A Novel Route to Synthesis of Lead Glycolate and Perovskite Lead Titanate, Lead Zirconate, and Lead Zirconate Titanate (PZT)

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Route to Synthesis of Lead Glycolate and Perovskite Lead Titanate, Lead Zirconate, and Lead Zirconate Titanate (PZT) 36 «“√ “√«‘®—¬ ¡¢. (∫».) 7 (1) : ¡.§. - ¡’.§. 2550 A Novel Route to Synthesis of Lead Glycolate and Perovskite Lead Titanate, Lead Zirconate, and Lead Zirconate Titanate (PZT) via Sol-Gel Process π«—µ°√√¡¢Õß°√–∫«π°“√ —߇§√“–Àå‡≈¥‰°≈‚§‡≈µ·≈–‚§√ß √â“ß·∫∫ ‡æÕ√Õø ‰°µå¢Õ߇≈¥‰∑∑“‡πµ ‡≈¥‡´Õ√傧‡πµ ·≈– ‡≈¥‡´Õ√傧‡πµ‰∑∑“‡πµ ºà“π°√–∫«π°“√‚´≈-‡®≈ Nuchnapa Tangboriboon (πÿ™π¿“ µ—Èß∫√‘∫Ÿ√≥å)* Dr. Sujitra Wongkasemjit (¥√. ÿ®‘µ√“ «ß»å‡°…¡®‘µµå)** Dr. Alexander M. Jameison (¥√. Õ‡≈Á°´“π‡¥Õ√å ‡ÕÁ¡ ‡®¡‘ —π)*** Dr. Anuvat Sirivat (¥√. Õπÿ«—≤πå »‘√‘«—≤πå)**** ABSTRACT The reaction of lead acetate trihydrate Pb(CH3COO)2.3H2O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides, in one step, an access to a polymer-like precursor of lead glycolate [-PbOCH2CH2O-] via oxide one pot synthesis (OOPS). The lead glycolate precursor has superior electrical properties than lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material mixed with other precursors such as titanium glycolate and sodium tris (glycozirconate) to produce lead titanate, lead zirconate, and lead zirconate titanate by sol-gel transition process. ∫∑§¥¬— àÕ ß“π«‘®—¬π’ȉ¥â»÷°…“°“√‡°‘¥ªØ‘°‘√‘¬“√–À«à“߇≈¥Õ–´’‡µ¥‰µ√‰Œ‡¥√µ ·≈–‡Õ∑‘≈’π‰°≈§Õ≈‚¥¬„™â “√ ‰µ√‡Õ∑‘≈’π‡µµ√–¡’π‡ªìπ§–µ–≈’ µå‡æ◊ËÕ„™â„π°“√º≈‘µ “√µ—Èßµâπ‚æ≈‘‡¡Õ√å§◊Õ‡≈¥‰°≈‚§‡≈µ [-PbOCH2CH2O-] ∑ ”§’Ë ≠™π— ¥Àπ‘ ßµ÷Ë Õ¢∫«π°“√𔉪„™à „π°“√ â ߇§√“–À— å “√‰¥Õ‡≈§µ√‘ °™π‘ ¥µ‘ “ßÊà ‰¥·°â à “√‡øÕ√‚√‰¥Õå ‡≈§µ√‘ °‘ “√·Õπ‰∑‡øÕ√å‚√Õ‘‡≈§µ√‘°·≈– “√‡æ’¬‚´‰¥Õ‘‡≈§µ√‘°®“°°“√ —߇§√“–Àå¥â«¬ “√ª√–°Õ∫ÕÕ°‰´¥å‡æ’¬ß ¢—ÈπµÕπ‡¥’¬«∑’ˇ√’¬°«à“ Oxide One Pot Synthesis (OOPS) ∑”„À≥⠓√µ—Èßµâπ‡≈¥‰°≈‚§‡≈µ¡’ ¡∫—µ‘∑“߉øøÑ“ ¥’°«à“‡≈¥Õ–´’‡µ¥‰µ√‰Œ‡¥√µ πÕ°®“°π’Ȭ—ß “¡“√∂𔉪„™âº ¡°—∫ “√µ—Èßµâπ™π‘¥Õ◊ËπÊ ‡™àπ ‰∑∑“‡π’¬¡ ‰°≈‚§‡≈µ·≈–‚´‡¥’¬¡∑√’ ‰°≈‚§‡´Õ√傧‡πµ‡æ◊ËÕº≈‘µ‡≈¥‰∑∑“‡πµ ‡≈¥‡´Õ√傧‡πµ·≈–‡≈¥‡´Õ√傧‡πµ ‰∑∑“‡πµ ‚¥¬ºà“π°√–∫«π°“√‚´≈-‡®≈∑√“π ‘™—Ëπ Key Words : OOPS, Sol-gel process, Dielectric materials §” ”§—≠ : OOPS °√–∫«π°“√‚´≈-‡®≈ «— ¥ÿ‰¥Õ‘‡≈§µ√‘° * Ph.D. of Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand 10330 ** Assoc. Prof., Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand 10330 *** Prof., The Macromolecule Science Department, Case Western Reserve university, Cleveland, Ohio, USA. **** Assoc. Prof., Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand 10330 KKU Res J (GS) 7 (1) : January - March 2007 37 Introduction high purity, but they are expensive and extremely The semiconducting materials, such as moisture sensitive (Brinker et al., 1990). ferroelectrics, antiferroelectrics, superconductor and Ferroelectric crystals necessarily possess piezoelectric products, show great potentials for using both pyroelectric and piezoelectric properties. as sensors, actuators, transducers, electro-optic Many lose these polar properties at the transition or devices, thermistors, microelectro mechanical the Curie temperature Tc. A nonpolar phase above system (MEMS) applications (micromotors, Tc is called paraelectric phase. Lead titanate and microvalves, micropumps), PTC (positive lead zirconate titanate are kinds of ferroelectric temperature coefficient), acoustic transducer, materials which have electric dipole moment which binary ferroelectric memory, resistors and can be spontaneously polarized with reversibility capacitors because of their good properties on [1,4-7]. Furthermore, ferroelectric can be used as dielectricity, pyroelectricity and piezoelectricity biosensor such as piezo-sensing devices and (Fang et al,1999; Lobmann et al.,1995; Paris biosensors for urea, glucose, DNA, immune et al., 1998; YXL, 1993). The most common and cholesterol (Brinker et al., 1990). Lead zirconate well-known electrical and semiconducting ceramic is an antiferroelectric material having a non-permanent electric dipole moment whose materials are lead titanate (PbTiO3), lead zirconate complete or partial realignment can be reversible (PbZrO3), lead zirconate titanate (PZT or under appropriate conditions. Lead zirconate can Pb(Zr,Ti)O3) and lead/lanthanum zirconate show a phase switching from the antiferroelectric titanate (PLZT or (Pb,La) (Zr,Ti)O3). Many processes to produce these semiconducting phase to the ferroelectric phase by applying electric ceramic materials include the sol-gel method, field or raising temperature. The methods required the chemical co-precipitation, the hydrother mal for the synthesis of alkoxy derivatives of an synthesis, the traditional solid state reaction of mixed element generally depend on its electronegativity oxides, the molten salt preparation, the solvothermal and electron configuration. The chelating nature of synthesis, the emulsion technique, and the complex the glycol and the coordinative saturation achieved polymerization (YXL, 1993; Fang et al., 2002; by the central atoms in the final products appear to Hermandez et al., 2002; Bersani et al., 1995; be the main factor for their hydrolytic stability to Gurkovich et al., 1982; Palchik et al, 2000). retard the hydrolysis and condensation reaction rates The sol-gel process has an advantage over others in order to form homogeneous gels rather than in producing various shapes during the gel-state precipitates (Kakihana et al., 1997). Other work at low processing temperatures, e.g., monoliths, reported metalloglycolates formed from alkaline films, fibers and monosized powders along with glycol such as aluminium, silicon, titanium, and compositional and microstructural controls (Brinker magnesium-aluminium (Yang et al., 2001; et al.., 1990). For conventional processes of Day et al., 1996; Brinker et al., 1986). producing semiconducting ceramics, the starting raw Specifically, (Archer et al., 1996) studied the role materials from metal alkoxide precursors require very of precursor segregation in the formation of the 38 «“√ “√«‘®—¬ ¡¢. (∫».) 7 (1) : ¡.§. - ¡’.§. 2550 perovskite phase PbTiO3 using either lead oxy Company Limited (TIG). Lead acetate trihydrate glycolate Pb(OCH2CH2O)2 or lead phenoxy Pb(CH3COO)2 .3H2O containing 99.5% purity was glycolate compounds. The lead precursors were purchased from Asia Pacific Specialty Chemical synthesized by refluxing the lead carbonate with Limited (Australia) and used as received. Titanium an appropriate carboxylic acid in water. dioxide was purchased from Sigma-Aldrich From previous studies, the sol-gel Chemical Co., Ltd. (USA). Zirconium (IV) process appears to be the mildest method to hydroxide Zr(OH)4 containing 88.8% ZrO2 was produce lead titanate, lead zirconate, lead zirconate purchased from Aldrich Chemical Co., Inc. (USA). titanate. In an all-alkoxide sol-gel process, Ethylene glycol (EG) was purchased from alkoxides of the constituent elements show Farmitalia Carlo Erba (Barcelona) or Malinckrodt different reactivities toward water so that the Baker, Inc. (USA). Triethylenetetramine (TETA) preparation of multicomponent homogeneous was purchased from Facai Polytech. Co., Ltd. systems is difficult. The high cost of the alkoxide (Thailand) and distilled under vacuum (0.1 mm/ reagents and the need to work under inert Hg) at 130 ÌC prior to use. Acetonitrile was atmospheres are major disadvantages of this purchased from Lab-Scan Co., Ltd. system. Inorganic and organic salts have also been The starting raw materials, lead glycolate, used for the sol-gel processing of multicomponent titanium glycolate and sodium tris (glycozirconate) systems when the use of constituent alkoxides were synthesized by the oxide one pot synthesis become difficult or unnecessary. Many researches process (OOPS) which was less moisture sensitive. by Wongkasemjit et al., group reports have Precursor Synthesis demonstrated that using the Oxide One Pot Lead Glycolate [16] Synthesis (OOPS) process, moisture stable metal Lead glycolate was synthesized via the alkoxides can be successfully synthesized. OOPS process. A mixture of lead acetate trihydrate Therefore, the aim of this study is to synthesize (Pb(CH3COO)2.3H2O, 0.1 mol, 37.9 g), high purity lead titanate, lead zirconate and lead ethylene glycol (EG, 0.1 mol, added excess 50 zirconate titanate (PZT) via the sol-gel process using cm3) and triethylenetetramine (TETA, 0.1 mol, lead glycolate, titanium glycolate and sodium tris 14.6 g) acted as a catalyst when heated at the (glycozirconate) precursors from the OOPS boiling point of EG under N2 in a thermostated oil process. We also investigate the influence of bath. The excess EG was slowly distilled off as to calcination temperature and time on physical and remove water liberated from reaction. After heating chemical properties; i.e., morphology, phase at 200 ÌC for 1 h, the solution color changed to be transformation, and electrical properties. yellow or golden brown. The reaction mixture was cooled to obtain a crude precipitate product Experiment followed by filtration with acetonitrile. The light Materials bronze solid product was obtained and dried in UHP grade nitrogen, 99.99% purity, was a vacuum dessicator (0.1 mm Hg) at room obtained from Thai Industrial Gases Public temperature and characterized using FTIR, KKU Res J (GS) 7 (1) : January - March 2007 39 13C-NMR,FAB+-MS, TGA, pycnometer and removed by the vacuum distillation to obtain a crude Impedance Analyzer. precipitate. The white solid product was washed with acetonitrile and dried in a vacuum dessicator before characterization using FTIR, TGA. FTIR bands observed were: 2778-2829 cm-1 correspond ing to the C-H stretching of ethylene glycol bidentate ligand, 1086
Recommended publications
  • The Titanium Industry: a Case Study in Oligopoly and Public Policy
    THE TITANIUM INDUSTRY: A CASE STUDY IN OLIGOPOLY AND PUBLIC POLICY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of the Ohio State University by FRANCIS GEORGE MASSON, B.A., M.A. The Ohio State University 1 9 5 k Content* L £MR I. INTRODUCTION............................................................................................... 1 II. THE PRODUCT AND ITS APPLICATIONS...................................... 9 Consumption and Uses ................................. 9 Properties ........................................................ ...... 16 III. INDUSTRY STRUCTURE................................................................................ 28 Definition of the I n d u s t r y ............................................ 28 Financial Structure. ..••••••.••. 32 Alloys and Carbide Branch. ........................... 3 k Pigment Branch .............................................................................. 35 Primary Metal Branch ................................. 1*0 Fabrication Branch ................................. $0 IT. INDUSTRY STRUCTURE - CONTINUED............................................. $2 Introduction ................................ $2 World Production and Resources ................................. $3 Nature of the Demand for Ram Materials . $8 Ores and Concentrates Branch. ••••••• 65 Summary.................................................................. 70 V. TAXATION. ANTITRUST AND TARIFF POLICY............................
    [Show full text]
  • Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators
    Review Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators Klaus Reichmann 1,*, Antonio Feteira 2,† and Ming Li 3,† Received: 19 October 2015; Accepted: 23 November 2015; Published: 4 December 2015 Academic Editor: Lorean Pardo 1 Institute of Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria 2 Materials and Engineering Research Institute, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK; [email protected] 3 Advanced Materials Research Group, Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK; [email protected] * Correspondence: [email protected]; Tel.: +43-316-8733-2321 † These authors contributed equally to this work. Abstract: The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized. Keywords: piezoelectric actuator; multilayer; lead-free; bismuth sodium titanate 1.
    [Show full text]
  • Circular of the Bureau of Standards No. 539 Volume 5: Standard X-Ray
    : :;.ta^4aya9 . Bl.ig NBS CIRCULAR 539 VOLUME V Reference taken Standard X-ray Diffraction Powder Patterns UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Standard X-ray Diffraction Powder Patterns The four previously issued volumes in this series are avail- able from the Superintendent of Documents, U. S. Govern- ment Printing Office, Washington 25, D. C., as follows: NBS Circular 539, Volume I, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) NBS Circular 539, Volume II, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) NBS Circular 539, Volume III, Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances) NBS Circular 539, Volume IV, Standard X-ray Diffraction Powder Patterns (Data for 42 inorganic substances) The price of each volume is 45 cents. Send orders with remittance to: Superintendent of Documents, Government Printing Office, Washington 25, D. C. UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Standard X-ray Diffraction Powder Patterns Howard E. Swanson, Nancy T. Gilfrich, and George M. Ugrinic National Bureau of Standards Circular 539 Volume V, Issued October 21, 1955 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 45 cents CONTENTS Page Page Introduction 1 Standard X-ray powder patterns—Continued Standard X-ray powder patterns: Lead titanate, PbTi0 3 39 Ammonium chloroplatinate, (NH 4 ) 2 PtCl 6 3 Magnesium tin, Mg 2 Sn 41 Ammonium chlorostannate, (NH 4 ) 2 SnCl 6 4 Magnesium titanate (geikielite), MgTi0 3 43 Ammonium fluosilicate (cryptohalite), Manganese (II) oxide, (manganosite) MnO._ 45 (NH 4 ) 2 SiF6 5 Molybdenum disulfide (molybdenite), MoS 2 _.
    [Show full text]
  • Polcawich, Ronald: Design, Fabrication, Test, and Evaluation Of
    The Pennsylvania State University The Graduate School Department of Materials Science and Engineering DESIGN, FABRICATION, TEST, AND EVALUATION OF RF MEMS SERIES SWITCHES USING LEAD ZIRCONATE TITANATE (PZT) THIN FILM ACTUATORS A Thesis in Materials Science and Engineering by Ronald G. Polcawich ©2007 Ronald G. Polcawich Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2007 The thesis of Ronald G. Polcawich was reviewed and approved* by the following: Susan Trolier-McKinstry Professor of Ceramic Science and Engineering Thesis Advisor Chair of Committee Clive A. Randall Professor of Materials Science and Engineering Thomas R. Shrout Professor of Materials Srinivas Tadigadapa Associate Professor of Electrical Engineering Madan Dubey Research Physicist, US Army Research Laboratory Special Member Gary Messing Distinguished Professor of Ceramic Science and Engineering Head of Department of Materials Science and Engineering *Signatures are on file in the Graduate School. Abstract The aim of this thesis was to design and prototype a robust, low voltage RF MEMS switch for use in military phased arrays. The frequencies of interest for this work include very low frequencies down to DC operation with the upper limit extending to at least 40 GHz. This broad frequency requirement requires a robust high frequency design and simulation using microwave transmission lines. With the aid of researchers at the US Army Research Laboratory, co-planar waveguide (CPW) transmission lines were chosen and designed to provide a low loss, 50 ohm impedance transmission line for the switch. CPW designs allow for both series and shunt switch configuration with this work focusing on a series switch.
    [Show full text]
  • Structure and Properties of Lead Zirconate Titanate Thin Films by Pulsed Laser Deposition GOH WEI CHUAN
    Structure and Properties of Lead Zirconate Titanate Thin Films by Pulsed Laser Deposition GOH WEI CHUAN (B.Sc (Hons), NUS) A THESIS SUBMITTED FOR THE DEGREE OF Doctoral of Philosophy Department of Physics National University of Singapore 2005 Acknowledgements I would like to express my deepest gratitude to my supervisors, Prof. Ong Chong Kim and Dr. Yao Kui. I would like to thank Prof. Ong for giving me the opportunity to study and perform research work in the Center of Superconducting and Magnetic Materials (CSMM). His passion and enthusiasm in the search for understanding the underlying physics of the experiments have deeply influenced my mindset in conducting experiments and will continue to be my source of inspiration and guidance. Without Prof. Ong’s constant guidance and criticism, I would have lost my bearing in the vast sea of knowledge, and would not have reached this far. I would also like to express my greatest appreciation to Dr. Yao Kui in Institute of Material Research and Engineering (IMRE). His constant advice and meticulous attention to the theoretical and experimental details had deeply influenced my way of research both in designing experiments and interpreting the results. Without his supervision and encouragements in countless hours of his time, it would not be possible for me to complete my publications and thesis. For that I am in debt to him and will forever remember his advice when pursuing my future endeavors. I am indebted to my fellow colleagues in CSMM, IMRE and Department of Physics, NUS, including A/P Sow Chorng Haur, Xu Sheng Yong, Wang Shi Jie, Li Jie, Yang Tao, Tan Chin Yaw, Rao Xue Song, Chen Lin Feng, Yan Lei, Kong Lin Bing, Liu Hua Jun, Lim Poh Chong, Yu Shu Hui, Gan Bee Keen and all those have shared their time helping me and discussing with me in this project.
    [Show full text]
  • Dielectric and Electrical Properties of Lead Zirconate Titanate
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2015, 7(10):175-185 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Dielectric and electrical properties of lead zirconate titanate R. Balusamy a, P. Kumaravel b and N. G. Renganathan c* aDepartment of Mechanical Engineering, Al-Ameen Engineering College, Erode bDepartment of Mechanical Engineering, Institute of Road and Transport Technology, Erode c School of Basic Sciences, Vel Tech University, Chennai _____________________________________________________________________________________________ ABSTRACT o Lead zirconate titanate (PZT) (P bZrO3- PbTiO3) were prepared by mixed oxide method at 1100 C. Crystalline nature of the synthesized PZT has been confirmed by X-ray powder diffraction studies. The particle size and strain is calculated from X-ray peak broadening analysis by using Williamson-Hall plot. The crystallite size is also calculated using Debye-Scherrer’s formula. Also, the surface morphology and particle size of the samples were imaged using scanning electron microscopy (SEM). Dielectric measurement demonstrates that decrease in dielectric constant with increase in temperature. The temperature dependence of the ac conductivity indicated that the conduction process is due to singly ionized (in ferroelectric region) and doubly ionized (in paraelectric region). Key words : PZT ceramics, dielectric spectroscopy, dielectric losses, SEM. _____________________________________________________________________________________________ INTRODUCTION Lead zirconate titanate (PZT) – a ferroelectric ceramic material has piezoelectric properties and reciprocal behavior. This material is used to convert electrical energy into mechanical energy and vice-versa. The material properties of PZT have been the subject for significant research in recent years due to its excellent applications in micro- electromechanical (MEMS) and nano-electromechanical (NEMS) devices.
    [Show full text]
  • A New PZT (Lead Zirconate Titanate) Piezoelectric Transducer Performances Analysis
    International Journal of Research Studies in Science, Engineering and Technology Volume 1, Issue 6, September 2014, PP 1-7 ISSN 2349-4751 (Print) & ISSN 2349-476X (Online) A new PZT (Lead Zirconate Titanate) Piezoelectric Transducer Performances Analysis Pande A.S1, Prof (Dr.) Kushare B.E.2, Prof. A.K.Pathak3 1Electrical Engineering Dept. K. K. Wagh Institute of Engineering Education and Research, Nashik (MS), India. (Research Schola) 2Professor & H.O.D., Electrical Engineering Dept, K. K. Wagh Institute of Engineering Education and Research, Nashik (MS), India 3Electrical Engineering Dept. AVCOE, Sanagamner, Ahmednagar (MS), India Abstract: Presently there is number of Current measuring devices/ instrument are widely use for measurement of low and high current measurement. In the past decades there was surprisingly low attention of Electrical sensor, this sensor are very useful for replacing some kind of equipment in our existing power system. These measuring requirements are fulfill by using conventional sources out of which Piezoelectric Transducer is having major contribution in future. Considering the rate at which conventional sources are being consumed more power, cost, size and their life into control of power system, it is necessary to adopt alternate current measure ring technology for sustainable development. Out of various current measuring systems, Piezoelectric Transducer is most cost effective in addition to its various advantages. Considering the increasing share of Piezoelectric Transducer interfaced into the system it is necessary to study the power quality and current quality and stability issues. In case of conventional type CT use of copper is cost effective way is essential. This paper presents the operating principle, the performance MATLAB/SIMULATION, and the design of a piezoelectric transducer for measuring high currents.
    [Show full text]
  • Tin Titanate – the Hunt for a New Ferroelectric Perovskite
    Tin Titanate – the hunt for a new ferroelectric perovskite J. Gardner,1 Atul Thakre,2,3 Ashok Kumar,2,3 J. F. Scott,1,4 1 School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom 2 CSIR-National Physical Laboratory (CSIR-NPL), Dr. K. S. Krishnan Road, Delhi 110012, India 3 Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K. S. Krishnan Road, Delhi 110012, India 4 School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom Email: [email protected] and [email protected] Abstract We review all the published literature and show that there is no experimental evidence for homogeneous tin titanate SnTiO3 in bulk or thin-film form. Instead a combination of unrelated artefacts are easily misinterpreted. The X-ray Bragg data are contaminated by double scattering from the Si substrate, giving a strong line at the 2-theta angle exactly where perovskite SnTiO3 should appear. The strong dielectric divergence near 560K is irreversible and arises from oxygen site detrapping, accompanied by Warburg/Randles interfacial anomalies. The small (4 uC/cm2) apparent ferroelectric hysteresis remains in samples shown in pure (Sn,Ti)O2 rutile/cassiterite, in which ferroelectricity is forbidden. Only very recent German work reveals real bulk SnTiO3, but this is completely inhomogeneous, consisting of an elaborate array of stacking faults, not suitable for ferroelectric devices. Unpublished TEM data reveal an inhomogeneous SnO layered structured thin films, related to shell-core structures. The harsh conclusion is that there is a combination of unrelated artefacts masquerading as ferroelectricity in powders and ALD films; and only a trace of a second phase in Cambridge PLD data suggests any perovskite content at all.
    [Show full text]
  • Download This Article in PDF Format
    E3S Web of Conferences 270, 01011 (2021) https://doi.org/10.1051/e3sconf/202127001011 WFCES 2021 SEM imaging and XPS characterization of doped PVDF fibers Tereza Smejkalová1, Ştefan Ţălu2,*, Rashid Dallaev1, Klára Částková1,3, Dinara Sobola1,3,4, and Anton Nazarov5 1Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic 2The Technical University of Cluj-Napoca, Constantin Daicoviciu Street, no. 15, Cluj-Napoca, 400020, Cluj county, Romania 3Central European Institute of Technology BUT, Purkyňova 123, 612 00 Brno, Czech Republic 4Dagestan State University, Makhachkala, St. M. Gadjieva 43-a, Dagestan Republic 367015, Russia 5Ural State University of Economics, Russian Federation Abstract. Polyvinylidene fluoride (PVDF) is one of the most promising electroactive polymers; it exhibits excellent electroactive behaviours, good biocompatibility, excellent chemical resistance, and thermal stability, rendering it an attractive material for biomedical, electronic, environmental and energy harvesting applications. This work aims to further improve its properties by the inclusion of powders of piezoactive materials. Polyvinylidene fluoride was formed by electrospinning into fibres with a thickness of 1.5-0.3 µm and then examined in a scanning electron microscope. The work offers a description of the current procedure in the preparation of samples and their modification for examination in a scanning electron microscope, characterizes the individual components of doped fibres and deals with specific instruments used for various analytical methods. The work contains a theoretical introduction to the analytical methods to which the samples will be further subjected, such as energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS). The obtained excellent properties of doped PVDF could be used in the design of sensors.
    [Show full text]
  • Piezoelectric Response of Lead Titanate As a Function of Size
    Piezoelectric response of Lead Titanate as a function of size Master thesis by Yizhi Wu Zernike Institute, University of Groningen Group: Solid state materials for electronics Supervisors: Prof. dr. Beatriz Noheda Drs. Oleksiy Nesterov Period: September 2010-July 2011 Abstract In this project, the size effect of ferroelectric PbTiO 3 (PTO) thin films is investigated. The piezoelectric coefficient d 33 describes the linear relationship between the vertical deformation of a piezoelectric crystal and the external electric field. The theoretical analysis predicted that the d 33 increases with decreasing lateral sizes of the PTO thin film due to the release of the clamping to the substrate. In this project, the PTO thin film was fabricated into ~1 µm islands and the piezoelectric response was measured. The PTO samples are prepared by Pulsed Laser Depostion (PLD), upon a SrRuO 3 (SRO) bottom electrode and a DyScO 3 (DSO) substrate. The PTO films are [001] oriented single crystals, with a thichness of 30nm. The PTO islands are designed by Electron Beam Lithography (EBL) and etched by buffered HF (BHF). The 30nm PTO films were successfully etched, with the lateral sizes ranging from 5×5 µm2 to 0.5×0.5 µm2. The topography measured by Atomic Force Microscopy (AFM) showed that the PTO islands were in good shape. The ferroelectric polarization could be switched by Piezoelectric Force Microscopy (PFM). The piezoelectric hysteresis loop measured by PFM demonstrated that the piezoelectric coefficient d33 increases with decreasing lateral sizes, in a
    [Show full text]
  • Universität Bonn Physikalisches Institut
    DE13F7563 Universität Bonn Physikalisches Institut X-Ray Absorption Spectroscopy in Biological Systems: Opportunities and Limitations von Gudrun Lisa Bovenkamp X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L3- and Ag L3-XANES spectra with regard to their chemical environment. It was shown that Pb L3- and Ag L3 -XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls.
    [Show full text]
  • Properties of Piezoelectric Ceramics in the Solid-Solution Series Lead Titanate-Lead Zirconate-Lead Oxide
    Journal of Research of the National Bureau of Standards Vol. 55, No.5, November 1955 Research Paper 2626 Properties of Piezoelectric Ceramics in the Solid-Solution Series Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Hafnate 1 B. Iaffe/ R. S. Roth, and S. Marzullo Compositional proximity to a morphotropic transformation between two ferroelectric solid-solution phases seems to yield ceramic transducers having desirable properties over a wide range of temperature. Examples of t his phenomenon were observed in the systems PbTi03-PbZr03, PbTi03-PbO:Sn02, PbTi03-PbZr03-PbO:SnO" and PbTi03-PbHf03. The dielectric and piezoelectric properties of ceramics having compositions in these systems and in t he system PbZr03-PbO:Sn02 are described. The composition Pb(Ti .. 5Zr .5,) 0 3 exhibits a high radial coupling coefficient, greater than 0.3, for temperatures as high as 275 0 C and has t he highest g31 constant, 1l.7 X 10- 3 volt -meters per ne\\·toll. For the series of compositions containing 30 percent PbO:SnO, in the ternary system PbTi03-PbZr03-PbO:Sn02 the tetragonal composition nearest the morphotropic boundary has the highest d31 value, 74 X 10- 12 coulombs per newton. The rhombohedral composition nearest. the morphotropic boundary sho\\'s the least change of frequency co nstant with temperature, a 2 perce nt variation over t he range of 25 0 to 225 0 C. 1. Introduction type structure, AB03, in which th e A ions occupy the corners and the B ions occupy the center position Piezo el ectric ceramic transducers can be fabricated of the unit cell, with the oxygen ions at the center of in a wide variety of shapes and siz es.
    [Show full text]