2017 JIMAR Annual Report for NA16 Award

Total Page:16

File Type:pdf, Size:1020Kb

2017 JIMAR Annual Report for NA16 Award JIMAR Annual Report for Fiscal Year 2017 For Cooperative Agreements NA16NMF4320058, NA16NMF4320216, and NA16NMF4320219 Mark A. Merrifield, PhD Director Joint Institute for Marine and Atmospheric Research University of Hawai‘i at Manoa 1000 Pope Road, Marine Sciences Building 312 Honolulu, HI 96822 USA http://www.soest.hawaii.edu/jimar Annual Report for Fiscal Year 2017 Performance Period October 1, 2016–June 30, 2017 Mark A. Merrifield, PhD Director Joint Institute for Marine and Atmospheric Research University of Hawaii at Manoa 1000 Pope Road, Marine Sciences Building 312 Honolulu, HI 96822 http://www.soest.hawaii.edu/jimar JIMAR 2017 Annual Report ii Table of Contents Introduction ______________________________________________________________________________v Accomplishments for Fiscal Year 2017 __________________________________________________________1 Ecosystem Forecasting _____________________________________________________________________1 Ecosystem Monitoring _____________________________________________________________________2 Ecosystem-Based Management _____________________________________________________________38 Protection and Restoration of Resources _____________________________________________________44 Equatorial Oceanography __________________________________________________________________64 Climate Research and Impacts ______________________________________________________________68 Tropical Meteorology _____________________________________________________________________78 Tsunamis and Other Long-Period Ocean Waves _________________________________________________79 JIMAR Publications ________________________________________________________________________81 Appendices Appendix I List of Acronyms ______________________________________________________________87 Appendix II List of Awards and Related Amendment Numbers ____________________________________95 Appendix III Visiting Scientists ____________________________________________________________97 Appendix IV Workshops, Meetings and Seminars Hosted by JIMAR _______________________________102 Appendix V JIMAR Personnel _____________________________________________________________104 Appendix VI Awards ____________________________________________________________________105 Appendix VII Graduates _________________________________________________________________106 Appendix VIII Publication Summary _______________________________________________________107 iii JIMAR 2017 Annual Report iv Introduction The Joint Institute for Marine and Atmospheric Research (JIMAR) manages the Cooperative Institute for the Pacific Islands Region, one of 16 NOAA cooperative institutes nationwide. JIMAR’s mission is to conduct research that is necessary for understanding and predicting environmental change in the Pacific Islands Region, conserving and managing coastal and marine resources in island environments, notably the Hawaiian Islands and the U.S.- affiliated Pacific Islands, and supporting the region’s economic, social, and environmental needs. Included in this report are projects under award numbers NA16NMF4320058, NA16NMF4320216, and NA16NMF4320219. JIMAR seeks to: • facilitate innovative collaborative research between scientists at NOAA and the University of Hawaii; • provide educational opportunities for basic and applied research in the Life and Earth Sciences at the undergraduate, graduate, and post-doctoral levels; • sponsor interactions through the support of visiting scientists and post- doctoral scholars; Mark Merrifield, Director, PhD • promote the transition of research outcomes to operational products and services that benefit the Pacific Islands Region. JIMAR is located at the University of Hawaii at Manoa, a research-intensive land-grant institution that maintains a service mission to the State as well as to the Pacific Islands Region. JIMAR is a unit within the School of Ocean and Earth Science and Technology (SOEST), which has developed several centers of excellence in marine, atmospheric, and earth sciences that align substantially with the mission interests of NOAA. The University also provides capacity for social science research via several academic units. Adjacent to the UH campus is the independent, publicly funded East-West Center, which provides policy analysis and applied science across the Pacific Rim. JIMAR serves as a bridge to facilitate engagements between NOAA in the Pacific Region and these academic research units. The principal NOAA Line Office for JIMAR is the National Marine Fisheries Service (NMFS), and JIMAR collaborates closely with the Pacific Island Fisheries Science Center (PIFSC) at the Inouye Regional Center (IRC). The ~100 JIMAR scientists within PIFSC are oceanographers, marine biologists, zoologists, geographers, coastal and environmental scientists, economists, fisheries scientists, sociologists, computer scientists, and engineers. The work with PIFSC is undertaken across ~25 JIMAR projects ranging from coral reef monitoring and research, marine mammal and turtle research, human dimensions investigations and economics of fisheries, fisheries bycatch mitigation research, oceanic and reef ecosystems modeling, insular and pelagic fisheries stock assessment research, fisheries database management, and more. JIMAR also interacts with the NOAA NWS, NESDIS, and OAR Line Offices, which support a number of projects in the research themes of Equatorial Oceanography, Climate Research and Impacts, Tropical Meteorology, and Tsunamis and Other Long-period Ocean Waves. JIMAR programs active in these areas include the University of Hawaii Sea Level Center (UHSLC), Pacific ENSO Applications Climate (PEAC) Center, and Pacific Island Ocean Observing System (PacIOOS). JIMAR research covers eight themes, all aligned with the NOAA strategic plan and the University’s Indo- Pacific mission. The themes are: (1) ecosystem forecasting; (2) ecosystem monitoring; (3) ecosystem-based management; (4) protection and restoration of resources; (5) equatorial oceanography; (6) climate research and impacts; (7) tropical meteorology; and (8) tsunamis and other long-period waves. JIMAR’s collaboration with the NOAA Pacific Islands Fisheries Science Center (PIFSC) drives the primary research and educational activities within the Institute. Here are a few highlights that demonstrate the scope of JIMAR/PIFSC research in the theme areas of ecosystem-based management, ecosystem monitoring and forecasting, and protection and restoration of resources. • Recent studies stressed the importance of coral reef conservation for protecting herbivorous fish, which are heavily fished in many parts of the world. However, JIMAR Supervisory Reef Fish Researcher Adel Heenan led a team that found that populations of herbivorous fish vary widely from site to site, and are strongly influenced by factors including temperature and island type. This means strategies to protect these important species may not be effective unless local conditions are taken into account, and no single approach is likely to v JIMAR 2017 Annual Report work everywhere. (Adel Heenan, Andrew Hoey, Gareth Williams, and Ivor Williams, 2016. Natural bounds on herbivorous coral reef fishes, Proc. R. Soc. B., 283(1843), 20161716, doi:10.1098/rspb.2016.1716). • Coral reef jacks, snapper, and other top-tier coral reef predators such as sharks are well studied in waters accessible to open-circuit SCUBA divers in depths to 100 ft. However, information on predator populations in mesophotic depths (100-330 ft) remains scant, with access restricted to complicated, expensive, or hazardous survey approaches. JIMAR Marine Ecosystem Research Coordinator Jacob Asher used low-cost, baited remote underwater stereo-video systems to assess predator populations at mesophotic depths across the Hawaiian Archipelago, and this research shows that predator populations shift dramatically from shallow to mesophotic depths across that expanse. Stereo-video robustly extends the depth range of roving predator surveys, highlights important community shifts in populated versus remote parts of the Archipelago, and is well-suited for large-scale roving predator work across the Pacific. (Jacob Asher, Ivor Williams, and Euan Harvey, 2017. An assessment of mobile predator populations along shallow and mesophotic depth gradients in the Hawaiian Archipelago, Sci. Rep., 7(1), 3905, doi:10.1038/s41598-017-03568-1). • Under work led by JIMAR Cetacean BioAcoustic Technician Ali Bayless, the deep-set tuna-target commercial fishery was acoustically monitored for false killer whale vocalizations. This work included collaboration with the Hawaii Longline Association and the NOAA Pacific Islands Regional Office Observer Program. The timing of vocalizations was compared to fishing activities and depredation rates, and it was found that false killer whales are heard most often during the hauling of gear. This suggests they may be cueing into some haul- related sound, and these detections were found to move towards the vessel during the soak, then away from the vessel during the haul, further supporting an acoustic cue. It was also found that false killer whales may be depredating bait more often than catch. (Alexandra Bayless, Erin Oleson, Simone Baumann-Pickering, Anne Simonis, Jamie Marchetti, Sean Martin, and Sean Wiggins, 2017. Acoustically monitoring the Hawaii longline fishery for interactions with false killer whales, Fish. Res., 190, 122-131, doi:10.1016/j.fishres.2017.02.006). • Mesophotic coral ecosystems, also termed the ‘coral twilight zone’,
Recommended publications
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Age-Based Life History of the Mariana Islands' Deep-Water Snapper
    Age-Based Life History of the Mariana Islands’ Deep-Water Snapper, Pristipomoides filamentosus BY Francisco C. Villagomez A Thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN BIOLOGY SUPERVISORY COMMITTEE Dr. Frank A. Camacho, Chair Dr. Kathleen A. Moots, Member Dr. Allen H. Andrews, Member UNIVERSITY OF GUAM NOVEMBER 2019 Abstract The deep-water snapper Pristipomoides filamentosus is a commercially important bottomfish in the Mariana Islands and is a significant component of annual bottomfish catches from the Marianas. However, life-history parameters that inform management of this species are poorly resolved and unvalidated for populations of P. filamentosus in the Mariana Islands. I investigated the life-history of P. filamentosus from the Mariana Islands, commonly known as opakapaka and buninas, and applied bomb-radiocarbon (14C) dating to validate traditional age estimates for this species. I determined the sex of male and female opakapaka histologically and used logistic regression analysis to investigate differences in length- and age-at-maturity between the sexes. The age of individual fish were estimated from counts of annuli from transverse sections of sagittal otoliths. I used a series of 14C-validated otoliths to corroborate visual estimates of age from otoliths collected from the Mariana Islands. The von Bertalanffy growth function was used to investigate the functional relationship of age and length between male and female opakapaka and to explore regional differences from the northern and southern Mariana Islands. I also investigated the utility of otolith mass and otolith thickness for predicting ages using regression analyses. Length and age at maturity for males and females were estimated at 29.3 cm FL at 2.8 years and 41.2 cm FL at 5.0 years, respectively.
    [Show full text]
  • Annotated Checklist of the Fishes of Wake Atoll1
    Annotated Checklist ofthe Fishes ofWake Atoll 1 Phillip S. Lobel2 and Lisa Kerr Lobel 3 Abstract: This study documents a total of 321 fishes in 64 families occurring at Wake Atoll, a coral atoll located at 19 0 17' N, 1660 36' E. Ten fishes are listed by genus only and one by family; some of these represent undescribed species. The first published account of the fishes of Wake by Fowler and Ball in 192 5 listed 107 species in 31 families. This paper updates 54 synonyms and corrects 20 misidentifications listed in the earlier account. The most recent published account by Myers in 1999 listed 122 fishes in 33 families. Our field surveys add 143 additional species records and 22 new family records for the atoll. Zoogeo­ graphic analysis indicates that the greatest species overlap of Wake Atoll fishes occurs with the Mariana Islands. Several fish species common at Wake Atoll are on the IUCN Red List or are otherwise of concern for conservation. Fish pop­ ulations at Wake Atoll are protected by virtue of it being a U.S. military base and off limits to commercial fishing. WAKE ATOLL IS an isolated atoll in the cen­ and Strategic Defense Command. Conse­ tral Pacific (19 0 17' N, 1660 36' E): It is ap­ quentially, access has been limited due to the proximately 3 km wide by 6.5 km long and military mission, and as a result the aquatic consists of three islands with a land area of fauna of the atoll has not received thorough 2 approximately 6.5 km • Wake is separated investigation.
    [Show full text]
  • Authorship, Availability and Validity of Fish Names Described By
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Fricke Ronald Artikel/Article: Authorship, availability and validity of fish names described by Peter (Pehr) Simon ForssSSkål and Johann ChrisStian FabricCiusS in the ‘Descriptiones animaliumÂ’ by CarsSten Nniebuhr in 1775 (Pisces) 1-76 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 1–76; Stuttgart, 30.IV.2008. 1 Authorship, availability and validity of fish names described by PETER (PEHR ) SIMON FOR ss KÅL and JOHANN CHRI S TIAN FABRI C IU S in the ‘Descriptiones animalium’ by CAR S TEN NIEBUHR in 1775 (Pisces) RONALD FRI C KE Abstract The work of PETER (PEHR ) SIMON FOR ss KÅL , which has greatly influenced Mediterranean, African and Indo-Pa- cific ichthyology, has been published posthumously by CAR S TEN NIEBUHR in 1775. FOR ss KÅL left small sheets with manuscript descriptions and names of various fish taxa, which were later compiled and edited by JOHANN CHRI S TIAN FABRI C IU S . Authorship, availability and validity of the fish names published by NIEBUHR (1775a) are examined and discussed in the present paper. Several subsequent authors used FOR ss KÅL ’s fish descriptions to interpret, redescribe or rename fish species. These include BROU ss ONET (1782), BONNATERRE (1788), GMELIN (1789), WALBAUM (1792), LA C E P ÈDE (1798–1803), BLO C H & SC HNEIDER (1801), GEO ff ROY SAINT -HILAIRE (1809, 1827), CUVIER (1819), RÜ pp ELL (1828–1830, 1835–1838), CUVIER & VALEN C IENNE S (1835), BLEEKER (1862), and KLUNZIN G ER (1871).
    [Show full text]
  • Diel Habitat-Use Patterns of Commercially Important Fishes in a Marine Protected Area in the Philippines
    Vol. 24: 163–174, 2016 AQUATIC BIOLOGY Published online January 27 doi: 10.3354/ab00646 Aquat Biol OPENPEN ACCESSCCESS Diel habitat-use patterns of commercially important fishes in a marine protected area in the Philippines Kentaro Honda1,4,*, Wilfredo H. Uy2, Darwin I. Baslot2, Allyn Duvin S. Pantallano2, Yohei Nakamura3, Masahiro Nakaoka1 1Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Aikappu, Akkeshi, Hokkaido 088-1114, Japan 2Institute of Fisheries Research and Development, Mindanao State University at Naawan, 9023 Naawan, Misamis Oriental, the Philippines 3Graduate School of Kuroshio Science, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502, Japan 4Present address: Hokkaido National Fisheries Research Institute, Fisheries Research Agency, 2-2 Nakanoshima, Toyohira-ku, Sapporo, Hokkaido 062-0922, Japan ABSTRACT: The diel habitat-use patterns of commercially important fishes in a small marine protected area (MPA) (0.31 km2) containing coral reef and seagrass habitats were examined by passive acoustic telemetry during 2011 and 2012. The occurrence patterns of the target fishes both inside and outside the MPA were also observed. Thirty individuals from 6 species (20.2 to 41.4 cm fork length) were caught, acoustically tagged and released inside the MPA, and 4 to 210 d of tracking data were then obtained from 28 detected fishes. Lutjanus monostigma, Lethrinus atkin- soni, and Lethrinus obsoletus were found to mostly inhabit the coral reef. The remaining 3 species (Lutjanus argentimaculatus, Lethrinus harak, and Siganus guttatus) utilized both coral and seagrass habitats but showed different patterns: Lutjanus argentimaculatus visited seagrass only at night; Lethrinus harak occurred in the coral reef more at night than in the day, showing the opposite pattern in seagrass; and S.
    [Show full text]
  • Guide to Length-Based Assessments of Fisheries Targeting Snappers, Groupers and Emperors in Indonesia, with Size Composition of Sampled Fish
    Report Code: AR_ASSESSMENTGUIDE_260921 Guide to Length-Based Assessments of Fisheries Targeting Snappers, Groupers and Emperors in Indonesia, with Size Composition of Sampled Fish DRAFT - NOT FOR DISTRIBUTION. YKAN Technical Paper Peter J. Mous, Wawan B. IGede, Jos S. Pet SEPTEMBER 26, 2021 YAYASAN KONSERVASI ALAM NUSANTARA AR_ASSESSMENTGUIDE_260921 Suggestion citation Peter J. Mous, Wawan B. I Gede, and Jos S. Pet (2021). Guide to length-based assessments of fish- eries targeting snappers, groupers and emperors in Indonesia, with size composition of sampled fish. Yayasan Konservasi Alam Nusantara and People and Nature Consulting, Jakarta Indonesia. Report AR_ASSESSMENTGUIDE_260921 Abstract This document explains analysis methods for a length-based stock assessment of the Indonesia deepwater demersal fishery targeting snappers. The report also presents the length composition of the 100 most common species in catches that were sampled with YKAN’s Crew-Operated Data Recording System, an initiative that involves fishers in data collection using digital imagery. Yayasan Konservasi Alam Nusantara Ikat Plaza Building - Blok L Jalan By Pass Ngurah Rai No.505, Pemogan, Denpasar Selatan Denpasar 80221 Bali, Indonesia Ph. +62-361-244524 People and Nature Consulting International Grahalia Tiying Gading 18 - Suite 2 Jalan Tukad Pancoran, Panjer, Denpasar Selatan Denpasar 80225 Bali, Indonesia 1 YAYASAN KONSERVASI ALAM NUSANTARA AR_ASSESSMENTGUIDE_260921 TABLE OF CONTENTS 1 INTRODUCTION 3 2 LIFE HISTORY PARAMETERS, INVARIABLES, OPTIMUM HAR- VEST SIZE, AND SPR 4 2.1 Introduction to Length-Based Approach to Stock Assessment . 4 2.2 Maximum Total Length . 4 2.3 Asymptotic Length . 5 2.4 Length at Maturation . 5 2.5 Optimum Harvest Size . 8 2.6 Life History Parameter Values, Invariables and SPR .
    [Show full text]
  • Pristipomoides Auricilla (Jordan, Evermann, and Tanaka, 1927) (Plate X, 67) Frequent Synonyms / Misidentifications: None / Other Species of Pristipomoides
    click for previous page Perciformes: Percoidei: Lutjanidae 2909 Pristipomoides auricilla (Jordan, Evermann, and Tanaka, 1927) (Plate X, 67) Frequent synonyms / misidentifications: None / Other species of Pristipomoides. FAO names: En - Goldflag jobfish; Fr - Colas drapeau; Sp - Panchito abanderado. Diagnostic characters: Body elongate, laterally compressed. Nostrils on each side of snout close together. Jaws about equal or lower jaw protruding slightly. Premaxillae protrusible. Maxilla extending to vertical through anterior part of eye or slightly beyond. Upper and lower jaws both with an outer row of conical and canine teeth and an inner band of villiform teeth; vomer and palatines with teeth, those on vomer in triangular patch; no teeth on tongue. Maxilla without scales or longitudinal ridges. Interorbital region flattened. First gill arch with 8 to 11 gill rakers on upper limb, 17 to 21 on lower limb (total 27 to 32). Dorsal fin continuous, not deeply incised near junction of spinous and soft portions. Last soft ray of both dorsal and anal fins well produced, longer than next to last ray. Caudal fin forked. Pectoral fins long, equal to or somewhat shorter than head length. Dorsal fin with X spines and 11 soft rays. Anal fin with III spines and 8 soft rays. Pectoral-fin rays 15 or 16. Membranes of dorsal and anal fins without scales. Tubed lateral-line scales 67 to 74. Colour: body purplish or brownish violet; sides with numerous yellow spots or faint yellow chevron-shaped bands; dorsal fin yellowish to yellowish brown; upper lobe of caudal fin yellow. Sexual dichromatism: males over 27 cm (fork length) with much yellow on lower lobe of caudal fin, usually forming a distinct blotch; females with or without yellowish colour on lower lobe of caudal fin, but if yellow present, not forming a distinct blotch.
    [Show full text]
  • Fish Movement in the Red Sea and Implications for Marine Protected Area Design
    Fish Movement in the Red Sea and Implications for Marine Protected Area Design Thesis by Irene Antonina Salinas Akhmadeeva In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia April, 2021 2 EXAMINATION COMMITTEE PAGE The thesis of Irene Antonina Salinas Akhmadeeva is approved by the examination committee. Committee Chairperson: Prof. Michael L. Berumen Committee Co-Chair: Dr. Alison Green Committee Members: Dr. Darren Coker, Prof. Rusty Brainard 3 COPYRIGHT © April 2021 Irene Antonina Salinas Akhmadeeva All Rights Reserved 4 ABSTRACT Fish Movement in the Red Sea and Implications for Marine Protected Area Design Irene Antonina Salinas Akhmadeeva The Red Sea is valued for its biodiversity and the livelihoods it provides for many. It now faces overfishing, habitat degradation, and anthropogenic induced climate-change. Marine Protected Areas (MPAs) became a powerful management tool to protect vulnerable species and ecosystems, re-establish their balance, and enhance marine populations. For this, they need to be well designed and managed. There are 15 designated MPAs in the Red Sea but their level of enforcement is unclear. To design an MPA it is necessary to know if it will protect species of interest by considering their movement needs. In this thesis I aim at understanding fish movement in the Red Sea, specifically home range (HR) to inform MPA size designation. With not much empirical data available on HR for Red Sea fish, I used a Machine Learning (ML) classification model, trained with empirical literature HR measurements with Maximum Total Length (L Max), Aspect Ratio (AR) of the caudal fin, and Trophic Level as predictor variables.
    [Show full text]
  • Using a Collaborative Data Collection Method to Update Life-History Values for Snapper And
    bioRxiv preprint doi: https://doi.org/10.1101/655571; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Using a collaborative data collection method to update life-history values for snapper and 2 grouper in Indonesia’s deep-slope demersal fishery 3 4 Elle Wibisono1*, Peter Mous2, Austin Humphries1,3 5 1 Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 6 Kingston, Rhode Island, USA 7 2 The Nature Conservancy Indonesia Fisheries Conservation Program, Bali, Indonesia 8 3 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, 9 USA 10 11 12 *Corresponding author 13 E-mail: [email protected] (EW) 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/655571; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 Abstract 17 The deep-slope demersal fishery that targets snapper and grouper species is an important fishery 18 in Indonesia. Boats operate at depths between 50-500 m using drop lines and bottom long lines. 19 There are few data, however, on the basic characteristics of the fishery which impedes accurate 20 stock assessments and the establishment of harvest control rules.
    [Show full text]
  • Habitat Use and Trophic Ecology of the Introduced
    HABITAT USE AND TROPHIC ECOLOGY OF THE INTRODUCED SNAPPER LUTJANUS KASMIRA AND NATIVE GOATFISHES IN HAWAI‘I A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (Marine Biology) AUGUST 2011 By Brett D. Schumacher Dissertation Committee: Alan Friedlander, Chairperson Charles Birkeland Kim Holland William Walsh Jeffrey Drazen UMI Number: 3485487 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3485487 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 iii ACKNOWLEDGEMENTS I would like to gratefully acknowledge James Parrish for his loyal and longstanding support of my research as my original advisor and committee chair. I would also like to thank Alan Friedlander for taking over as chair after Dr. Parrish’s well- deserved retirement. I sincerely appreciate the suggestions and advice I received from my other committee members, Charles Birkeland, Curt Daehler, Jeff Drazen, Kim Holland and Bill Walsh. I am greatly indebted to Jeremy Claisse, Eric Conklin, Katie Howard, and Craig Musberger, dedicated research assistants who were willing to go into the field at all hours and in any kind of weather.
    [Show full text]
  • NORTH COAST FISH IDENTIFICATION GUIDE Ben M
    NORTH COAST FISH IDENTIFICATION GUIDE Ben M. Rome and Stephen J. Newman Department of Fisheries 3rd floor SGIO Atrium 168-170 St George’s Terrace PERTH WA 6000 Telephone (08) 9482 7333 Facsimile (08) 9482 7389 Website: www.fish.wa.gov.au ABN: 55 689 794 771 Published by Department of Fisheries, Perth, Western Australia. Fisheries Occasional Publications No. 80, September 2010. ISSN: 1447 - 2058 ISBN: 1 921258 90 X Information about this guide he intention of the North Coast Fish Identification Guide is to provide a simple, Teasy to use manual to assist commercial, recreational, charter and customary fishers to identify the most commonly caught marine finfish species in the North Coast Bioregion. This guide is not intended to be a comprehensive taxonomic fish ID guide for all species. It is anticipated that this guide will assist fishers in providing a more comprehensive species level description of their catch and hence assist scientists and managers in understanding any variation in the species composition of catches over both spatial and temporal scales. Fish taxonomy is a dynamic and evolving field. Advances in molecular analytical techniques are resolving many of the relationships and inter-relationships among species, genera and families of fishes. In this guide, we have used and adopted the latest taxonomic nomenclature. Any changes to fish taxonomy will be updated and revised in subsequent editions. The North Coast Bioregion extends from the Ashburton River near Onslow to the Northern Territory border. Within this region there is a diverse range of habitats from mangrove creeks, rivers, offshore islands, coral reef systems to continental shelf and slope waters.
    [Show full text]
  • Annual Report for Fiscal Year 2018 for Cooperative Agreements NA16NMF4320058, NA17NMF4320250, NA17NMF4320293, and NA17NMF4320294
    JIMAR Annual Report for Fiscal Year 2018 For Cooperative Agreements NA16NMF4320058, NA17NMF4320250, NA17NMF4320293, and NA17NMF4320294 Douglas S. Luther, PhD Director Joint Institute for Marine and Atmospheric Research University of Hawai‘i at Manoa 1000 Pope Road, Marine Sciences Building 312 Honolulu, HI 96822 USA http://www.soest.hawaii.edu/jimar Annual Report for Fiscal Year 2018 Douglas S. Luther, PhD Director Joint Institute for Marine and Atmospheric Research University of Hawai’i at Manoa 1000 Pope Road, Marine Sciences Building 312 Honolulu, HI 96822 http://www.soest.hawaii.edu/jimar JIMAR 2018 Annual Report ii Table of Contents Introduction ______________________________________________________________________________v Accomplishments for Fiscal Year 2018 __________________________________________________________1 Ecosystem Forecasting _____________________________________________________________________1 Ecosystem Monitoring _____________________________________________________________________3 Ecosystem-Based Management _____________________________________________________________39 Protection and Restoration of Resources _____________________________________________________43 Equatorial Oceanography __________________________________________________________________63 Climate Research and Impacts ______________________________________________________________69 Tropical Meteorology _____________________________________________________________________76 Tsunamis and Other Long-Period Ocean Waves _________________________________________________79
    [Show full text]