All 24.1.1 Alt1-61

Total Page:16

File Type:pdf, Size:1020Kb

All 24.1.1 Alt1-61 June 26, 1945. A. T. McCORD ET AL 2,379,019 PREPARATION OF PIGMENTARY MATERIALS Filed May 29, 1942 2 Sheets-Sheet 1 RUTLE ANATASE Y-TANCACD SPINEL, MgA,0, ZNC TTANATE ZnTO, LMENITE, FeTiO, MAGNESUM TTANATE MgTiO, 9 ZING TANATE NVENTORS Azar (a 2/7 (or a All B24.1.1 (7//ova A'.5ozzzzi Alt1-61 (62/5 ATTORNEYS June 26, 1945. A. T. McCORD ETAL 2,379,019 PREPARATION OF PIGMENTARY MATERIALs Filed May 29, 1942 2 Sheets-Sheet 2 To-Zno w TEORECA RUTLEliot Xzr Toyto, ----- experimeNA ANATASExZnTOy Tot TiO, ZnTorzno 90 80 70 60 SO AO 3O 20 O ZnO O 2. 33 ?: p 60 o 33 90 E. 4. .3 . 67. , 25 . 1000 RuTILE, Tor xZnTidyTo\\\\\\\\\*7ty". Cubic) it.o.ut goo RUTILE, Tot KZnTidy T.O. (HEX) ZnOy TiO, Z ANATASE,-- to ZANATASETO,Z -- xZnTidyTiO,; 10% ZxZntiquid E" ANATASE. Torzno 6 to ido 90 % Znd MoisésMoso Ana,yev ZaacSara COy faroda ASzezzaars 274MeaAt TORNEYS Patented June 26, 1945 2,379,019 UNITED STATES PATENT of FICE 2,379,019 PREPARATION OF PIGMENTARY - MATERIALs Andrew T. McCord and Barold F. Saunders, Ead donfield, N. J., assignors to The Sherwiri-Wi Ohioams Company, Cleveland, Ohio, a company of Application May 29, 1942, serial No. 445,022 23 Claims. (C. 106-300) An object of this invention is to prepare pig found that when a relatively small amount of a Enents of high durability characteristics and ex titanate, especially one of the metatitanate type, cellent pigmentary properties, comprising ti is introduced into the titanium dioxide itself, in tanium dioxide detectable by X-ray analysis as the manner hereinafter described, a consider anatase or rutile, and/or compounds having the 5 able improvement in chalk resistance is obtained general formula acRTiOasyFiOa, where R is a bi at the expense of only a minor reduction in the Valent metal, where gy may be zero or a quantity, hiding power of paints made from this pigment. and where TiO2 is titanium dioxide present in When the quantity of titanate so introduced is solid Solution in the RTiO3, and determinable by very small, there may be an actual improvement chemical analysis as an excess over the theo in the color and brightness. retical proportion for RTiO3. More particularly, Several processes have been devised for the the present invention is concerned with pigments conversion of anatase into rutile, mixtures of in which the R of RTO is zinc, and in the fol rutile and zinc orthotitanate (ZnTiO4) and/or lowing specification we will describe in detail Solid solutions of titanium oxide in zinc ortho Only that embodiment of the broader invention. titanate. The high hiding power or obliterating power of Thus, for example, Goldschmidt U. S. Patent titanium dioxide, particularly when in the pig No. 1348,129 converts precipitated titanium di mentary rutile modification is well known, and oxide to the rutile modification by heating at 900 titanium dioxide is, therefore, a preferred pig C. to 1000 C. in the presence of a volatile halo ment for white paints of all types, where the 20. gen compound, as Zinc chloride. Goldschmidt maximum obliteration of the surface to be paint in U. S. Patent 1,436,164 converts the anatase led is desired. One of the objections to titanium form of titanium dioxide, as precipitated by ther pigments for paint-and other usage is the tend mal hydrolysis of an ilmenite solution, to a ti ency for these pigments to chalk out of the paint tanate by heating it, together with a compound film when exposed to weather. In tinted paints of a bivalent metal compound such as a com using titanium dioxide in combination with a pound of calcium, strontium, barium, magnesium, coloring pigment, the chalking of the titanium lead, zinc, or manganese. Cole in U. S. Patent induces a white, dusty surface on the paint film 2,184,938 obtains mixtures of titanium dioxide which lightens the apparent tint or color of the and solid solutions of titanium dioxide in zinc paint, and the effect is known as “fading." The 30 Orthotitanate by heating titanium dioxide with titanates, such as zinc titanate or lead titanate, varying proportions of a zinc compound in the are far superior to titanium dioxide as respects presence of a phosphate compound. Booge, in chalk resistance and fading resistance when used U. S. Patent 2,253,551 produces titanium oxide with coloring pigments, but lack the superior in the rutile form intimately combined and asso hiding power of the titanium dioxide ciated with minor amounts of zinc orthotitanate The addition of a titanate, such as zinc titanate by heating a mixture of titanium oxide of the or lead titanate, to paints formulated primarily anatase modification and a minor proportion of with titanium dioxide as the principal pigment a zinc compound. has been recommended for the purpose of in In all of these processes the titanium oxide proving resistance to chalking. In general, it has 40 used in the starting mixture has been the anatase been found, however, that the proportion of ti modification either as precipitated by thermal tanate required to effect a satisfactory improve hydrolysis from ilmenite solutions or titanium . ment in the resistance to chalking has been so Sulphate solutions, or from the calcination of great that the consequent drop in hiding power these precipitates. The titanate obtained has and color of the paint is excessive. We have 45 been the 2inc orthotitanate of cubic symmetry, 2 2,379,019 formula aczngTiO4.gTiO2, in which ac and 2) are and of the spinel structural type. (Cole and Nel whole numbers and ac is greater than 2), and we son, J. Phys. Chem. vol. 42, Feb. 1938, pp. define the term "zinc-titanium-oxygen Con 245-251.) pound of the ilmenite structure type' as mean We have found that when mixtures in varying ing either the pure zinc metatitanate of hexag proportions of ?y-titanic acid and a metal oxide, onal symmetry and the ilmenite structure type, such as zinc oxide, are heated, entirely differ or a solid solution of titanium dioxide therein, ent results are obtained as compared to similar and of the general formula, acznTiO3.gTiO2. treatment of similar mixtures but in which the We are aware that Lederle in U. S. Patent titanium is supplied as anatase. As will be later 0 2,140,235 states that zinc titanate pigments are pointed out, titanium dioxide in the y-titanic obtained by heating zinc oxide with titanium acid modification does not conform to the teach dioxide in the proportion of at least 0.9 moi of ings of prior art dealing with reaction between zinc oxide to 1 mol of titanium dioxide at tem a titanium compound and a metal compound to peratures between 500° C. and 1100° C. He also form titanates. The tendency for combination of the y-titanic states that between the limits of 1 to 1.5 mois of acid and an oxide, as zinc oxide, for example, is zinc oxide to 1 mol of titanium dioxide, with tem so noticeable even at 100 that, although the X peratures of 900 to 1100° C., mixtures of zinc ray does not reveal conversion to titanate, the titanate crystals of the spinel crystalline form metal oxide is so tightly bound to the titanium with those of the corundum crystalline form are oy adsorption or otherwise that it cannot be ex obtained, while at lower temperatures, for in tracted therefrom by leaching with the usual sol stance 500 to 900° C., mixed crystals of spinel vents for zinc oxide, such as ammoniacal am-- form only are produced; that with proportions of monium chloride. (See Table I.) The titan more than 1.5 mols of zinc oxide to 1 mol of ates prepared from y-titanic acid and a metal titanium dioxide, exclusively mixed crystals of oxide in the manner described herein are highly 25 zinc titanate having the structure of Spinel are suitable for use as pigments, possessing excellent obtained. Lederle in U. S. Patent 2,140,236 states texture, whiteness, brightness, hiding power, and that the undesirable texture characteristics resistance to Weathering. usually found in titanates obtained by heating to It is well known that the compound ZingTiO4, gether titanium dioxide and a metal oxide may zinc orthotitanate, Crystallizes in the cubic sys 30 be avoided by a combination of steps comprising tem and possesses crystalline structure of. the mutual precipitation of the compounds, a two spinel type (Wyckoff's MgAl2O4(k). (Wyckoff, The stage calcination, and pressure treatment of the structure of crystals, 2nd edition (1931), p. 292.) in-process materials. (It will be understood that The terms "symmetry" and 'structure types' are the corundum crystalline form as referred to by used in this specification and the claims attached 5 Lederle is the same as the ilmenite structural thereto in the same sense that they are employed type, the latter being the more recent nomen in Wyckoff. On p. 287 of the reference, Wyckoff clature as employed by Wyckoff and Hanawalt describes compounds, R2MXA, type (k) with the for compounds of this type.) space group Oh. The pattern of ZnTiO3 has not The probable phase diagram covering the sys hitherto been published, and this compound has 40 tem. TiO2/ZnO obtained by heating proportions been found by us to be of hexagonal symmetry of titanium dioxide in the form of anatase, such and of the FeTiO3 or ilmenite structure type. for instance as is derived from thermal hydroly Wyckoff's ilmenite, FeTiO3 (aac). (Wyckoff, The sis of sulphate solutions of titanium in the usual structure of crystals, Supplement, 2nd ed.
Recommended publications
  • A Novel Route to Synthesis of Lead Glycolate and Perovskite Lead Titanate, Lead Zirconate, and Lead Zirconate Titanate (PZT)
    36 «“√ “√«‘®—¬ ¡¢. (∫».) 7 (1) : ¡.§. - ¡’.§. 2550 A Novel Route to Synthesis of Lead Glycolate and Perovskite Lead Titanate, Lead Zirconate, and Lead Zirconate Titanate (PZT) via Sol-Gel Process π«—µ°√√¡¢Õß°√–∫«π°“√ —߇§√“–Àå‡≈¥‰°≈‚§‡≈µ·≈–‚§√ß √â“ß·∫∫ ‡æÕ√Õø ‰°µå¢Õ߇≈¥‰∑∑“‡πµ ‡≈¥‡´Õ√傧‡πµ ·≈– ‡≈¥‡´Õ√傧‡πµ‰∑∑“‡πµ ºà“π°√–∫«π°“√‚´≈-‡®≈ Nuchnapa Tangboriboon (πÿ™π¿“ µ—Èß∫√‘∫Ÿ√≥å)* Dr. Sujitra Wongkasemjit (¥√. ÿ®‘µ√“ «ß»å‡°…¡®‘µµå)** Dr. Alexander M. Jameison (¥√. Õ‡≈Á°´“π‡¥Õ√å ‡ÕÁ¡ ‡®¡‘ —π)*** Dr. Anuvat Sirivat (¥√. Õπÿ«—≤πå »‘√‘«—≤πå)**** ABSTRACT The reaction of lead acetate trihydrate Pb(CH3COO)2.3H2O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides, in one step, an access to a polymer-like precursor of lead glycolate [-PbOCH2CH2O-] via oxide one pot synthesis (OOPS). The lead glycolate precursor has superior electrical properties than lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material mixed with other precursors such as titanium glycolate and sodium tris (glycozirconate) to produce lead titanate, lead zirconate, and lead zirconate titanate by sol-gel transition process. ∫∑§¥¬— àÕ ß“π«‘®—¬π’ȉ¥â»÷°…“°“√‡°‘¥ªØ‘°‘√‘¬“√–À«à“߇≈¥Õ–´’‡µ¥‰µ√‰Œ‡¥√µ ·≈–‡Õ∑‘≈’π‰°≈§Õ≈‚¥¬„™â “√ ‰µ√‡Õ∑‘≈’π‡µµ√–¡’π‡ªìπ§–µ–≈’ µå‡æ◊ËÕ„™â„π°“√º≈‘µ “√µ—Èßµâπ‚æ≈‘‡¡Õ√å§◊Õ‡≈¥‰°≈‚§‡≈µ [-PbOCH2CH2O-] ∑ ”§’Ë ≠™π— ¥Àπ‘ ßµ÷Ë Õ¢∫«π°“√𔉪„™à „π°“√ â ߇§√“–À— å “√‰¥Õ‡≈§µ√‘ °™π‘ ¥µ‘ “ßÊà ‰¥·°â à “√‡øÕ√‚√‰¥Õå ‡≈§µ√‘ °‘ “√·Õπ‰∑‡øÕ√å‚√Õ‘‡≈§µ√‘°·≈– “√‡æ’¬‚´‰¥Õ‘‡≈§µ√‘°®“°°“√ —߇§√“–Àå¥â«¬ “√ª√–°Õ∫ÕÕ°‰´¥å‡æ’¬ß ¢—ÈπµÕπ‡¥’¬«∑’ˇ√’¬°«à“ Oxide One Pot Synthesis (OOPS) ∑”„À≥⠓√µ—Èßµâπ‡≈¥‰°≈‚§‡≈µ¡’ ¡∫—µ‘∑“߉øøÑ“ ¥’°«à“‡≈¥Õ–´’‡µ¥‰µ√‰Œ‡¥√µ πÕ°®“°π’Ȭ—ß “¡“√∂𔉪„™âº ¡°—∫ “√µ—Èßµâπ™π‘¥Õ◊ËπÊ ‡™àπ ‰∑∑“‡π’¬¡ ‰°≈‚§‡≈µ·≈–‚´‡¥’¬¡∑√’ ‰°≈‚§‡´Õ√傧‡πµ‡æ◊ËÕº≈‘µ‡≈¥‰∑∑“‡πµ ‡≈¥‡´Õ√傧‡πµ·≈–‡≈¥‡´Õ√傧‡πµ ‰∑∑“‡πµ ‚¥¬ºà“π°√–∫«π°“√‚´≈-‡®≈∑√“π ‘™—Ëπ Key Words : OOPS, Sol-gel process, Dielectric materials §” ”§—≠ : OOPS °√–∫«π°“√‚´≈-‡®≈ «— ¥ÿ‰¥Õ‘‡≈§µ√‘° * Ph.D.
    [Show full text]
  • The Titanium Industry: a Case Study in Oligopoly and Public Policy
    THE TITANIUM INDUSTRY: A CASE STUDY IN OLIGOPOLY AND PUBLIC POLICY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of the Ohio State University by FRANCIS GEORGE MASSON, B.A., M.A. The Ohio State University 1 9 5 k Content* L £MR I. INTRODUCTION............................................................................................... 1 II. THE PRODUCT AND ITS APPLICATIONS...................................... 9 Consumption and Uses ................................. 9 Properties ........................................................ ...... 16 III. INDUSTRY STRUCTURE................................................................................ 28 Definition of the I n d u s t r y ............................................ 28 Financial Structure. ..••••••.••. 32 Alloys and Carbide Branch. ........................... 3 k Pigment Branch .............................................................................. 35 Primary Metal Branch ................................. 1*0 Fabrication Branch ................................. $0 IT. INDUSTRY STRUCTURE - CONTINUED............................................. $2 Introduction ................................ $2 World Production and Resources ................................. $3 Nature of the Demand for Ram Materials . $8 Ores and Concentrates Branch. ••••••• 65 Summary.................................................................. 70 V. TAXATION. ANTITRUST AND TARIFF POLICY............................
    [Show full text]
  • Circular of the Bureau of Standards No. 539 Volume 5: Standard X-Ray
    : :;.ta^4aya9 . Bl.ig NBS CIRCULAR 539 VOLUME V Reference taken Standard X-ray Diffraction Powder Patterns UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Standard X-ray Diffraction Powder Patterns The four previously issued volumes in this series are avail- able from the Superintendent of Documents, U. S. Govern- ment Printing Office, Washington 25, D. C., as follows: NBS Circular 539, Volume I, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) NBS Circular 539, Volume II, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) NBS Circular 539, Volume III, Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances) NBS Circular 539, Volume IV, Standard X-ray Diffraction Powder Patterns (Data for 42 inorganic substances) The price of each volume is 45 cents. Send orders with remittance to: Superintendent of Documents, Government Printing Office, Washington 25, D. C. UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director Standard X-ray Diffraction Powder Patterns Howard E. Swanson, Nancy T. Gilfrich, and George M. Ugrinic National Bureau of Standards Circular 539 Volume V, Issued October 21, 1955 For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Price 45 cents CONTENTS Page Page Introduction 1 Standard X-ray powder patterns—Continued Standard X-ray powder patterns: Lead titanate, PbTi0 3 39 Ammonium chloroplatinate, (NH 4 ) 2 PtCl 6 3 Magnesium tin, Mg 2 Sn 41 Ammonium chlorostannate, (NH 4 ) 2 SnCl 6 4 Magnesium titanate (geikielite), MgTi0 3 43 Ammonium fluosilicate (cryptohalite), Manganese (II) oxide, (manganosite) MnO._ 45 (NH 4 ) 2 SiF6 5 Molybdenum disulfide (molybdenite), MoS 2 _.
    [Show full text]
  • Structure and Properties of Lead Zirconate Titanate Thin Films by Pulsed Laser Deposition GOH WEI CHUAN
    Structure and Properties of Lead Zirconate Titanate Thin Films by Pulsed Laser Deposition GOH WEI CHUAN (B.Sc (Hons), NUS) A THESIS SUBMITTED FOR THE DEGREE OF Doctoral of Philosophy Department of Physics National University of Singapore 2005 Acknowledgements I would like to express my deepest gratitude to my supervisors, Prof. Ong Chong Kim and Dr. Yao Kui. I would like to thank Prof. Ong for giving me the opportunity to study and perform research work in the Center of Superconducting and Magnetic Materials (CSMM). His passion and enthusiasm in the search for understanding the underlying physics of the experiments have deeply influenced my mindset in conducting experiments and will continue to be my source of inspiration and guidance. Without Prof. Ong’s constant guidance and criticism, I would have lost my bearing in the vast sea of knowledge, and would not have reached this far. I would also like to express my greatest appreciation to Dr. Yao Kui in Institute of Material Research and Engineering (IMRE). His constant advice and meticulous attention to the theoretical and experimental details had deeply influenced my way of research both in designing experiments and interpreting the results. Without his supervision and encouragements in countless hours of his time, it would not be possible for me to complete my publications and thesis. For that I am in debt to him and will forever remember his advice when pursuing my future endeavors. I am indebted to my fellow colleagues in CSMM, IMRE and Department of Physics, NUS, including A/P Sow Chorng Haur, Xu Sheng Yong, Wang Shi Jie, Li Jie, Yang Tao, Tan Chin Yaw, Rao Xue Song, Chen Lin Feng, Yan Lei, Kong Lin Bing, Liu Hua Jun, Lim Poh Chong, Yu Shu Hui, Gan Bee Keen and all those have shared their time helping me and discussing with me in this project.
    [Show full text]
  • Dielectric and Electrical Properties of Lead Zirconate Titanate
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2015, 7(10):175-185 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Dielectric and electrical properties of lead zirconate titanate R. Balusamy a, P. Kumaravel b and N. G. Renganathan c* aDepartment of Mechanical Engineering, Al-Ameen Engineering College, Erode bDepartment of Mechanical Engineering, Institute of Road and Transport Technology, Erode c School of Basic Sciences, Vel Tech University, Chennai _____________________________________________________________________________________________ ABSTRACT o Lead zirconate titanate (PZT) (P bZrO3- PbTiO3) were prepared by mixed oxide method at 1100 C. Crystalline nature of the synthesized PZT has been confirmed by X-ray powder diffraction studies. The particle size and strain is calculated from X-ray peak broadening analysis by using Williamson-Hall plot. The crystallite size is also calculated using Debye-Scherrer’s formula. Also, the surface morphology and particle size of the samples were imaged using scanning electron microscopy (SEM). Dielectric measurement demonstrates that decrease in dielectric constant with increase in temperature. The temperature dependence of the ac conductivity indicated that the conduction process is due to singly ionized (in ferroelectric region) and doubly ionized (in paraelectric region). Key words : PZT ceramics, dielectric spectroscopy, dielectric losses, SEM. _____________________________________________________________________________________________ INTRODUCTION Lead zirconate titanate (PZT) – a ferroelectric ceramic material has piezoelectric properties and reciprocal behavior. This material is used to convert electrical energy into mechanical energy and vice-versa. The material properties of PZT have been the subject for significant research in recent years due to its excellent applications in micro- electromechanical (MEMS) and nano-electromechanical (NEMS) devices.
    [Show full text]
  • Tin Titanate – the Hunt for a New Ferroelectric Perovskite
    Tin Titanate – the hunt for a new ferroelectric perovskite J. Gardner,1 Atul Thakre,2,3 Ashok Kumar,2,3 J. F. Scott,1,4 1 School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom 2 CSIR-National Physical Laboratory (CSIR-NPL), Dr. K. S. Krishnan Road, Delhi 110012, India 3 Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K. S. Krishnan Road, Delhi 110012, India 4 School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom Email: [email protected] and [email protected] Abstract We review all the published literature and show that there is no experimental evidence for homogeneous tin titanate SnTiO3 in bulk or thin-film form. Instead a combination of unrelated artefacts are easily misinterpreted. The X-ray Bragg data are contaminated by double scattering from the Si substrate, giving a strong line at the 2-theta angle exactly where perovskite SnTiO3 should appear. The strong dielectric divergence near 560K is irreversible and arises from oxygen site detrapping, accompanied by Warburg/Randles interfacial anomalies. The small (4 uC/cm2) apparent ferroelectric hysteresis remains in samples shown in pure (Sn,Ti)O2 rutile/cassiterite, in which ferroelectricity is forbidden. Only very recent German work reveals real bulk SnTiO3, but this is completely inhomogeneous, consisting of an elaborate array of stacking faults, not suitable for ferroelectric devices. Unpublished TEM data reveal an inhomogeneous SnO layered structured thin films, related to shell-core structures. The harsh conclusion is that there is a combination of unrelated artefacts masquerading as ferroelectricity in powders and ALD films; and only a trace of a second phase in Cambridge PLD data suggests any perovskite content at all.
    [Show full text]
  • Piezoelectric Response of Lead Titanate As a Function of Size
    Piezoelectric response of Lead Titanate as a function of size Master thesis by Yizhi Wu Zernike Institute, University of Groningen Group: Solid state materials for electronics Supervisors: Prof. dr. Beatriz Noheda Drs. Oleksiy Nesterov Period: September 2010-July 2011 Abstract In this project, the size effect of ferroelectric PbTiO 3 (PTO) thin films is investigated. The piezoelectric coefficient d 33 describes the linear relationship between the vertical deformation of a piezoelectric crystal and the external electric field. The theoretical analysis predicted that the d 33 increases with decreasing lateral sizes of the PTO thin film due to the release of the clamping to the substrate. In this project, the PTO thin film was fabricated into ~1 µm islands and the piezoelectric response was measured. The PTO samples are prepared by Pulsed Laser Depostion (PLD), upon a SrRuO 3 (SRO) bottom electrode and a DyScO 3 (DSO) substrate. The PTO films are [001] oriented single crystals, with a thichness of 30nm. The PTO islands are designed by Electron Beam Lithography (EBL) and etched by buffered HF (BHF). The 30nm PTO films were successfully etched, with the lateral sizes ranging from 5×5 µm2 to 0.5×0.5 µm2. The topography measured by Atomic Force Microscopy (AFM) showed that the PTO islands were in good shape. The ferroelectric polarization could be switched by Piezoelectric Force Microscopy (PFM). The piezoelectric hysteresis loop measured by PFM demonstrated that the piezoelectric coefficient d33 increases with decreasing lateral sizes, in a
    [Show full text]
  • Universität Bonn Physikalisches Institut
    DE13F7563 Universität Bonn Physikalisches Institut X-Ray Absorption Spectroscopy in Biological Systems: Opportunities and Limitations von Gudrun Lisa Bovenkamp X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L3- and Ag L3-XANES spectra with regard to their chemical environment. It was shown that Pb L3- and Ag L3 -XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls.
    [Show full text]
  • Properties of Piezoelectric Ceramics in the Solid-Solution Series Lead Titanate-Lead Zirconate-Lead Oxide
    Journal of Research of the National Bureau of Standards Vol. 55, No.5, November 1955 Research Paper 2626 Properties of Piezoelectric Ceramics in the Solid-Solution Series Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Hafnate 1 B. Iaffe/ R. S. Roth, and S. Marzullo Compositional proximity to a morphotropic transformation between two ferroelectric solid-solution phases seems to yield ceramic transducers having desirable properties over a wide range of temperature. Examples of t his phenomenon were observed in the systems PbTi03-PbZr03, PbTi03-PbO:Sn02, PbTi03-PbZr03-PbO:SnO" and PbTi03-PbHf03. The dielectric and piezoelectric properties of ceramics having compositions in these systems and in t he system PbZr03-PbO:Sn02 are described. The composition Pb(Ti .. 5Zr .5,) 0 3 exhibits a high radial coupling coefficient, greater than 0.3, for temperatures as high as 275 0 C and has t he highest g31 constant, 1l.7 X 10- 3 volt -meters per ne\\·toll. For the series of compositions containing 30 percent PbO:SnO, in the ternary system PbTi03-PbZr03-PbO:Sn02 the tetragonal composition nearest the morphotropic boundary has the highest d31 value, 74 X 10- 12 coulombs per newton. The rhombohedral composition nearest. the morphotropic boundary sho\\'s the least change of frequency co nstant with temperature, a 2 perce nt variation over t he range of 25 0 to 225 0 C. 1. Introduction type structure, AB03, in which th e A ions occupy the corners and the B ions occupy the center position Piezo el ectric ceramic transducers can be fabricated of the unit cell, with the oxygen ions at the center of in a wide variety of shapes and siz es.
    [Show full text]
  • Chemical Substances Control List Ver.2.8-B May 2021
    PTPD-T-N01-S01-0015 Chemical Substances Control List Ver.2.8-b May 2021 The Chemical Substances Control List (The substance list) is aimed at the control of the chemical substances contained in all products of Yokogawa group. The substances listed in this list are chosen based on the main product-related regulations and industrial standards, but don’t cover all of the regulations and industrial standards. In case that the product contains any substances regulated by specific convention, law, ordinance, it must comply with these specific regulations. The detailed substances (typical example) with CAS Registry Number® are described in Appendix. We ask you for reporting those substances which are not listed in the detailed substance list, but if they are targeted substances. Prohibited-substances 1: Table 1 Control No. A1-* Global common Prohibited substances Prohibited-substances 2: Table 2 Control No. A2-* 10 substances banned under RoHS Table 3 Control No. A3-* Prohibited substances by concentration/ threshold, etc. Prohibited-substances 3: Table 4 Control No. A4-* Prohibited substances by applications Controlled substances: Table 5 Control No. B1-* REACH SVHC Table 6 Control No. B2-* Substances whose contents must be identified * If you must delivered parts that contain substance controlled by this list, you contact us. We will respond individually. 1 Table 1 Global common Prohibited substances Regulations or industrial rules A-1: CSCL (Japan) Class I Specified Chemical Substances G: REACH Annex XVII restricted substances J-A: Stockholm Convention Annex A substances (EU POPs Regulation) K: Montreal Protocol L: Ship recycling convention M: EU ship recycling regulation T: Prohibition of Certain Toxic Substances Regulations, 2012 Regulations or Control CAS Registry Substances industrial rules No.
    [Show full text]
  • Characterization of Dense Lead Lanthanum Titanate Ceramics Prepared from Powders Synthesized by the Oxidant Peroxo Method
    Materials Chemistry and Physics 124 (2010) 1051–1056 Contents lists available at ScienceDirect Materials Chemistry and Physics journal homepage: www.elsevier.com/locate/matchemphys Characterization of dense lead lanthanum titanate ceramics prepared from powders synthesized by the oxidant peroxo method Alexandre H. Pinto a, Flavio L. Souza b, Adenilson J. Chiquito c, Elson Longo d, Edson R. Leite a, Emerson R. Camargo a,∗ a LIEC-Laboratório Interdisciplinar de Eletroquímica e Cerâmica, Departamento de Química, UFSCar-Universidade Federal de São Carlos, Rod.Washington Luis km 235, CP 676 São Carlos, SP 13565-905, Brazil b Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, Bangu, Santo André, SP 09210-170, Brazil c Departamento de Física, UFSCar-Federal University of São Carlos, Rod.Washington Luis km 235, CP 676 São Carlos, SP 13565-905, Brazil d Instituto de Química de Araraquara, UNESP-Universidade Estadual Paulista, Rua Francisco Degni, CP 355 Araraquara, SP 14801-907, Brazil article info abstract Article history: Nanosized powders of lead lanthanum titanate (Pb1−xLaxTiO3) were synthesized by means of the oxidant- Received 10 December 2009 peroxo method (OPM). Lanthanum was added from 5 to 30% in mol through the dissolution of lanthanum Received in revised form 14 July 2010 oxide in nitric acid, followed by the addition of lead nitrate to prepare a solution of lead and lanthanum Accepted 8 August 2010 nitrates, which was dripped into an aqueous solution of titanium peroxo complexes, forming a reactive amorphous precipitate that could be crystallized by heat treatment. Crystallized powders were char- Keywords: acterized by FT-Raman spectroscopy and X-ray powder diffraction, showing that tetragonal perovskite Oxides structure is obtained for samples up to 25% of lanthanum and cubic perovskite for samples with 30% Chemical synthesis ◦ Crystal structures of lanthanum.
    [Show full text]
  • Pharos Project : Materials : LEAD COMPOUNDS Accessed November 3, 2017
    Pharos Project : Materials : LEAD COMPOUNDS Accessed November 3, 2017 Building Chemicals and Certifications CompAIR Dashboard Logout Dashboard / Chemicals and Materials / LEAD COMPOUNDS Products Materials LEAD COMPOUNDS General Information Hazards Compound Group Members Compound Groups Process Chemistry Research GreenScreen C2C Compound Group Members (567): [69011-06-9] (1,2-BENZENEDICARBOXYLATO(2-))DIOXOTRILEAD [22441-40-3] (2,3,4,5,6-pentachlorophenyl)sulfanyl-triphenylplumbane * [63619-76-1] (2-fluoro-5-nitrosophenoxy)-triphenylplumbane * [500317-00-0] (3-chlorophenyl)-trimethylplumbane * [1441-24-3] (4-chlorophenyl)sulfanyl-triphenylplumbane * [2177-16-4] (4-ethenylphenyl)-triphenylplumbane * [38186-05-9] (4-fluorophenyl)sulfanyl-triphenylplumbane * [2034-14-2] (4-nitrophenyl)sulfanyl-triphenylplumbane * [512-26-5] 1,2,3-Propanetricarboxylic acid, 2-hydroxy-, lead(2++) salt (2:3) [6838-85-3] 1,2-Benzenedicarboxylic acid, lead(2++) salt (1:1) [37288-57-6] 1,3,2-[nitrooxy(diphenyl)plumbyl]-4,5-dicarbonitrile, 2,2-dimethyl- [62560-44-5] 1,3,2-Benzodithiaplumbole, 2,2,5-trimethyl- * [62703-65-5] 1,3,2-Dithiaplumbolane, 2,2-dimethyl- * [62560-43-4] 1,3,2-Dithiaplumbole-4,5-dicarbonitrile, 2,2-dimethyl- * [12275-07-9] 1,3,5,7,9-Pentaoxa-252, 452,652,852-tetraplumbacyclotridec-11 -ene-10,13-dione, (Z)- [15245-44-0] 1,3-BENZENEDIOL, 2,4,6-TRINITRO-, LEAD SALT [73070-87-8] 1-Cyclohexylamino-3-(naphthyloxy)-2-propanol * [63027-34-9] 1-O-[(2S,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2- yl]-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]
    [Show full text]