Wave Hub Appendix K to the Environmental Statement

Total Page:16

File Type:pdf, Size:1020Kb

Wave Hub Appendix K to the Environmental Statement South West of England Regional Development Agency Wave Hub Appendix K to the Environmental Statement June 2006 South West Wave Hub EIA BASELINE FISHERIES SURVEYS Survey No. 1 (July 05) Report July 2005 REPORT No. 05/J/1/06/0782/0521 Client : Halcrow Group Ltd Ash House Falcon Road Sowton Exeter EX2 7LB Emu Ltd Head Office 1 Mill Court The Sawmills Durley Southampton Hampshire SO32 2EJ Halcrow Group Ltd South West Wave Hub – EIA Baseline Fisheries Surveys CONTENTS 1 Introduction 1 2 Study Objectives 1 3 Methodologies 1 4 Results 4 5 Discussion 7 6 Audit Trail 8 Appendices List of Tables Table 1 Summary of sampling events (July 2005) List of Plates Plate 1 Retrieval of pots aboard Swift, 12th July 2005 Plate 2 Catch of spider crab (Maja squinado) landed aboard Girl Linda Plate 3 Monkfish (Lophius piscatorius) landed aboard Girl Linda at Station 8 Plate 4 Pollack (Pollachius pollachius) landed aboard Ellie V Plate 5 Sunfish (Mola mola) sighted aboard Ellie V Plate 6 Basking shark (Cetorhinus maximus) sighted aboard Ellie V Plate 7 Common dolphins (Delphinius delphis) sighted aboard Ellie V List of Figures Figure 1 Position of offshore potting survey stations (Swift) Figure 2 Position of inshore potting survey stations (Chloe Estelle) Figure 3 Position of otter trawl survey tows (Girl Linda) Figure 4 Position of hand-lining survey stations (Ellie V) Figure 5 Catch ratio (catch per pot) of main species from offshore potting survey Figure 6 Catch ratio (catch per pot) of main species from inshore potting survey Figure 7 Total numbers of species per station (otter trawling) Figure 8 Total abundance of individuals per station (otter trawling) Figure 9 Total numbers of pollack caught at hand-lining survey stations Figure 10 Size distribution of pollack caught in July 2005 survey Appendices Appendix I Survey Logs Appendix II Survey Data 05/J/1/03/0685/0508/FINAL Emu Ltd. Halcrow Group Ltd South West Wave Hub – EIA Baseline Fisheries Surveys 05/J/1/03/0685/0508/FINAL Emu Ltd. Halcrow Group Ltd South West Wave Hub – EIA Baseline Fisheries Surveys 1. INTRODUCTION 1.1 This report presents the findings from the first of four fisheries resource surveys undertaken by Emu Ltd on behalf of Halcrow Group Ltd as part of the Environmental Impact Assessment (EIA) process being undertaken in relation to the South West Wave Hub project. 1.2 Halcrow Group Ltd is managing the EIA process for this development, which is being funded by the South West Regional Development Agency (SWRDA). 2. STUDY OBJECTIVES 2.1 The main objectives of the fisheries surveys are detailed below: - To collect baseline data on the composition of fish resources within the study area in order to inform the EIA process being undertaken for the South West Wave Hub project; - To collect baseline data on the spatial and temporal distribution of fish resources within the study area in order to inform the EIA process being undertaken for the South West Wave Hub project; - To involve the local fishing community in the data gathering process for the EIA. - The surveys are in no way to be intended as a detailed stock assessment of any fishery species. 2.2 In addition to these fish resource surveys, a commercial fisheries intensity study has also been commissioned. This study will describe commercial fishing activity and patterns in the study area. 3. METHODOLOGY 3.1 The surveys were designed and planned following consultation and meetings with members of the local fishing community and representatives of Cornwall Sea Fisheries Committee (CSFC). Following discussions, it was agreed to undertake a series of four fish resource surveys in order to develop some understanding of the seasonal changes in the fishery. 3.2 The surveys were undertaken aboard local commercial fishing vessels with experienced local skippers who were always consulted during the field work with respect to sampling strategy. Emu Ltd. was represented on each survey by an experienced marine ecologist, with the exception of the hand-lining for mackerel, where data was recorded directly by the skipper. 3.3 The gear used for otter trawling, potting and hand-lining was the same as that employed during commercial fishing activities. 3.4 The first survey was undertaken on Tuesday 12th and Wednesday 13th July 2005. Table 1 summarises the schedule for the first survey. 05/J/1/03/0685/0508/FINAL 1 Emu Ltd. Halcrow Group Ltd South West Wave Hub – EIA Baseline Fisheries Surveys Date Survey Undertaken Vessel (Skipper) Emu Staff aboard Potting Survey 12/07/05 Swift (John Carter) Alec Moore (offshore) Potting Survey Chloe Estelle 12/07/05 Jo Weir (inshore) (Reg Easterbrook) Girlinda 13/07/05 Otter trawling Alec Moore (Chris Stevens) Ellie V 13/07/05 hand-lining Jo Weir (Michael Veale) 1st survey not hand-lining for Sally Ann of Navax NA yet undertaken mackerel (Peter Ghey) Table 1 Summary of sampling events (July 2005) 3.5 The preliminary positions for the survey stations were chosen in order to sample locations within and outside the proposed wave hub exclusion zone and also along the proposed route of the site to shore cable. Co-ordinates were calculated using a GIS system and issued to the skippers via post prior to the surveys so that they could input these into their vessel’s GPS. This provided them with an opportunity to comment as to whether any stations selected by Emu were not suitable for any reason, i.e. in an area of beam trawling activity (unsuitable for pots) or on hard ground (unsuitable for trawling). 3.6 Where some stations were indeed inappropriate, the skippers suggested more appropriate locations which were agreed by Emu staff. On the actual day of the survey, all survey positions were recorded on the vessel using the vessel’s own GPS system. All GPS systems used were based on the WGS84 datum. 3.7 For the potting surveys, the positions when hauling began and ended were noted, whilst for the trawling the start and end positions of each tow were noted. With respect to the hand-lining on wrecks and hard ground, a single position was noted, around which fishing was concentrated for 30 minutes. 3.8 Survey logs and positions are appended. Weather, sea state and other information (e.g. other vessels) were also recorded as appropriate. Specific Survey Methodologies (1) Potting Surveys 3.9 Two separate potting surveys were undertaken in order to obtain data from the offshore wave hub area and closer inshore in the area of the site to shore cable route. The offshore area was fished by Swift whilst the inshore area was fished by Chloe Estelle. 3.10 For both vessels, strings of 25 pots were shot on the afternoon of Sunday 10th July. All pots were new & parlour-type, and baited with both dogfish (Scyliorhinus sp.) and scad (Trachurus trachurus). The pots were subsequently retrieved on 12th July, resulting in a soak time of approximately 48 hours. 3.11 Upon retrieval, the following was noted for every pot: - The numbers of sized, under-sized and soft brown crab; - The numbers of sized, under-sized and soft spider crab; and - The numbers of sized under-sized and berried lobsters. 05/J/1/03/0685/0508/FINAL 2 Emu Ltd. Halcrow Group Ltd South West Wave Hub – EIA Baseline Fisheries Surveys On every 5th pot, measurements were taken on the carapace width of crabs and carapace length of lobsters. 3.12 The positions of the stations fished by Swift are shown in Figure 1 whilst the stations fished by Chloe Estelle are shown in Figure 2. (2) Otter Trawling Survey 3.13 A commercial otter trawl gear was used, with approximately 85ft spread & 9ft lift. The trawl was fitted with a 85mm cod-end mesh. Tow lengths varied from 5 minutes to 15 minutes. 3.14 Upon retrieval of the catch, all fish species caught were recorded and length measurements taken. Where large catches were landed, sub-samples were taken to undertake length measurements and an estimate of numbers landed. 3.15 Photographs were also taken of the catch upon being landed. 3.16 The positions of the tows are shown in Figure 3. (3) Hand-lining Survey 3.17 The commercial hand-lining gear comprised of a set of seven hooks baited with rubber eels. Hand-lining was undertaken for 30 minutes at each site. 3.18 Each time the line was under tension due to fish being caught, the hand-lining gear was brought to the surface, and the fish were released. The hand-line was then placed back into the water. This was repeated until the 30 minutes period was completed. 3.19 Upon retrieval of catch, species were identified, enumerated and total length measurements were taken. Photographs of the species caught (pollack only) were taken. 3.20 The positions of the hand-lining locations are shown in Figure 4. 05/J/1/03/0685/0508/FINAL 3 Emu Ltd. Halcrow Group Ltd South West Wave Hub – EIA Baseline Fisheries Surveys 4. RESULTS 4.1 The following section of the report presents the key results from the first fisheries surveys undertaken on 12-13th July 2005. Summary data sheets are included in the Appendix I. Potting Survey aboard Swift 4.2 Potting was carried out at a total of 7 sites. The main species recorded in the pots were brown crab (Cancer pagurus), with smaller numbers of spider crab (Maja squinado) and lobster (Homarus) also recorded. 4.3 All catches of crab species and lobster were recorded and identified as sized/under-sized or soft. Over the total number of pots, under-sized brown crabs were the highest number recorded, with over 200 individuals noted.
Recommended publications
  • The Feeding Ecology of Grey Gurnard, Eutrigla Gurnardus, Off the Coast of Scotland
    The Feeding Ecology of Grey Gurnard, Eutrigla gurnardus, off the coast of Scotland. Abstract Until recently, little research had been conducted into the feeding ecology of grey gurnard (Eutrigla gurnardus), and the species’ wider interaction with the ecosystems it inhabits. This study was carried out to address several questions that have recently arisen about the species. Mainly whether the grey gurnard population at Rockall Bank have been predating on the juvenile haddock to a degree that could cause the stock to decline. This was assessed by conducting a stomach contents analysis on a sample of grey gurnard caught on several trawls. The results of this were inconclusive, with only 3 stomachs containing potential haddock remains out of a total of 121 stomachs. However, these results do not completely disprove the hypothesis, as other factors may have influenced the low fish intake in these gurnard. Furthermore, the populations of grey gurnard from Rockall Bank and the Firth of Forth were compared to determine any differences in feeding ecology between the two. It emerged that the two populations were reasonably similar, with smaller size classes consuming less fish and proportionally more invertebrates, while larger size classes had a diet that was predominantly fish, with the fish prey consisting largely of sand eels. Finally, the influence of fish size on prey selection was investigated, with the result showing a clear correlation between increasing fish size and increasing prey mass, likely owing to the greater amount of fish prey that makes up a larger gurnard’s diet. Introduction: Grey gurnard, Eutrigla gurnadus, is a demersal marine species that has a wide distribution throughout the North Atlantic and the North Sea (Vinogradov et al., 2014; Floeter et al., 2005).
    [Show full text]
  • Red Gurnard in the North East Atlantic, Demersal Otter Trawl
    Red gurnard in the North East Atlantic, Demersal otter trawl Red gurnard in the North East Atlantic, Demersal otter trawl Content last updated 27th Jan 2016 Stock: Red gurnard in the North East Atlantic Management: EU Overview Red gurnard (Chelidonichthys cuculus) is a widespread demersal species on the Northeast Atlantic shelf, distributed from South Norway and north of the British Isles to Mauritania. The species is found in depths between 20 and 250m living on gravel or coarse sandy substrate. Higher occurrences of red gurnard with patchy distribution have been observed along the Western approaches from the Shetlands Islands to the Celtic Seas and the Channel. A continuous distribution of fish crossing the Channel and the area West of Brittany does not suggest a separation of the Divisions VIId from VIIe and VIIh. Therefore a split of the population between the Ecoregions does not seem appropriate. Further investigations are needed to progress on stocks boundaries such as morphometric studies, tagging and genetic population studies. Red gurnard feeds on a variety of small invertebrates, bottom dwelling fish and benthic shellfish and crustaceans. Length at first maturity has been reported at approximately 25cm. Spawning occurs between February and June. Currently, all red gurnards in the Northeast Atlantic are treated as a single stock. Considering their behaviour, future assessment and management should identify and treat separate spawning aggregations independently. Red gurnard is mainly taken as a bycatch in mixed demersal fisheries for flatfish and roundfish, as the market is limited a larger part of the gurnard catch is discarded. Gurnards have been landed as a mixed generic gurnard catch and therefore landings of red gurnard are uncertain.
    [Show full text]
  • Trigloporus Lastoviza, Bonnaterre, 1788
    International Journal of Fisheries and Aquatic Studies 2015; 3(1): 75-80 ISSN: 2347-5129 (ICV-Poland) Impact Value: 5.62 Age, growth and mortality of Streaked Gurnard (GIF) Impact Factor: 0.352 IJFAS 2015; 3(1): 75-80 © 2015 IJFAS (Trigloporus lastoviza, Bonnaterre, 1788) in the Egyptian www.fisheriesjournal.com Mediterranean waters off Alexandria Received: 11-06-2015 Accepted: 13-07-2015 Sabry S El-Serafy, Fahmy I El-Gammal, Sahar F Mehanna, Nasr-Allah H Sabry S El-Serafy Zoology Department, Faculty of Abdel- Hameid, Elsayed FE Farrag Science, Benha University. Abstract Fahmy I El-Gammal Age, growth and mortality of Streaked Gurnard Trigloporus lastoviza from the Egyptian Mediterranean Fisheries Department, National waters off Alexandria were investigated between the period from July 2009 and August 2010. The Institute of Oceanography and observed maximum age was 4 years for both sexes based on otolith readings. The length-weight Fisheries. relationship was estimated as W=0.0088L3.0694 (r=0.9854); W=0.0085L3.0836 (r=0.9803) and W=0.0106L3.0058 (r=0.9853) for males, females and combined sexes respectively. The von Bertalanffy Sahar F Mehanna Fisheries Department, National growth equations for length were: Lt=27.17 (1-e-0.3466 (t+1.01), Lt = 27.0 (1 - e -0.3703 (t + 0.93) and Institute of Oceanography and Lt = 26.92 (1 - e -0.3699 (t + 0.92) for males, females and combined sexes respectively. The growth Fisheries. performance index value (Φ) was calculated as 2.41, 2.43 and 2.43 for males, females and combined sexes respectively.
    [Show full text]
  • Atlas of North Sea Fishes
    ICES COOPERATIVE RESEARCH REPORT RAPPORT DES RECHERCHES COLLECTIVES NO. 194 Atlas of North Sea Fishes Based on bottom-trawl survey data for the years 1985—1987 Ruud J. Knijn1, Trevor W. Boon2, Henk J. L. Heessen1, and John R. G. Hislop3 'Netherlands Institute for Fisheries Research, Haringkade 1, PO Box 6 8 , 1970 AB Umuiden, The Netherlands 2MAFF, Fisheries Laboratory, Lowestoft, Suffolk NR33 OHT, England 3Marine Laboratory, PO Box 101, Victoria Road, Aberdeen AB9 8 DB, Scotland Fish illustrations by Peter Stebbing International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer Palægade 2—4, DK-1261 Copenhagen K, Denmark September 1993 Copyright ® 1993 All rights reserved No part of this book may be reproduced in any form by photostat or microfilm or stored in a storage system or retrieval system or by any other means without written permission from the authors and the International Council for the Exploration of the Sea Illustrations ® 1993 Peter Stebbing Published with financial support from the Directorate-General for Fisheries, AIR Programme, of the Commission of the European Communities ICES Cooperative Research Report No. 194 Atlas of North Sea Fishes ISSN 1017-6195 Printed in Denmark Contents 1. Introduction............................................................................................................... 1 2. Recruit surveys.................................................................................. 3 2.1 General purpose of the surveys.....................................................................
    [Show full text]
  • Report of the Working Group on Fish Ecology (WGFE). ICES CM 2009
    ICES WGFE REPORT 2009 ICES LIVING RESOURCES COMMITTEE ICES CM 2009/LRC:08 REF. SCICOM, ACOM, SSICC Report of the Working Group on Fish Ecology (WGFE) 26–30 October 2009 ICES Headquarters, Copenhagen International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 200 9. Report of the Working Group on Fish Ecology (WGFE), 26–30 October 2009, ICES Headquarters, Copenhagen. ICES CM 2009/LRC:08. 133 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2009 International Council for the Exploration of the Sea ICES WGFE REPORT 2009 | i Contents Executive Summary ............................................................................................................... 1 1 Introduction .................................................................................................................... 3 1.1 Terms of reference for 2009 ................................................................................. 3 1.2 Participants ............................................................................................................ 3 1.3 Background...........................................................................................................
    [Show full text]
  • Miscellaneous Demersal Fishes Capture Production by Species, Fishing Areas and Countries Or Areas B-34 Poissons Démersaux Diver
    173 Miscellaneous demersal fishes Capture production by species, fishing areas and countries or areas B-34 Poissons démersaux divers Captures par espèces, zones de pêche et pays ou zones Peces demersales diversos Capturas por especies, áreas de pesca y países o áreas Species, Fishing area Espèce, Zone de pêche 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 Especie, Área de pesca t t t t t t t t t t Greater argentine ...B ...C Argentina silus 1,23(05)015,03 ARU 27 Netherlands ... ... ... ... ... ... 2 611 10 662 3 637 1 062 Norway ... ... ... ... ... ... ... ... ... 1 820 27 Fishing area total ... ... ... ... ... ... 2 611 10 662 3 637 2 882 Species total ... ... ... ... ... ... 2 611 10 662 3 637 2 882 Argentine ...B ...C Argentina sphyraena 1,23(05)015,04 ARY 27 Netherlands ... ... ... ... ... ... - - 2 232 3 566 Norway ... ... ... ... ... ... ... ... ... 2 584 27 Fishing area total ... ... ... ... ... ... ... ... 2 232 6 150 Species total ... ... ... ... ... ... ... ... 2 232 6 150 Argentines Argentines Argentinas Argentina spp 1,23(05)015,XX ARG 21 Canada 591 51 12 8 17 20 12 1 3 1 Cuba 553 4 5 - - - - - - - Russian Fed - - - 5 - - - - - - 21 Fishing area total 1 144 55 17 13 17 20 12 1 3 1 27 Denmark 1 455 748 1 420 1 039 916 614 918 910 470 335 Faroe Is 8 433 17 167 8 186 6 388 9 572 7 058 6 264 3 441 7 055 12 576 France - - 114 55 41 1 - 147 11 - Germany 1 498 633 24 483 189 150 164 1 086 181 219 Iceland 3 367 13 387 5 495 4 595 2 478 4 357 2 680 3 645 - 4 776 Ireland 1 089 405 396 4 709 7 505 7 592 96 82 20 - Netherlands 4 696 4 964 8 033 3 636 3 659 4 213 - - - - Norway 5 167 8 654 7 823 6 107 14 876 7 406 8 351 11 577 17 073 20 744 Portugal - - - - - - - - - 0 Russian Fed - - - 1 214 496 293 154 721 79 39 Spain - - - 34 34 3 7 18 19 50 Sweden 541 428 0 273 1 010 484 42 0 - 0 UK - - 28 - 7 955 4 862 109 579 75 5 27 Fishing area total 26 246 46 386 31 519 28 533 48 731 37 033 18 785 22 206 24 983 38 744 34 Morocco - - - - - - - 231 295 509 34 Fishing area total - - - - - - - 231 295 509 37 France - - 7 4 4 7 5 7 6 5 Morocco ..
    [Show full text]
  • Marine Fishes from Galicia (NW Spain): an Updated Checklist
    1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful.
    [Show full text]
  • Statistical Species Characterization of Gurnard Landings in North of Portugal
    Statistical Species characterization of Gurnard Landings in North of Portugal Feijó, D., Rocha A., Santos, P., Saborido-Rey, F. Diana Feijó Matosinhos, Portugal ICES ANNUAL SCIENCE CONFERENCE 2008 22 – 26 September 2008 HALIFAX, CANADA Work Proposal Study of Gurnards landings in Portugal Knowledge of Gurnards species composition Obtain accurate Statistical Landings (in Matosinhos, Portugal) ICES ANNUAL SCIENCE CONFERENCE 2008 22 – 26 September 2008 HALIFAX, CANADA Introduction Available ICES statistics concerning gurnards are not accurate. Gurnards are often not sorted by species when they are landed, usually ending up classified under one generic category of “gurnards”. Gurnards are considered by-catch in bottom trawl and in Artisanal gears, like beam trawl and trammel nets, although due to decrease of traditionally targeted species their interest and value has increased. ICES ANNUAL SCIENCE CONFERENCE 2008 22 – 26 September 2008 HALIFAX, CANADA Introduction For example, France has only reported “tub gurnard” since 1983 and Denmark, the Netherlands and Portugal since 2000. In portuguese official data (DGPA), all gurnards are classified under these designations: Tub gurnard (Trigla lucerna or C. lucernus ), Gurnard nep. (Trigla spp.) and Large-scaled gurnard (Lepidotrigla cavillone ). In Portugal, and especially in Matosinhos, landings are a mix of the 6 gurnard species found in Portuguese waters. ICES ANNUAL SCIENCE CONFERENCE 2008 22 – 26 September 2008 HALIFAX, CANADA Commercial Gurnards in Portugal ICES ANNUAL SCIENCE CONFERENCE
    [Show full text]
  • (MSC) Public Comment Draft Report SFSAG Rockall Haddock on Behalf
    MSC Full Assessment Reporting Template FCR v2.0 (16 th March 2015) MEC V1.1 (2nd October 2017) Marine Stewardship Council (MSC) Public Comment Draft Report SFSAG Rockall haddock On behalf of Scottish Fisheries Sustainable Accreditation Group (SFSAG) Prepared by ME Certification Ltd May 2018 Authors: Dr Hugh Jones Dr Robin Cook Dr Jo Gascoigne Dr Geir Hønneland ME Certification Ltd 56 High Street, Lymington Hampshire SO41 9AH United Kingdom Tel: 01590 613007 Fax: 01590 671573 E-mail: [email protected] Website: www.me-cert.com MSC Full Assessment Reporting Template FCR v2.0 (16 th March 2015) MEC V1.1 (2nd October 2017) Contents GLOSSARY ............................................................................................................................. 3 1 EXECUTIVE SUMMARY ...................................................................................................... 6 2 AUTHORSHIP AND PEER REVIEWERS ................................................................................ 8 3 DESCRIPTION OF THE FISHERY ....................................................................................... 10 3.1 Unit(s) of Assessment (UoA) and Scope of Certification Sought ........................... 10 3.1.1 UoA and Proposed Unit of Certification (UoC) .............................................................. 10 3.1.2 Final UoC(s) .................................................................................................................. 11 3.1.3 Total Allowable Catch (TAC) and Catch Data ..............................................................
    [Show full text]
  • Intrinsic Vulnerability in the Global Fish Catch
    The following appendix accompanies the article Intrinsic vulnerability in the global fish catch William W. L. Cheung1,*, Reg Watson1, Telmo Morato1,2, Tony J. Pitcher1, Daniel Pauly1 1Fisheries Centre, The University of British Columbia, Aquatic Ecosystems Research Laboratory (AERL), 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada 2Departamento de Oceanografia e Pescas, Universidade dos Açores, 9901-862 Horta, Portugal *Email: [email protected] Marine Ecology Progress Series 333:1–12 (2007) Appendix 1. Intrinsic vulnerability index of fish taxa represented in the global catch, based on the Sea Around Us database (www.seaaroundus.org) Taxonomic Intrinsic level Taxon Common name vulnerability Family Pristidae Sawfishes 88 Squatinidae Angel sharks 80 Anarhichadidae Wolffishes 78 Carcharhinidae Requiem sharks 77 Sphyrnidae Hammerhead, bonnethead, scoophead shark 77 Macrouridae Grenadiers or rattails 75 Rajidae Skates 72 Alepocephalidae Slickheads 71 Lophiidae Goosefishes 70 Torpedinidae Electric rays 68 Belonidae Needlefishes 67 Emmelichthyidae Rovers 66 Nototheniidae Cod icefishes 65 Ophidiidae Cusk-eels 65 Trachichthyidae Slimeheads 64 Channichthyidae Crocodile icefishes 63 Myliobatidae Eagle and manta rays 63 Squalidae Dogfish sharks 62 Congridae Conger and garden eels 60 Serranidae Sea basses: groupers and fairy basslets 60 Exocoetidae Flyingfishes 59 Malacanthidae Tilefishes 58 Scorpaenidae Scorpionfishes or rockfishes 58 Polynemidae Threadfins 56 Triakidae Houndsharks 56 Istiophoridae Billfishes 55 Petromyzontidae
    [Show full text]
  • (Pisces: Triglidae) in the Northern Mediterranean Sea
    Mediterranean demersal resources and ecosystems: SCIENTIA MARINA 83S1 25 years of MEDITS trawl surveys December 2019, 101-116, Barcelona (Spain) M.T. Spedicato, G. Tserpes, B. Mérigot and ISSN-L: 0214-8358 E. Massutí (eds) https://doi.org/10.3989/scimar.04856.30A Spatial and temporal trend in the abundance and distribution of gurnards (Pisces: Triglidae) in the northern Mediterranean Sea Francesco Colloca 1,2, Giacomo Milisenda 3, Francesca Capezzuto 4, Alessandro Cau 5, Germana Garofalo 1, Angélique Jadaud 6, Sotiris Kiparissis 7, Reno Micallef 8, Stefano Montanini 9, Ioannis Thasitis 10, Maria Vallisneri 9, Alessandro Voliani 11, Nedo Vrgoc 12, Walter Zupa 13, Francesc Ordines 14 1 National Research Council, Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM), Mazara del Vallo (TP), Italy. (FC) (Corresponding author) E-mail: [email protected]. ORCID iD: https://orcid.org/0000-0002-0574-2893 (GG) E-mail: [email protected]. ORCID iD: https://orcid.org/0000-0001-9117-6252 2 Department of Biology and Biotechnology “C. Darwin” BBCD, Sapienza University of Rome, Italy. 3 Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo (ex complesso Roosevelt), 90142 Palermo, Italy. (GM) E-mail: [email protected]. ORCID iD: https://orcid.org/0000-0003-1334-9749 4 Department of Biology, University of Bari Aldo Moro, Bari, Italy. (FC) E-mail: [email protected]. ORCID iD: https://orcid.org/0000-0002-1498-0228 5 Department of Life and Environmental Sciences, Via Tommaso Fiorelli 1, University of Cagliari, Cagliari, Italy. (AC) E-mail: [email protected]. ORCID iD: https://orcid.org/0000-0003-4082-7531 6 MARBEC - IFREMER, CNRS, IRD, Université Montpellier 2, Avenue Jean Monnet, CS 30171, 34203 Sète Cedex, France.
    [Show full text]
  • SOME ASPECTS of the REPRODUCTIVE BIOLOGY of the LONG FIN GURNARD ASPITRIGLA OBSCURA (LINNAEUS, 1764) in DERNAH COAST, EASTERN LIBYA Mohammad A
    International Journal of Fisheries and Aquaculture Research Vol.4, No.1, pp.1-8, February 2018 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) SOME ASPECTS OF THE REPRODUCTIVE BIOLOGY OF THE LONG FIN GURNARD ASPITRIGLA OBSCURA (LINNAEUS, 1764) IN DERNAH COAST, EASTERN LIBYA Mohammad A. El-Mabrouk*, Ramadan A. S. Ali and Sayed M. Ali Zoology Department, Faculty of Science, Omar Almokhtar University, P.O. Box 919 Albaida, Libya ABSTRACT: The reproductive biology of 389 specimens of Aspitrigla obscura (Family: Triglidae) obtained from catches collected by gill and trammel nets from Dernah coast, eastern Libya, Mediterranean Sea, was established during a one year study period (April, 2013 to January 2014). There were monthly variations in sex ratio between males (193 fish = 49.6%) and females (196 fish = 50.4%). The overall sex ratio was 1: 1.02 in favor of females. The breeding season extended from December to May. Oocyte diameters increased gradually and progressively during October (87 ± 4.27 μm) to December (250 ± 40.38 μm), then recorded highest values of 367 ± 41.39 in January to 567 ± 21.14 in May. The average absolute fecundity ranged from 535±33.9 in October to 8891±1231.4 in May for fish of total length ranging from 19.1 to 33.9 cm.. Overall absolute fecundity was 5875±503.1, whereas overall relative fecundity was 176±23.3cm-1. KEYWORDS: Triglidae, Aspitrigla Obscura, the Long Fin Gurnard, Reproductive Biology, Mediterranean Sea, Eastern Libya. INTRODUCTION Family Triglidae includes bottom fish dwellers occurring over sand, muddy sand or gravel beds at depth from 56 to 200m, but is more common between 50 and 170 m (Hureau, 1986).
    [Show full text]