Number Theory in Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minkowski's Geometry of Numbers
Geometry of numbers MAT4250 — Høst 2013 Minkowski’s geometry of numbers Preliminary version. Version +2✏ — 31. oktober 2013 klokken 12:04 1 Lattices Let V be a real vector space of dimension n.Byalattice L in V we mean a discrete, additive subgroup. We say that L is a full lattice if it spans V .Ofcourse,anylattice is a full lattice in the subspace it spans. The lattice L is discrete in the induced topology, meaning that for any point x L 2 there is an open subset U of V whose intersection with L is just x.Forthesubgroup L to be discrete it is sufficient that this holds for the origin, i.e., that there is an open neigbourhood U about 0 with U L = 0 .Indeed,ifx L,thenthetranslate \ { } 2 U 0 = U + x is open and intersects L in the set x . { } Aoftenusefulpropertyofalatticeisthatithasonlyfinitelymanypointsinany bounded subset of V .Toseethis,letS V be a bounded set and assume that L S is ✓ \ infinite. One may then pick a sequence xn of different elements from L S.SinceS { } \ is bounded, its closure is compact and xn has a subsequence that converges, say to { } x. Then x is an accumulation point in L;everyneigbourhoodcontainselementsfrom L distinct from x. The lattice associated to a basis If = v1,...,vn is any basis for V ,onemayconsiderthesubgroupL = Zvi of B { } B i V consisting of all linear combinations of the vi’s with integral coefficients. Clearly L P B is a discrete subspace of V ;IfonetakesU to be an open ball centered at the origin and having radius less than mini vi ,thenU L = 0 .HenceL is a full lattice in k k \ { } B V . -
A MATHEMATICIAN's SURVIVAL GUIDE 1. an Algebra Teacher I
A MATHEMATICIAN’S SURVIVAL GUIDE PETER G. CASAZZA 1. An Algebra Teacher I could Understand Emmy award-winning journalist and bestselling author Cokie Roberts once said: As long as algebra is taught in school, there will be prayer in school. 1.1. An Object of Pride. Mathematician’s relationship with the general public most closely resembles “bipolar” disorder - at the same time they admire us and hate us. Almost everyone has had at least one bad experience with mathematics during some part of their education. Get into any taxi and tell the driver you are a mathematician and the response is predictable. First, there is silence while the driver relives his greatest nightmare - taking algebra. Next, you will hear the immortal words: “I was never any good at mathematics.” My response is: “I was never any good at being a taxi driver so I went into mathematics.” You can learn a lot from taxi drivers if you just don’t tell them you are a mathematician. Why get started on the wrong foot? The mathematician David Mumford put it: “I am accustomed, as a professional mathematician, to living in a sort of vacuum, surrounded by people who declare with an odd sort of pride that they are mathematically illiterate.” 1.2. A Balancing Act. The other most common response we get from the public is: “I can’t even balance my checkbook.” This reflects the fact that the public thinks that mathematics is basically just adding numbers. They have no idea what we really do. Because of the textbooks they studied, they think that all needed mathematics has already been discovered. -
2012-13 Annual Report of Private Giving
MAKING THE EXTRAORDINARY POSSIBLE 2012–13 ANNUAL REPORT OF PRIVATE GIVING 2 0 1 2–13 ANNUAL REPORT OF PRIVATE GIVING “Whether you’ve been a donor to UMaine for years or CONTENTS have just made your first gift, I thank you for your Letter from President Paul Ferguson 2 Fundraising Partners 4 thoughtfulness and invite you to join us in a journey Letter from Jeffery Mills and Eric Rolfson 4 that promises ‘Blue Skies ahead.’ ” President Paul W. Ferguson M A K I N G T H E Campaign Maine at a Glance 6 EXTRAORDINARY 2013 Endowments/Holdings 8 Ways of Giving 38 POSSIBLE Giving Societies 40 2013 Donors 42 BLUE SKIES AHEAD SINCE GRACE, JENNY AND I a common theme: making life better student access, it is donors like you arrived at UMaine just over two years for others — specifically for our who hold the real keys to the ago, we have truly enjoyed our students and the state we serve. While University of Maine’s future level interactions with many alumni and I’ve enjoyed many high points in my of excellence. friends who genuinely care about this personal and professional life, nothing remarkable university. Events like the surpasses the sense of reward and Unrestricted gifts that provide us the Stillwater Society dinner and the accomplishment that accompanies maximum flexibility to move forward Charles F. Allen Legacy Society assisting others to fulfill their are one of these keys. We also are luncheon have allowed us to meet and potential. counting on benefactors to champion thank hundreds of donors. -
Sir Andrew J. Wiles
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society March 2017 Volume 64, Number 3 Women's History Month Ad Honorem Sir Andrew J. Wiles page 197 2018 Leroy P. Steele Prize: Call for Nominations page 195 Interview with New AMS President Kenneth A. Ribet page 229 New York Meeting page 291 Sir Andrew J. Wiles, 2016 Abel Laureate. “The definition of a good mathematical problem is the mathematics it generates rather Notices than the problem itself.” of the American Mathematical Society March 2017 FEATURES 197 239229 26239 Ad Honorem Sir Andrew J. Interview with New The Graduate Student Wiles AMS President Kenneth Section Interview with Abel Laureate Sir A. Ribet Interview with Ryan Haskett Andrew J. Wiles by Martin Raussen and by Alexander Diaz-Lopez Allyn Jackson Christian Skau WHAT IS...an Elliptic Curve? Andrew Wiles's Marvelous Proof by by Harris B. Daniels and Álvaro Henri Darmon Lozano-Robledo The Mathematical Works of Andrew Wiles by Christopher Skinner In this issue we honor Sir Andrew J. Wiles, prover of Fermat's Last Theorem, recipient of the 2016 Abel Prize, and star of the NOVA video The Proof. We've got the official interview, reprinted from the newsletter of our friends in the European Mathematical Society; "Andrew Wiles's Marvelous Proof" by Henri Darmon; and a collection of articles on "The Mathematical Works of Andrew Wiles" assembled by guest editor Christopher Skinner. We welcome the new AMS president, Ken Ribet (another star of The Proof). Marcelo Viana, Director of IMPA in Rio, describes "Math in Brazil" on the eve of the upcoming IMO and ICM. -
PRESENTAZIONE E LAUDATIO DI DAVID MUMFOD by ALBERTO
PRESENTAZIONE E LAUDATIO DI DAVID MUMFOD by ALBERTO CONTE David Mumford was born in 1937 in Worth (West Sussex, UK) in an old English farm house. His father, William Mumford, was British, ... a visionary with an international perspective, who started an experimental school in Tanzania based on the idea of appropriate technology... Mumford's father worked for the United Nations from its foundations in 1945 and this was his job while Mumford was growing up. Mumford's mother was American and the family lived on Long Island Sound in the United States, a semi-enclosed arm of the North Atlantic Ocean with the New York- Connecticut shore on the north and Long Island to the south. After attending Exeter School, Mumford entered Harvard University. After graduating from Harvard, Mumford was appointed to the staff there. He was appointed professor of mathematics in 1967 and, ten years later, he became Higgins Professor. He was chairman of the Mathematics Department at Harvard from 1981 to 1984 and MacArthur Fellow from 1987 to 1992. In 1996 Mumford moved to the Division of Applied Mathematics of Brown University where he is now Professor Emeritus. Mumford has received many honours for his scientific work. First of all, the Fields Medal (1974), the highest distinction for a mathematician. He was awarded the Shaw Prize in 2006, the Steele Prize for Mathematical Exposition by the American Mathematical Society in 2007, and the Wolf Prize in 2008. Upon receiving this award from the hands of Israeli President Shimon Peres he announced that he will donate the money to Bir Zeit University, near Ramallah, and to Gisha, an Israeli organization that advocates for Palestinian freedom of movement, by saying: I decided to donate my share of the Wolf Prize to enable the academic community in occupied Palestine to survive and thrive. -
Density of Algebraic Points on Noetherian Varieties 3
DENSITY OF ALGEBRAIC POINTS ON NOETHERIAN VARIETIES GAL BINYAMINI Abstract. Let Ω ⊂ Rn be a relatively compact domain. A finite collection of real-valued functions on Ω is called a Noetherian chain if the partial derivatives of each function are expressible as polynomials in the functions. A Noether- ian function is a polynomial combination of elements of a Noetherian chain. We introduce Noetherian parameters (degrees, size of the coefficients) which measure the complexity of a Noetherian chain. Our main result is an explicit form of the Pila-Wilkie theorem for sets defined using Noetherian equalities and inequalities: for any ε> 0, the number of points of height H in the tran- scendental part of the set is at most C ·Hε where C can be explicitly estimated from the Noetherian parameters and ε. We show that many functions of interest in arithmetic geometry fall within the Noetherian class, including elliptic and abelian functions, modular func- tions and universal covers of compact Riemann surfaces, Jacobi theta func- tions, periods of algebraic integrals, and the uniformizing map of the Siegel modular variety Ag . We thus effectivize the (geometric side of) Pila-Zannier strategy for unlikely intersections in those instances that involve only compact domains. 1. Introduction 1.1. The (real) Noetherian class. Let ΩR ⊂ Rn be a bounded domain, and n denote by x := (x1,...,xn) a system of coordinates on R . A collection of analytic ℓ functions φ := (φ1,...,φℓ): Ω¯ R → R is called a (complex) real Noetherian chain if it satisfies an overdetermined system of algebraic partial differential equations, i =1,...,ℓ ∂φi = Pi,j (x, φ), (1) ∂xj j =1,...,n where P are polynomials. -
Chapter 2 Geometry of Numbers
Chapter 2 Geometry of numbers Literature: W.M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer Verlag 1980, Chap.II, xx1,2, Chap. IV, x1 J.W.S. Cassels, An Introduction to the Geometry of Numbers, Springer Verlag 1997, Classics in Mathematics series, reprint of the 1971 edition C.L. Siegel, Lectures on the Geometry of Numbers, Springer Verlag 1989 2.1 Introduction Geometry of numbers is concerned with the study of lattice points in certain bodies n in R , where n > 2. We discuss Minkowski's theorems on lattice points in central symmetric convex bodies. In this introduction we give the necessary definitions. Lattices. A (full) lattice in Rn is an additive group L = fz1v1 + ··· + znvn : z1; : : : ; zn 2 Zg n where fv1;:::; vng is a basis of R , i.e., fv1;:::; vng is linearly independent. We call fv1;:::; vng a basis of L. The determinant of L is defined by d(L) := j det(v1;:::; vn)j; that is, the absolute value of the determinant of the matrix with columns v1;:::; vn. 7 We show that the determinant of a lattice does not depend on the choice of the basis. Recall that GL(n; Z) is the multiplicative group of n×n-matrices with entries in Z and determinant ±1. Lemma 2.1. Let L be a lattice, and fv1;:::; vng, fw1;:::; wng two bases of L. Then there is a matrix U = (uij) 2 GL(n; Z) such that n X (2.1) wi = uijvj for i = 1; : : : ; n: j=1 Consequently, j det(v1;:::; vn)j = j det(w1;:::; wn)j. -
Introductory Number Theory Course No
Introductory Number Theory Course No. 100 331 Spring 2006 Michael Stoll Contents 1. Very Basic Remarks 2 2. Divisibility 2 3. The Euclidean Algorithm 2 4. Prime Numbers and Unique Factorization 4 5. Congruences 5 6. Coprime Integers and Multiplicative Inverses 6 7. The Chinese Remainder Theorem 9 8. Fermat’s and Euler’s Theorems 10 × n × 9. Structure of Fp and (Z/p Z) 12 10. The RSA Cryptosystem 13 11. Discrete Logarithms 15 12. Quadratic Residues 17 13. Quadratic Reciprocity 18 14. Another Proof of Quadratic Reciprocity 23 15. Sums of Squares 24 16. Geometry of Numbers 27 17. Ternary Quadratic Forms 30 18. Legendre’s Theorem 32 19. p-adic Numbers 35 20. The Hilbert Norm Residue Symbol 40 21. Pell’s Equation and Continued Fractions 43 22. Elliptic Curves 50 23. Primes in arithmetic progressions 66 24. The Prime Number Theorem 75 References 80 2 1. Very Basic Remarks The following properties of the integers Z are fundamental. (1) Z is an integral domain (i.e., a commutative ring such that ab = 0 implies a = 0 or b = 0). (2) Z≥0 is well-ordered: every nonempty set of nonnegative integers has a smallest element. (3) Z satisfies the Archimedean Principle: if n > 0, then for every m ∈ Z, there is k ∈ Z such that kn > m. 2. Divisibility 2.1. Definition. Let a, b be integers. We say that “a divides b”, written a | b , if there is an integer c such that b = ac. In this case, we also say that “a is a divisor of b” or that “b is a multiple of a”. -
Exercises for Geometry of Numbers Week 8: 01.05.2020
EXERCISES FOR GEOMETRY OF NUMBERS WEEK 8: 01.05.2020 Exercise 1. 1. Consider all the intervals of the form [a2t; (a + 1)2t] with a; t non- ∗ negative integers. For s 2 N , let Ls be the collection of such intervals with t ≤ s − 1 s s contained in [0; 2 ]. Show that for any k 2 N with k ≤ 2 , the interval [0; k] can be covered by at most s elements of Ls. 2. Let F : [0; 1] × (0; 1) be a bounded measurable function and suppose that there exists c > 0 such that for every interval (a; b) ⊂ (0; 1), we have Z 1 Z b 2 F (x; t)dt dx ≤ c(b − a): 0 a Show that 2 X Z 1 Z F (x; t)dt dx ≤ cs2s: 0 I I2Ls ∗ 3. Fix > 0. Show that for every s 2 N , there exists a measurable set As ⊂ [0; 1] such −1−" 1 s that jAsj = O(s ) and for every y2 = As and for every k 2 N with k ≤ 2 , we have Z k s 3 + j F (t; y)dtj ≤ 2 2 s 2 : 0 4. Deduce from 3. 2 that for a.e. y 2 [0; 1], we have Z T 1 − 1 3 j F (y; t)dtj = O(T 2 log(T ) 2 ) T 0 Although the arithmetic functions are not the main focus of the course, the next two exercises touch upon those and aim at proving the arithmetic estimate used in Schmidt's a.s. counting theorem. -
Artin L-Functions and Arithmetic Equivalence (Evan Dummit, September 2013)
Artin L-Functions and Arithmetic Equivalence (Evan Dummit, September 2013) 1 Intro • This is a prep talk for Guillermo Mantilla-Soler's talk. • There are approximately 3 parts of this talk: ◦ First, I will talk about Artin L-functions (with some examples you should know) and in particular try to explain very vaguely what local root numbers are. This portion is adapted from Neukirch and Rohrlich. ◦ Second, I will do a bit of geometry of numbers and talk about quadratic forms and lattices. ◦ Finally, I will talk about arithmetic equivalence and try to give some of the broader context for Guillermo's results (adapted mostly from his preprints). • Just to give the avor of things, here is the theorem Guillermo will probably be talking about: ◦ Theorem (Mantilla-Soler): Let K; L be two non-totally-real, tamely ramied number elds of the same discriminant and signature. Then the integral trace forms of K and L are isometric if and only if for all odd primes p dividing disc(K) the p-local root numbers of ρK and ρL coincide. 2 Artin L-Functions and Root Numbers • Let L=K be a Galois extension of number elds with Galois group G, and ρ be a complex representation of G, which we think of as ρ : G ! GL(V ). • Let p be a prime of K, Pjp a prime of L above p, with kL = OL=P and kK = OK =p the corresponding residue elds, and also let GP and IP be the decomposition and inertia groups of P above p. ∼ • By standard things, the group GP=IP = G(kL=kK ) is generated by the Frobenius element FrobP (which in the group on the right is just the standard q-power Frobenius where q = Nm(p)), so we can think of it as acting on the invariant space V IP . -
Download PDF of Summer 2016 Colloquy
Nonprofit Organization summer 2016 US Postage HONORING EXCELLENCE p.20 ONE DAY IN MAY p.24 PAID North Reading, MA Permit No.8 What’s the BUZZ? Bees, behavior & pollination p.12 What’s the Buzz? 12 Bees, Behavior, and Pollination ONE GRADUATE STUDENT’S INVESTIGATION INTO BUMBLEBEE BEHAVIOR The 2016 Centennial Medalists 20 HONORING FRANCIS FUKUYAMA, DAVID MUMFORD, JOHN O’MALLEY, AND CECILIA ROUSE Intellectual Assembly 22 ALUMNI DAY 2016 One Day in May 24 COMMENCEMENT 2016 summer/16 An alumni publication of Harvard University’s Graduate School of Arts and Sciences 3 FROM UNIVERSITY HALL 4 NEWS & NOTES Harvard Horizons, Health Policy turns 25, new Alumni Council leadership. 8 Q&A WITH COLLEEN CAVANAUGH A path-breaking biologist provides new evolutionary insights. 10 SHELF LIFE Elephants, Manchuria, the Uyghur nation and more. 26 NOTED News from our alumni. 28 ALUMNI CONNECTIONS Dudley 25th, Life Lab launches, and recent graduates gathering. summer Cover Image: Patrick Hruby Facing Image: Commencement Begins /16 Photograph by Tony Rinaldo CONTRIBUTORS Xiao-Li Meng dean, PhD ’90 Jon Petitt director of alumni relations and publications Patrick Hruby is a Los Angeles–based Ann Hall editor freelance illustrator and designer with Visual Dialogue design an insatiable appetite for color. His work Colloquy is published three times a year by the Graduate School Alumni has appeared in The New York Times, Association (GSAA). Governed by its Alumni Council, the GSAA represents Fortune Magazine, and WIRED, among and advances the interests of alumni of the Graduate School of Arts and Sciences through alumni events and publications. others. -
Rationale of the Chakravala Process of Jayadeva and Bhaskara Ii
HISTORIA MATHEMATICA 2 (1975) , 167-184 RATIONALE OF THE CHAKRAVALA PROCESS OF JAYADEVA AND BHASKARA II BY CLAS-OLOF SELENIUS UNIVERSITY OF UPPSALA SUMMARIES The old Indian chakravala method for solving the Bhaskara-Pell equation or varga-prakrti x 2- Dy 2 = 1 is investigated and explained in detail. Previous mis- conceptions are corrected, for example that chakravgla, the short cut method bhavana included, corresponds to the quick-method of Fermat. The chakravala process corresponds to a half-regular best approximating algorithm of minimal length which has several deep minimization properties. The periodically appearing quantities (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, etc.) are correctly understood only with the new theory. Den fornindiska metoden cakravala att l~sa Bhaskara- Pell-ekvationen eller varga-prakrti x 2 - Dy 2 = 1 detaljunders~ks och f~rklaras h~r. Tidigare missuppfatt- 0 ningar r~ttas, sasom att cakravala, genv~gsmetoden bhavana inbegripen, motsvarade Fermats snabbmetod. Cakravalaprocessen motsvarar en halvregelbunden b~st- approximerande algoritm av minimal l~ngd med flera djupt liggande minimeringsegenskaper. De periodvis upptr~dande storheterna (jyestha-m~la, kanistha-mula, ksepaka, kuttakara, os~) blir forstaellga0. 0 . f~rst genom den nya teorin. Die alte indische Methode cakrav~la zur Lbsung der Bhaskara-Pell-Gleichung oder varga-prakrti x 2 - Dy 2 = 1 wird hier im einzelnen untersucht und erkl~rt. Fr~here Missverst~ndnisse werden aufgekl~rt, z.B. dass cakrav~la, einschliesslich der Richtwegmethode bhavana, der Fermat- schen Schnellmethode entspreche. Der cakravala-Prozess entspricht einem halbregelm~ssigen bestapproximierenden Algorithmus von minimaler L~nge und mit mehreren tief- liegenden Minimierungseigenschaften. Die periodisch auftretenden Quantit~ten (jyestha-mfila, kanistha-mfila, ksepaka, kuttak~ra, usw.) werden erst durch die neue Theorie verst~ndlich.