13 3 Structures for Intervals 15 3.1 The interval tree . 15 3.2 The segment tree . 17 3.3 Remarks . 18 4 Structures for Points 20 4.1 The kd-tree . 20 4.2 A bootstrapping lemma . 22 4.3 The priority search tree . 24 4.4 The range tree . 27 4.5 Another range tree with better query time . 29 4.6 Pointer-machine structures . 30 4.7 Remarks . 31 5 Logarithmic Method and Global Rebuilding 33 5.1 Amortized update cost . 33 5.2 Decomposable problems . 34 5.3 The logarithmic method . 34 5.4 Fully dynamic kd-trees with global rebuilding . 37 5.5 Remarks . 39 6 Weight Balancing 41 6.1 BB[α]-trees . 41 6.2 Insertion . 42 6.3 Deletion . 42 6.4 Amortized analysis . 42 6.5 Dynamization with weight balancing . 43 6.6 Remarks . 44 1 CONTENTS 2 7 Partial Persistence 47 7.1 The potential method . 47 7.2 Partially persistent BST . 48 7.3 General pointer-machine structures . 52 7.4 Remarks . 52 8 Dynamic Perfect Hashing 54 8.1 Two random graph results . 54 8.2 Cuckoo hashing . 55 8.3 Analysis . 58 8.4 Remarks . 59 9 Binomial and Fibonacci Heaps 61 9.1 The binomial heap .
    [Show full text]
  • Efficient Data Structures for Range Searching on a Grid MARK H
    JOURNAL OF ALGORITHMS 9,254-275 (1988) Efficient Data Structures for Range Searching on a Grid MARK H. OVERMARS Department of Computer Science, University of Utrecht, The Netherlands Received February 17,1987; accepted May 15.1987 We consider the 2-dimensional range searching problem in the case where all points lie on an integer grid. A new data structure is presented that solves range queries on a U * U grid in O( k + log log U) time using O( n log n) storage, where n is the number of points and k the number of reported answers. Although the query time is very good the preprocessing time of this method is very high. A second data structure is presented that can be built in time O( n log n) at the cost of an increase in query time to O(k + m). Similar techniques are used for solving the line segment intersection searching problem in a set of axis-parallel line segments on a grid. The methods presented also yield efficient structures for dominance searching and searching with half-infinite ranges that use only O(n) storage. A generalization to multi-dimensional space, using a normalization approach, yields a static solution to the general range searching problem that is better than any known solution when the dimension is at least 3. Q 1988 Academic Press, Inc. 1. INTRODUCTION One of the problems in computational geometry that has received a large amount of attention is the range searching problem. Given a set of n points in a d-dimensional space, the range searching problem asks to store these points such that for a given range ([A, * .
    [Show full text]
  • Geometric Algorithms 7.3 Range Searching
    Geometric search: Overview Types of data. Points, lines, planes, polygons, circles, ... Geometric Algorithms This lecture. Sets of N objects. Geometric problems extend to higher dimensions. ! Good algorithms also extend to higher dimensions. ! Curse of dimensionality. Basic problems. ! Range searching. ! Nearest neighbor. ! Finding intersections of geometric objects. Reference: Chapters 26-27, Algorithms in C, 2nd Edition, Robert Sedgewick. Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226 2 1D Range Search 7.3 Range Searching Extension to symbol-table ADT with comparable keys. ! Insert key-value pair. ! Search for key k. ! How many records have keys between k1 and k2? ! Iterate over all records with keys between k1 and k2. Application: database queries. insert B B insert D B D insert A A B D insert I A B D I Geometric intuition. insert H A B D H I ! Keys are point on a line. insert F A B D F H I ! How many points in a given interval? insert P A B D F H I P count G to K 2 search G to K H I Robert Sedgewick and Kevin Wayne • Copyright © 2005 • http://www.Princeton.EDU/~cos226 4 1D Range Search Implementations 2D Orthogonal Range Search Range search. How many records have keys between k1 and k2? Extension to symbol-table ADT with 2D keys. ! Insert a 2D key. Ordered array. Slow insert, binary search for k1 and k2 to find range. ! Search for a 2D key. Hash table. No reasonable algorithm (key order lost in hash). ! Range search: find all keys that lie in a 2D range? ! Range count: how many keys lie in a 2D range? BST.
    [Show full text]