Durham Research Online

Total Page:16

File Type:pdf, Size:1020Kb

Durham Research Online Durham Research Online Deposited in DRO: 24 March 2021 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Tangena, Julie-Anne A and Thammavong, Phoutmany and Malaithong, Naritsara and Inthavong, Thavone and Ouanesamon, Phuthasone and Brey, Paul T and Lindsay, Steve W (2017) 'Diversity of Mosquitoes (Diptera: Culicidae) Attracted to Human Subjects in Rubber Plantations, Secondary Forests, and Villages in Luang Prabang Province, Northern Lao PDR.', Journal of medical entomology., 54 (6). pp. 1589-1604. Further information on publisher's website: https://doi.org/10.1093/jme/tjx071 Publisher's copyright statement: Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Journal of Medical Entomology, 2017, 1–16 doi: 10.1093/jme/tjx071 Sampling, Distribution, Dispersal Research article Diversity of Mosquitoes (Diptera: Culicidae) Attracted to Human Subjects in Rubber Plantations, Secondary Forests, and Villages in Luang Prabang Province, Northern Lao PDR Julie-Anne A. Tangena,1,2,3 Phoutmany Thammavong,1 Naritsara Malaithong,4 Thavone Inthavong,5 Phuthasone Ouanesamon,5 Paul T. Brey,1,* and Steve W. Lindsay2* 1Department of Medical Entomology, Institut Pasteur du Laos, Samsenthai Rd, Ban Kao-gnot, PO Box 3560, Vientiane, Lao PDR ([email protected]; [email protected]; [email protected]), 2School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom ([email protected]), 3Corresponding author, e-mail: [email protected], 4Department of Entomology, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyaow Chatuchak Bangkok 10900, Thailand ([email protected]), and 5Agriculture and Forestry Policy Research Center, National Agriculture and Forestry Research Institute, Nongviengkham Village, Vientiane, P.O Box 7170, Lao PDR ([email protected]; [email protected]) *Joint senior authors. Subject Editor: Richard Wilkerson Received 22 December 2016; Editorial decision 4 March 2017 Abstract The impact of the rapid expansion of rubber plantations in South-East Asia on mosquito populations is uncer- tain. We compared the abundance and diversity of adult mosquitoes using human-baited traps in four typical rural habitats in northern Lao PDR: secondary forests, immature rubber plantations, mature rubber plantations, and villages. Generalized estimating equations were used to explore differences in mosquito abundance be- tween habitats, and Simpson’s diversity index was used to measure species diversity. Over nine months, 24,927 female mosquitoes were collected, including 51 species newly recorded in Lao PDR. A list of the 114 mosquito species identified is included. More mosquitoes, including vector species, were collected in the sec- ondary forest than immature rubber plantations (rainy season, odds ratio [OR] 0.33, 95% confidence interval [CI] 0.31–0.36; dry season, 0.46, 95% CI 0.41–0.51), mature rubber plantations (rainy season, OR 0.25, 95% CI 0.23–0.27; dry season, OR 0.25, 95% CI 0.22–0.28), and villages (rainy season, OR 0.13, 95% CI 0.12–0.14; dry sea- son, 0.20, 95% CI 0.18–0.23). All habitats showed high species diversity (Simpson’s indexes between 0.82–0.86) with vectors of dengue, Japanese encephalitis (JE), lymphatic filariasis, and malaria. In the secondary forests and rubber plantations, Aedes albopictus (Skuse), a dengue vector, was the dominant mosquito species, while in the villages, Culex vishnui (Theobald), a JE vector, was most common. This study has increased the overall knowledge of mosquito fauna in Lao PDR. The high abundance of Ae. albopictus in natural and man-made for- ests warrants concern, with vector control measures currently only implemented in cities and villages. Key words: mosquito population dynamics, mosquito fauna, rubber plantation, Lao People’s Democratic Republic South-East Asia (SEA) is a region where the population is at high risk The largest rubber plantations in the world are located in Indonesia, of exposure to vector-borne diseases (Jones et al. 2008, Suwonkerd Thailand, and Malaysia. Together with other rubber-producing coun- et al. 2013). This risk is exacerbated by changes in the environment, tries in SEA, they covered 9.2 million ha of land in 2010 (Food and such as changes in land use, surface water availability, large-scale Agriculture Organization 2010). These man-made forests provide en- cross-border migration of people, and climate change (Githeko et al. vironments for vector mosquitoes. Outbreaks of dengue (Ministry of 2000, Foley et al. 2005, Reisen 2010, Parham et al. 2015). One major Health Malaysia 2013, Palaniyandi 2014), malaria (Watson 1921, land-use change in the region is the expansion of rubber plantations. Singhasivanon et al. 1999, Garros et al. 2008, Wangroongsarb et al. VC The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: [email protected] 1 2 Journal of Medical Entomology, 2017, Vol. 0, No. 0 2012, Bhumiratana et al. 2013b), and chikungunya (Kumar et al. secondary forests are forests that had re-grown after the primary 2011, Palaniyandi 2014) have been recorded in rubber plantations of forests had been cut for timber. There are few mature trees with India, Myanmar, Thailand, and Viet Nam. However, data on the bamboo shrubs and small trees dominating. Immature plantations abundance and diversity of mosquitoes in rubber plantations remain are those with rubber trees less than five years old, which had not limited (Tangena et al. 2016). been tapped for latex. These immature plantations have little canopy Lao PDR (People’s Democratic Republic) has one of the fastest cover and a high density of undergrowth. Mature rubber plantations growing economies in SEA, with a 6.4% increase in gross domestic are where the trees were more than five years old and over 70% of product (GDP) in 2015 (The World bank 2015). This growth has the trees had been tapped for latex for at least one year. As the trees partly been achieved by the 160-fold expansion of mature rubber are accessed regularly, the plantations had little undergrowth. The plantations from 2010 to 2015. Rubber tree cultivation is a new villages were linear rural settlements with 700–1,000 inhabitants. kind of mass farming, and the impact of these changes on local vec- Generally, villagers lived either in one-storey bamboo houses with tors remains poorly understood (Rueda et al. 2015). Since rubber thatched roofs or brick houses with metal roofs. Aquatic habitats plantations are likely to expand in the country for at least the next near the trapping sites were investigated for the immature rubber decade (National Agriculture and Forestry Research Institute 2016), plantations, mature rubber plantations, and villages (Tangena et al. there is a need to understand the risk of vector-borne diseases in 2016). The greatest number of waterbodies positive for immature these habitats. mosquito stages were found in the mature rubber plantations. The The objective of this study was to identify the mosquito dynam- most important waterbodies were latex collection cups, tyres, and ics, specifically for vectors of human diseases in rural habitats com- water container > 10 liters. In the villages, the second greatest num- mon in Lao PDR. A longitudinal study was carried out in northern ber of waterbodies positive for mosquitoes were found. Mainly wa- Lao PDR to determine the abundance and diversity of adult mosqui- ter containers > 10 liters and cut bamboo were positive for toes in four typical rural habitats: secondary forests, immature rub- immature mosquitoes. In the immature rubber plantations, the low- ber plantations, mature rubber plantations, and villages. We est number of waterbodies were found. Larvae and pupae were hypothesized that mature rubber plantations in Lao PDR, with simi- found in leaf axils and cut bamboo. larly high canopy cover, high humidity, and stable temperatures as forest habitats, would provide a good alternative habitat for forest mosquitoes, including important dengue and malaria vectors. Longitudinal Mosquito Collections Adult blood-questing female mosquitoes were sampled using the human-baited double net (HDN) trap (Tangena et al. 2015). Briefly, Materials and Methods the HDN trap consisted of one participant resting on a bamboo bed covered by two untreated bed nets: the smaller one completely sur- Study Design rounded the human subject, while the larger one was positioned Entomological surveys were conducted monthly from July to over the smaller net and raised off the ground to let mosquitoes be November 2013 and in February, March, May, and July of 2014. caught between the two nets. Every hour for 10 min the participant Collections were not conducted in December 2013, January 2014, raised the bottom of the inner net and aspirated all mosquitoes April 2014, and June 2014 due to national holidays, local festivals, caught between the two bed nets into labelled paper-cups. peak in rice planting activities, and a large temporary migration of Specimens were frozen at À20C and morphologically identified to villagers. Temperature and humidity data were collected in all habi- species or species complex using Thai identification keys tats throughout the study period, with the additional environmental (Rattanarithikul et al.
Recommended publications
  • The Genus Pythium in Mainland China
    菌物学报 [email protected] 8 April 2013, 32(增刊): 20-44 Http://journals.im.ac.cn Mycosystema ISSN1672-6472 CN11-5180/Q © 2013 IMCAS, all rights reserved. The genus Pythium in mainland China HO Hon-Hing* Department of Biology, State University of New York, New Paltz, New York 12561, USA Abstract: A historical review of studies on the genus Pythium in mainland China was conducted, covering the occurrence, distribution, taxonomy, pathogenicity, plant disease control and its utilization. To date, 64 species of Pythium have been reported and 13 were described as new to the world: P. acrogynum, P. amasculinum, P. b ai sen se , P. boreale, P. breve, P. connatum, P. falciforme, P. guiyangense, P. guangxiense, P. hypoandrum, P. kummingense, P. nanningense and P. sinensis. The dominant species is P. aphanidermatum causing serious damping off and rotting of roots, stems, leaves and fruits of a wide variety of plants throughout the country. Most of the Pythium species are pathogenic with 44 species parasitic on plants, one on the red alga, Porphyra: P. porphyrae, two on mosquito larvae: P. carolinianum and P. guiyangense and two mycoparasitic: P. nunn and P. oligandrum. In comparison, 48 and 28 species have been reported, respectively, from Taiwan and Hainan Island with one new species described in Taiwan: P. sukuiense. The prospect of future study on the genus Pythium in mainland China was discussed. Key words: Pythiaceae, taxonomy, Oomycetes, Chromista, Straminopila 中国大陆的腐霉属菌物 何汉兴* 美国纽约州立大学 纽约 新帕尔茨 12561 摘 要:综述了中国大陆腐霉属的研究进展,内容包括腐霉属菌物的发生、分布、分类鉴定、致病性、所致植物病 害防治及腐霉的利用等方面。至今,中国已报道的腐霉属菌物有 64 个种,其中有 13 个种作为世界新种进行了描述, 这 13 个新种分别为:顶生腐霉 Pythium acrogynum,孤雌腐霉 P.
    [Show full text]
  • Diptera, Culicidae) of Cambodia Pierre-Olivier Maquart, Didier Fontenille, Nil Rahola, Sony Yean, Sébastien Boyer
    Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia Pierre-Olivier Maquart, Didier Fontenille, Nil Rahola, Sony Yean, Sébastien Boyer To cite this version: Pierre-Olivier Maquart, Didier Fontenille, Nil Rahola, Sony Yean, Sébastien Boyer. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. Parasite, EDP Sciences, 2021, 28, pp.60. 10.1051/parasite/2021056. hal-03318784 HAL Id: hal-03318784 https://hal.archives-ouvertes.fr/hal-03318784 Submitted on 10 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Parasite 28, 60 (2021) Ó P.-O. Maquart et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021056 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia Pierre-Olivier Maquart1,* , Didier Fontenille1,2, Nil Rahola2, Sony Yean1, and Sébastien Boyer1 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge 5, BP 983, Blvd. Monivong, 12201 Phnom Penh, Cambodia 2 MIVEGEC, University of Montpellier, CNRS, IRD, 911 Avenue Agropolis, 34394 Montpellier, France Received 25 January 2021, Accepted 4 July 2021, Published online 10 August 2021 Abstract – Between 2016 and 2020, the Medical and Veterinary Entomology unit of the Institut Pasteur du Cambodge collected over 230,000 mosquitoes.
    [Show full text]
  • Mosquito Biodiversity (Diptera: Culicidae) in Auroville, Puducherry
    WHO collaborating Centre for Research and Training in Lymphatic filariasis and Integrated Vector Management. Mosquito Biodiversity (Diptera: Culicidae) in Auroville, Puducherry REPORT SUBMITTED TO THE AUROVILLE PUDUCHERRY BY ICMR-VECTOR CONTROL RESEARCH CENTRE PUDUCHERRY SEPTEMBER P a g e | 2 Acknowledgements We owe our deepest gratitude to Dr. Lucas Dengel, (Founder Executive Eco Pro, Auroville & Research Project Mentor) and Ms. Suryamayi Clarence Smith (Executive Co- founder of Auroville Research Platform) for extending support and facilitating smooth conduct of field survey in Auroville. We are grateful to the Auroville Working Committee for according permission to access various places within Auroville This work was submitted to the Pondicherry University, Puducherry in partial fulfillment for the requirement of degree of Master of Science in Public Health Entomology (M.Sc. in PHE) by Ms. P. Visa Shalini under the supervision of Dr A. N. Shriram, Scientist “C”, Division of Vector Biology & Control P a g e | 3 Introduction Mosquitoes are of great significance for their nuisance biting and their role in the transmission of several parasitic and viral diseases viz. malaria, lymphatic filariasis, dengue, zika, yellow fever, chikungunya, Japanese Encephalitis etc. The breeding habitat diversity determines mosquito abundance, resulting in the transmission of different pathogens (Adebote et al., 2008; Emidi et al., 2017). Only, 10% of the mosquito species recorded are efficient vectors of pathogens with considerable public health significance (Manguin and Boete 2011), that have been historically responsible for some of the worst epidemics mankind has witnessed. The principal vectors of diseases belong to three genera viz. Anopheles, Aedes and Culex, of which some mosquito species are highly and successful invasive in nature e.g.
    [Show full text]
  • Identifying the Main Mosquito Species in China Based on DNA Barcoding
    Identifying the Main Mosquito Species in China Based on DNA Barcoding Gang Wang1, Chunxiao Li1, Xiaoxia Guo1, Dan Xing1, Yande Dong1, Zhongming Wang1, Yingmei Zhang1, Meide Liu1, Zhong Zheng1,2, Hengduan Zhang1, Xiaojuan Zhu1, Zhiming Wu1, Tongyan Zhao1* 1 Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China, 2 Center for Disease Control and Prevention of Military Area Command, Xinjiang, China Abstract Mosquitoes are insects of the Diptera, Nematocera, and Culicidae families, some species of which are important disease vectors. Identifying mosquito species based on morphological characteristics is difficult, particularly the identification of specimens collected in the field as part of disease surveillance programs. Because of this difficulty, we constructed DNA barcodes of the cytochrome c oxidase subunit 1, the COI gene, for the more common mosquito species in China, including the major disease vectors. A total of 404 mosquito specimens were collected and assigned to 15 genera and 122 species and subspecies on the basis of morphological characteristics. Individuals of the same species grouped closely together in a Neighborhood-Joining tree based on COI sequence similarity, regardless of collection site. COI gene sequence divergence was approximately 30 times higher for species in the same genus than for members of the same species. Divergence in over 98% of congeneric species ranged from 2.3% to 21.8%, whereas divergence in conspecific individuals ranged from 0% to 1.67%. Cryptic species may be common and a few pseudogenes were detected. Citation: Wang G, Li C, Guo X, Xing D, Dong Y, et al. (2012) Identifying the Main Mosquito Species in China Based on DNA Barcoding.
    [Show full text]
  • Seasonal Dynamics and Relative Abundance of Seven Japanese
    International Journal of Mosquito Research 2021; 8(2): 134-144 ISSN: 2348-5906 CODEN: IJMRK2 IJMR 2021; 8(2): 134-144 Seasonal dynamics and relative abundance of © 2021 IJMR www.dipterajournal.com seven Japanese encephalitis vectors of Culex Received: 17-01-2021 Accepted: 04-03-2021 sitiens group and their association with Ranjana Rani meteorological factors in various ecological P.G. Department of Zoology, DAV College, Sector-10, habitats of Chandigarh and its surrounding areas Chandigarh, India Sandeep Kaur Ranjana Rani, Sandeep Kaur, Sukhbir Kaur and Sagan Deep Kaur Department of Zoology, Panjab University, Sector-14, DOI: https://doi.org/10.22271/23487941.2021.v8.i2b.527 Chandigarh, India Sukhbir Kaur Abstract Department of Zoology, Panjab Japanese encephalitis (JE) is one of the most common cause of acute viral encephalitis which poses University, Sector-14, serious infection of the brain. Species under Culex sitiens group are major vectors responsible for the Chandigarh, India transmission of JE. The knowledge about the occurrence of Culex sitiens group in Chandigarh and its adjoining areas is very scanty. Hence, present investigations have been carried out to study seasonal Sagan Deep Kaur dynamics and relative abundance of JE vectors in these areas. Detailed surveys have been carried out in P.G. Department of Zoology, various ecological habitats of Chandigarh from June 2017–November 2019. The monthly meteorological DAV College, Sector-10, parameters of the study–area like temperature, rainfall, and relative humidity were compared and Chandigarh, India statistically correlated with JE vector density. As many as 34 mosquito species belonging to 8 genera have been recorded.
    [Show full text]
  • Impacts of Deforestation on Mosquito Community Dynamics
    IMPACTS OF DEFORESTATION ON MOSQUITO COMMUNITY DYNAMICS Hayley Louise Brant Imperial College London Centre for Environmental Policy, Faculty of Natural Sciences, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK Thesis submitted for the degree of Doctor of Philosophy September 2015 2 Declaration of Originality I hereby certify that all content of this thesis is my original research and collaborations with other researchers are fully acknowledged. The experimental design, data collection and analysis of Chapter 5 was completed jointly with Borame Dickens, a fellow researcher at the Centre for Environmental Policy. We both contributed equally to this chapter. Hayley Brant Names of supervisors Professor John Mumford Dr Robert Ewers Copyright declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 3 Abstract Human-induced land use changes, including deforestation, agricultural encroachment and urbanisation, have caused widespread change in the global distribution of organisms and caused considerable declines in biodiversity through loss of habitat. Oil palm is one of the most rapidly expanding crops in Southeast Asia, but the impact of this crop on mosquito distribution, behaviour and exposure potential has been poorly explored. Understanding these factors is essential for developing, optimising and evaluating novel control measures aimed at reducing disease-transmission.
    [Show full text]
  • World Journal of Pharmaceutical Research Rajeswari Et Al
    World Journal of Pharmaceutical Research Rajeswari et al . World Journal of Pharmaceutical SJIF Impact Research Factor 7.523 Volume 6, Issue 9, 474-482. Research Article ISSN 2277– 7105 MOSQUITOE DIVERSITY IN ERODE DISTRICT, TAMIL NADU, INDIA A. Raja Rajeswari* and K. Nagarajan1 *Assistant Professor, 1Associate Professor and Head (Rtd), PG and Research Department of Zoology, Sri Vasavi College, Erode. ABSTRACT Article Received on 26 June 2017, A survey on mosquito diversity in Erode district was carried out and Revised on 16 July 2017, totally 5114 mosquitoes belonging to 7 genus (Anopheles, Aedes, Accepted on 06 Aug. 2017 DOI: 10.20959/wjpr20179-8828 Armigeres, Aedeomyia, Culex, Lutzia and Ochlerotatus) and 23 species were collected during the study period. Both indoor and outdoor adults *Corresponding Author were collected from human dwellings, cattle sheds and larvae were A. Raja Rajeswari collected from different aquatic habitats. The most dominant genus Assistant Professor, PG and collected was Culex 29.36%, followed by Anopheles 26.27% and the Research Department of genus Aedeomyia represented 0.15%. Aedesalbopictus was the Zoology, Sri Vasavi College, predominant species and represented by 42.23% of the total Erode. mosquitoes which was followed by Aedesaegypti 25.08% and the least was Culex mimulus 0.17%. Armigeres subalbatus, Aedeomyia catastica and Lutzia fuscana were the single species collected during the study period. KEYWORDS: Biodiversity, Anopheles, Aedes, Armigeres, Aedeomyia, Culex, Lutzia and Ochlerotatus. INTRODUCTION The term “BIODIVERSITY” is usually used as a synonym for “variety of life” and it is widely applied not only in scientific context but also in media and political discussions.
    [Show full text]
  • Checklist of the Mosquito Fauna (Diptera, Culicidae) of Cambodia
    Parasite 28, 60 (2021) Ó P.-O. Maquart et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021056 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia Pierre-Olivier Maquart1,* , Didier Fontenille1,2, Nil Rahola2, Sony Yean1, and Sébastien Boyer1 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge 5, BP 983, Blvd. Monivong, 12201 Phnom Penh, Cambodia 2 MIVEGEC, University of Montpellier, CNRS, IRD, 911 Avenue Agropolis, 34394 Montpellier, France Received 25 January 2021, Accepted 4 July 2021, Published online 10 August 2021 Abstract – Between 2016 and 2020, the Medical and Veterinary Entomology unit of the Institut Pasteur du Cambodge collected over 230,000 mosquitoes. Based on this sampling effort, a checklist of 290 mosquito species in Cambodia is presented. This is the first attempt to list the Culicidae fauna of the country. We report 49 species for the first time in Cambodia. The 290 species belong to 20 genera: Aedeomyia (1 sp.), Aedes (55 spp.), Anopheles (53 spp.), Armigeres (26 spp.), Coquillettidia (3 spp.), Culex (57 spp.), Culiseta (1 sp.), Ficalbia (1 sp.), Heizmannia (10 spp.), Hodgesia (3 spp.), Lutzia (3 spp.), Malaya (2 spp.), Mansonia (5 spp.), Mimomyia (7 spp.), Orthopodomyia (3 spp.), Topomyia (4 spp.), Toxorhynchites (4 spp.), Tripteroides (6 spp.), Uranotaenia (27 spp.), and Verrallina (19 spp.). The Cambodian Culicidae fauna is discussed in its Southeast Asian context. Forty-three species are reported to be of medical importance, and are involved in the transmission of pathogens. Key words: Taxonomy, Mosquito, Biodiversity, Vectors, Medical entomology, Asia.
    [Show full text]
  • Potential Breeding Sites and Abundance of Filariasis Vector Mosquitoes in Buton District, Southeast Sulawesi Province
    Wigati et al (2021): Potential breeding filariasis vector Jan 2021 Vol. 24 Issue 01 Potential breeding sites and abundance of filariasis vector mosquitoes in buton district, Southeast Sulawesi Province Raden Ajeng Wigati1*, Mujiyono Mujiyono1, Nurhidayati Nurhidayati1, Siti Diniarsih2, Hening Triandika3, Setyo Sulistyono3 1Institute of Vector and Reservoir Control Research and Development, Salatiga 2Biolaska Study Club, Biology Department of UIN Sunan Kalijaga Yogyakarta 3Faculty of Mathematics and Natural Sciences, Yogyakarta State University (UNY) *Corresponding author: Raden Ajeng Wigati Institute of Vector and Reservoir Control Research and Development National Institute of Health Research and Development Ministry of Health, Hasanudin 123, Salatiga 50721 Central Java, Indonesia Telephone number/Fax : (0298)-327096/ (0298)-322604 Email address: [email protected] Abstract Background: Lymphatic filariasis is one of tropical diseases, transmitted by mosquitoes. It is important to know the distribution, ecology, and biology of mosquitoes that depend on the genus and species. High mosquito populations are associated with the availability of mosquito breeding sites. Not all breeding sites are clearly visible to humans. Some species prefer temporary water bodies, while others prefer more permanent ones. Potential habitat is a major factor of the diversity and abundance of vector mosquito populations in Buton Regency, Southeast Sulawesi. Aims: The study aimed to determine mosquitos’ abundance and describe mosquitoes breeding sites. Methods: Tools used for collecting mosquitos’ larvae were mosquito dipper, aquatic nets, and larvae pipette. The survey was performed in two filariasis-endemic villages, which were Bonelalo and Mabulugo with explorative descriptive methods. Results: Based on the results, there are nine types of mosquito breeding sites in two villages, namely ditches, wellsprings, river banks, rice fields, puddles, coconut shells, irrigation channels, mangroves, and estuary.
    [Show full text]
  • Diptera : Culicidae) of Southern Coastal Districts of Orissa
    Rec. zool. Surv. India, 109(Part-2) : 87-98, 2009 A PRELIMINARY NOTE ON THE MOSQUITO FAUNA (DIPTERA : CULICIDAE) OF SOUTHERN COASTAL DISTRICTS OF ORISSA s. DAsH AND R.K. HAZRA* Estuarine Biological Station, Zoological Survey of India, Gopalpur on Sea, Orissa-761 002, India INTRODUCTION The family Culicidae consists of 41 genera and 3500 species known all over the world. Of these, 320 species of 37 genera of mosquitoes are reported from India. Barraud (1934) studied the Indian mosquito fauna and recorded 250 species of Culicinae with type localities in greater India. The mosquito fauna of coastal Orissa was first studied by Fry (1912) and reported the presence of 5 anopheline species. After a gap of over three decades Rodenwaldt recorded 21 sps. of Anopheles mosquitoes (Diptera : Culicidae) from the coastal belt of Orissa. Subsequently Nagpal and Sharma (1983) recorded 32 species of mosquitoes belonging to six genera from coastal districts of Orissa. Later Dash et al. (2000) reported 8 sps. of Culicinae and 14 spp of Anopheline mosquitoes from Chilika Lake area; Rajavel et al. (2005a, b) reported 74 species belonging to 12 genera and 20 subgenera from Jeypore hill tracks of Orissa and fortythree species of mosquitoes belonging to 21 subgenera and 13 genera, from mangrooves of Bhiterkanika. The need for the identification of the mosquitoes is urgently required because some of the mosquito species are the vectors of important tropical diseases including malaria, dengu, filariasis, etc. Although the organizations such as National Centre for Malaria Research (NIMR), Regional Medical Research Centre (RMRC, Bhubaneswar), Vector Control Research Centre (VCRC) and National Institute of Communicable Diseases (NICD) are doing a handful work on mosquito biology, but the taxonomy of Indian mosquito is far from complete.
    [Show full text]
  • Diversity of Mosquito Larvae Breeding Sites in Several Sampling
    Advances in Biological Sciences Research, volume 8 International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019) Diversity of Mosquito Larvae Breeding Sites in Several Sampling Locations in Donggala Regency, Central Sulawesi, Indonesia R A Wigati1*, Malonda Maksud2 1Institute of Vector and Reservoir Control Research and Development, Salatiga, Central Java 50721, Indonesia 2National Institute of Health Research and Development Unit Donggala, Palu, Central Sulawesi, Indonesia *Corresponding author. Email: [email protected] ABSTRACT Mosquitoes live in accordance to physical and biological environment. The aim of this study was to find out the diversity of mosquito larvae. The study was conducted on September 29 to October 31, 2014. Data was collected in six types of sampling locations, which are forest sampling location near settlements, forest sampling location located remotely from settlements, non-forest sampling location near settlements, non- forest sampling location located remotely from settlements, coastal area sampling location near settlements, and coastal sampling location located remotely from settlements. Mosquito larvae breeding sites in forest sampling location located remotely from settlements were river, rock holes, taro leaf axil, and coconut shells. In this breeding site, there were Anopheles, Uranotaenia, and Aedes larvae found. Breeding sites in non-forest sampling location near settlements were river, bamboo, taro leaf axil, and larvae found were four, namely; Anopheles, Culex, Malaya, and Uranotaenia. Breeding sites in non-forest sampling location located remotely from settlements were river, banana leaf axil and coconut shells, and the mosquito larvae found were four, namely; Anopheles, Culex, Armigeres, and Aedes. In coastal sampling location located near settlements, breeding sites were puddles, ponds, banana and taro leaf axil, river, mangrove, and ponds, and the mosquito larvae found were four, namely; Anopheles, Culex, Mansonia, and Aedes.
    [Show full text]
  • Chec List Faunal Richness and the Checklist of Indian Mosquitoes
    Check List 10(6): 1342–1358, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.biotaxa.org/cl) Journal of species lists and distribution PECIES S (Diptera: Culicidae) OF Faunal richness and the checklist of Indian mosquitoes 1 2 2 1 2 1 ISTS D. R. Bhattacharyya , A. R. Rajavel , R. Natarajan , P. K. Mohapatra , P. Jambulingam , J. Mahanta L and A. Prakash 1, 3* 1 Regional Medical Research Centre, NE (Indian Council of Medical Research), Post Box No. 105, Dibrugarh – 786 001, Assam, India. 3 National Institute for Research in Environmental Health (Indian Council of Medical Research), Kamla Nehru Hospital Building, Bhopal – 462 001, 2 MadhyaVector Control Pradesh, Research India. Centre (Indian Council of Medical Research), Indiranagar, Puducherry – 605 006, Tamilnadu, India. * Corresponding Author. E-mail: [email protected] Abstract: A review of published studies revealed that the Indian mosquito fauna comprises 393 species in number49 genera of and species 41 subgenera. (176 species The in subfamily 33 genera Anophelinae and two groups contains of incertae 61 species sedis in; onei.e., “genusAedes ”followed sensu auctorum by Culicinae and with“Ochlerotatus 332 species” sensu in auctorum11 tribes). andWith 48 the genera. recent taxonomicThe tribe changesAedini (subfamily in tribe Aedini, Culicinae) the Indian contains mosquito the highest genera Aedini are discussed. A total of 31 species are currently recognized in India for transmitting various mosquito- bornehave gone agents up offrom human 22 todiseases. 49. Changes A checklist to the for Indian the IndianAedini mosquitofauna subsequent species is to presented the reclassification and the need of tribefor a comprehensive study is emphasized.
    [Show full text]