Pub SR76 23.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Pub SR76 23.Pdf III ., ' BaselineJ Studies of Biodiversity: The'Fish=Resources of We'stern Indonesia III Edited by D. Pauly and P. Martosubroto III 'S . .I ..-. .. ~ .. ," dI II ... .<i> II~~lL~~M ~ ~ Directorate General German Agency International Center for Living Aquatic of Fisheries, Indonesia for Technical Cooperation' Resources Management Q II ~~iiI .. II "", Baseline Studies of Biodiversity: ~hd~ishResources of Western Indonesia Edited by D. Pawly a* P. Martosu broto DIRECTORATE GENERAL OF FISHERIES Jakarta, lndonesia GERMAN AGENCY FOR TECHNICAL COOPERATION Eschborn, Germany INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT Manila, Philippines NOV 0 8 1996 Baseline Studies of Biodiversity: The Fish Resources of Western Indonesia Edited by D. PAULY and P. MARTOSUBROTO Printed in Manila, Philippines Published by the International Center for Living Aquatic Resources Management, MCPO Box 2631, 071 8 Makati City, Philippines with financial assistance from the German Agency for Technical Cooperation (GTZ) Pauly, D. and P. Martosubroto, Editors. 1996. Baseline studies of biodiversity: the fish resources of Western Indonesia. ICLARM Stud. Rev. 23, 321 p. Cover design by Robbie Cada, Alan Esquillon and D. Pauly ISSN 01 15-4389 ISBN 971-8709-48-7 ICLARM Contribution No. 1309 Preface D. Pauly and P. Martosubroto ................................................................................................ vii Forewords DGF Foreword Rear Admiral F.X. Murdjijo .............................................................................. ix GTZ Foreword Dr. Martin Bilio ............................................................................................... x ICLARM Foreword Dr. Meryl J. Williams ................................................................................. xii Physical historical and conceptual background of the Western lndonesian fish resources surveys (1974-1 981) Biodiversity and the retrospective analysis of demersal trawl surveys: a programmatic approach D. Pauly ...................................................................................... 1 Oceanography of the Indonesian Archipelago and adjacent areas G.D. Sharp ..................... 7 Variability of sea surface features in the Western lndonesian Archipelago: inferences from the COADS dataset C. Roy ...................................................................... 15 The marine fisheries of the Western Archipelago: towards an economic history, 1850 to the 1960s J. Butcher .......................................................................................... 24 Fish communities surveyed by RNMutiara 4 The mid-1970s demersal resources in the lndonesian side of the Malacca Strait P. Martosubroto, T. Sujastani and D. Pauly ............................................................. 40 The Mutiara 4 surveys in the Java and southern South China Seas, November 1974 to July 1976 D. Pauly, P. Martosubroto and J. Saeger ............................................... 47 Demersal assemblages of the Java Sea: a study based on the trawl surveys of the R/V Mutiara 4 G. Bianchi, M. Badrudin and S. Budihardjo ........................................ 55 Structure and dynamics of the demersal resources of the Java Sea, 1975-1979 P. Martosubroto ............................................................................................................... 62 Fish communities surveyed by RNJurong Narrative and major results of the Indonesian-German Module (11) of the JETINDOFISH Project, August 1979 to July 1981 U. Lohmeyer ......................................... 77 Marine bottomfish communities from the Indian Ocean coast of Bali to mid-Sumatra J. McManus ............................................................................................... 91 Fish communities surveyed by RNLemuru, RNDr. Fridtjof Nansen and RNBawal Putih 2 Results of surveys for pelagic resources in lndonesian waters with the R/V Lemuru, December 1972 to May 1976 S.C. Venema ...................................................102 Box 3. Development and fleet structure of the Java Sea pelagic fisheries (1980-1 992) J. Widodo, M. Potier and B. Sadhotomo .................................................. 120 Box 4. Catches, effort and catch per effort of the Java Sea pelagic fishery (1979-1 992) J. Widodo, M. Potier and B. Sadhotomo .................................................. 121 "Including authored "boxes" in formal chapters. Demersal fish assemblages of trawlable grounds off northwest Sumatra G. Bianchi ..... ........ ... .. .. .......... .. ............... .. .. 123 Narrative and major results of the Indonesian Module (I) of the JETINDOFISH Project, November 1980 to October 1981 P. Martosubroto ................................................. 131 Box 1. Small-scale Fisheries Development Project in Lombok, Nusa Tenggara Barat, lndonesia R. Hermes ............................................................... 133 Regional syntheses Fishery biology of 40 trawl-caught teleosts of Western lndonesia D. Pauly, A. Cabanban and F.S. 9. Torres, Jr. ....................................................................................... 135 Box 1. Estimating the parameters of length-weight relationships from length-frequency samples and their weights D. Pauly and F.C. Gayanilo, Jr. ........ 136 Box 2. The Bali Strait lemuru fishery A. Ghofar and C.P. Mathews............. .................... I46 Box 3. Reasons for studying the Leiognathidae D. Pauly .............................................. 177 Box 4. A case study of Nemipterus thosaporni a.k.a. N. mar inatus D. Pauly ................ 199 Checklist of marine fishes of Indonesia, compiled from published hterature? R. Froese, S.M. Luna and E.C. Capuli ...... .................... .. 21 7 Box 1. Nomenclatural changes in Trawled fishes of Southern lndonesia and Northwestern Australia R. Froese ................................ ........ .. .. ..... .... ... .. ....... 21 8 Box 2. A computerized procedure for identifying misspellings and synonyms in checklists of fishes R. Froese ................................................................................ 21 9 Using NAN-SIS and FiSAT to create a trawl survey database for Western Indonesia F.S.9. Torres, Jr., A. Cabanban, S. L. Bienvenida, J. W. McManus, M. Prein and D. Pauly ................................................................................... 276 Box 1. JETINDOFISH data processing problem B.G. Thompson ................................... 277 Box 2. Importing files to NAN-SIS T. St$mme ................................................................280 Appendix I. FishBase references cited in Pauly et al. (p. 135-216) and Froese et al. (p. 21 7-275), by number ............................................................................................................................ 284 Appendix II. AuthorIName Index ......................................................................................................................297 Geographic lndex ........................................................................................................................303 Species lndex ..............................................................................................................................306 This book is long overdue: the trawl and acoustic surveys documented here have been conducted some 20 years ago, and several of the fish communities described in the various chapters of this book have been, in the meantime, fished strongly enough to be barely recognizable. However, no major surveys have been conducted in Western lndonesia since the period covered here (1975-1 981). During that period, a convergence of interest had led to a flurry of bilateral and international fisheries development projects along the Indian Ocean coast of Indonesia, in the Java Sea and adjacent waters, funded by German (GTZ) a, Australian (AIDAB) and Norwegian (NORAD) aid agencies, and by FA0 d. Twenty years ago (May 1975) is also when the two editors of this book first met; we had both just acquired our MS degrees, and were eager to apply what we had learnt. We became friends, despite our vastly different cultural backgrounds, perhaps aided therein by a car accident that occurred at Pemanukan along the coast of West Java, and which could easily have killed us both. Although soon separated, and working in very different institutions, we both felt that the surveys we had jointly worked on, and the surveys done shortly thereafter should have been better documented than through internal reports and theses. One of us used the opportunity provided by a book review to criticize this state of affairse; the other pushed from within the Directorate General of Fisheries (DGF, Jakarta). The result of our joint effort was an official request sent by DGF to GTZ to support the production of a book in which the surveys would be documented and analyzed, and which would complement the excellent volume published jointly by GTZ, DGF and AIDAB documenting the taxonomy of the demersal fishes of Western Indonesiaf. GTZ agreed, and ICLARM was invited to submit a proposal, accepted in 1991, for a project that would lead to the publication of a book that would not only complement the previous volume on the Trawled fishes of Southern lndonesia and Western Australia, but also be made to resemble it. This explains the choice of the format and fonts used here, which differ from those of other items in ICLARM's Studies and Reviews Series. The book is thus the result of a long chain of events.
Recommended publications
  • Suborder BLENNIOIDEI TRIPTERYGIIDAE
    click for previous page 3532 Bony Fishes Suborder BLENNIOIDEI TRIPTERYGIIDAE Triplefins by J.T. Williams and R. Fricke iagnostic characters: Small, slender fishes (seldom longer than 5 cm). Cirri often present on top of Deye and on rim of anterior nostril. Upper and lower jaws each with broad band of conical teeth. Three well-defined dorsal fins, the first with III to X (III or IV in the area) spines, the second with VIII to XXVI spines, the third with 7 to 17 segmented rays; last dorsal-fin spine and first segmented ray borne on separate pterygiophores; anal fin with 0 to II spines and 14 to 32 segmented rays; caudal fin with 13 segmented rays, 9 of which are branched; pelvic fins with 2 (3 in Lepidoblennius) simple segmented rays and I embedded spine, the fin inserted anterior to pectoral-fin base. Ctenoid (cycloid in 1 species of Lepidoblennius) scales on body. Colour: highly variable, often showing sexual dichromatism; frequently with irregular bars or a mottled pattern; males may have reddish pigmentation and/or black areas on head and body, females usually mottled with brown or green. 3 dorsal fins ctenoid scales branched anterior insertion caudal-fin of pelvic fins rays Habitat, biology, and fisheries: Benthic, cryptic fishes occurring on rocky or coral substrates in shallow water, but some species are found as deep as 550 m. They are very abundant in littoral areas, but are rarely utilized commercially because of their small size. Of little commercial interest, but they have been found in Indonesian fish markets. Similar families occurring in the area Blenniidae: body always naked (scaly in Tripterygiidae); a single row of incisors in each jaw (Tripterygiidae with several rows of conical teeth, at least anteriorly in jaws); dorsal fin consisting of a single continuous fin, often deeply notched between spinous and segmented rays (3 clearly defined dorsal fins in Tripterygiidae); dorsal fin with more, a few Blenniidae species with 0 to 3 less, segmented than spinous rays (more spines than rays in Tripterygiidae).
    [Show full text]
  • Islam and Politics in Madura: Ulama and Other Local Leaders in Search of Influence (1990 – 2010)
    Islam and Politics in Madura: Ulama and Other Local Leaders in Search of Influence (1990 – 2010) Islam and Politics in Madura: Ulama and Other Local Leaders in Search of Influence (1990 – 2010) Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 28 augustus 2013 klokke 13.45 uur door Yanwar Pribadi geboren te Sukabumi in 1978 Promotiecommissie Promotor : Prof. dr. C. van Dijk Co-Promotor : Dr. N.J.G. Kaptein Overige Leden : Prof. dr. L.P.H.M. Buskens Prof. dr. D.E.F. Henley Dr. H.M.C. de Jonge Layout and cover design: Ade Jaya Suryani Contents Contents, ................................................................................ vii A note on the transliteration system, ..................................... xi List of tables and figures, ........................................................ xiii Acknowledgements, ................................................................ xv Maps, ....................................................................................... xviii Chapter 1 Introduction, .......................................................................... 1 Madura: an island of piety, tradition, and violence, .............. 1 Previous studies, ..................................................................... 3 Focus of the study, .................................................................. 9 Methods and sources, ............................................................
    [Show full text]
  • Dedication Donald Perrin De Sylva
    Dedication The Proceedings of the First International Symposium on Mangroves as Fish Habitat are dedicated to the memory of University of Miami Professors Samuel C. Snedaker and Donald Perrin de Sylva. Samuel C. Snedaker Donald Perrin de Sylva (1938–2005) (1929–2004) Professor Samuel Curry Snedaker Our longtime collaborator and dear passed away on March 21, 2005 in friend, University of Miami Professor Yakima, Washington, after an eminent Donald P. de Sylva, passed away in career on the faculty of the University Brooksville, Florida on January 28, of Florida and the University of Miami. 2004. Over the course of his diverse A world authority on mangrove eco- and productive career, he worked systems, he authored numerous books closely with mangrove expert and and publications on topics as diverse colleague Professor Samuel Snedaker as tropical ecology, global climate on relationships between mangrove change, and wetlands and fish communities. Don pollutants made major scientific contributions in marine to this area of research close to home organisms in south and sedi- Florida ments. One and as far of his most afield as enduring Southeast contributions Asia. He to marine sci- was the ences was the world’s publication leading authority on one of the most in 1974 of ecologically important inhabitants of “The ecology coastal mangrove habitats—the great of mangroves” (coauthored with Ariel barracuda. His 1963 book Systematics Lugo), a paper that set the high stan- and Life History of the Great Barracuda dard by which contemporary mangrove continues to be an essential reference ecology continues to be measured. for those interested in the taxonomy, Sam’s studies laid the scientific bases biology, and ecology of this species.
    [Show full text]
  • Delineation of Sedimentary Subbasin and Subsurface Interpretation East Java Basin in the Madura Strait and Surrounding Area Based on Gravity Data Analysis
    Bulletin of the Marine Geology, Vol. 34, No. 1, June 2019, pp. 1 to 16 Delineation of Sedimentary Subbasin and Subsurface Interpretation East Java Basin in the Madura Strait and Surrounding Area Based on Gravity Data Analysis Delineasi Subcekungan Sedimen dan Interpretasi Bawah Permukaan Cekungan Jawa Timur Wilayah Selat Madura dan Sekitarnya Berdasarkan Analisis Data Gayaberat Imam Setiadi1, Budi Setyanta2, Tumpal B. Nainggolan1, Joni Widodo1 1 Marine Geological Institute, Jl. Dr. Djundjunan No. 236, Bandung, 40174, Indonesia. 2 Centre for Geological Survey, Jl.Diponegoro No.57. Bandung, 40122, Indonesia. Corresponding author: [email protected] (Received 08 January 2019; in revised form 15 January 2019 accepted 27 March 2019) ABSTRACT: East Java basin is a very large sedimentary basin and has been proven produce hydrocarbons, this basin consists of several different sub-basins, one of the sub-basin is in the Madura Strait and surrounding areas. Gravity is one of the geophysical methods that can be used to determine geological subsurface configurations and delineate sedimentary sub-basin based on density parameter. The purposes of this study are to delineate sedimentary sub-basins, estimate the thickness of sedimentary rock, interpret subsurface geological model and identify geological structures in the Madura Strait and surrounding areas. Data analysis which used in this paper are spectral analysis, spectral decomposition filter and 2D forward modeling. The results of the spectral analysis show that the thickness of sedimentary rock is about 3.15 Km. Spectral decomposition is performed at four different wave numbers cut off, namely (0.36, 0.18, 0.07 and 0.04), each showing anomaly patterns at depth (1 Km, 2 Km, 3 Km and 4 Km).
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Third International Symposium on Mangroves As Fish Habitat Abstracts*
    Bull Mar Sci. 96(3):539–560. 2020 abstracts https://doi.org/10.5343/bms.2019.0047 Third International Symposium on Mangroves as Fish Habitat Abstracts* COMMUNITY COMPOSITION AND DIVERSITY OF PHYTOPLANKTON IN RELATION TO ENVIRONMENTAL VARIABLES AND SEASONALITY IN A TROPICAL MANGROVE ESTUARY, MALAYSIA by ABU HENA MK, Saifullah ASM, Idris MH, Rajaee AH, Rahman MM.—Phytoplankton are the base of the aquatic food chain from which energy is transferred to higher organisms. The community and abundance of phytoplankton in a tropical mangrove estuary were examined in Sarawak, Malaysia. Monthly-collected data from January 2013 to December 2013 was pooled into seasons to examine the influence of seasonality. The estuary was relatively species-rich and a total of 102 species under 43 genera were recorded, comprising 6 species of Cyanophyceae, 4 species of Chlorophyceae, 63 species of Bacillariophyceae, and 29 species of Dinophyceae. The mean abundance (cells L−1) of phytoplankton was found in the following order: Bacillariophyceae > Dinophyceae > Cyanophyceae > Chlorophyceae. Mean abundance of phytoplankton ranged from 5694 to 88,890 cells L−1 over the study period, with a higher value in the dry season. Species recorded from the estuary were dominated by Pleurosigma normanii, Coscinodiscus sp., Coscinodiscus centralis, Coscinodiscus granii, Dinophysis caudata, Ceratium carriense, Ceratium fusus, and Ceratium lineatum. Abundance of phytoplankton was positively influenced by chlorophyll a (R = 0.69), ammonium (R = 0.64), and silica (R = 0.64). Significant differences (ANOSIM and NMDS) were observed in the species community structure between the intermediate and wet season. The species assemblages were positively correlated with surface water temperature, salinity, pH, ammonium, and nitrate in the intermediate and dry season toward larger species composition in the respective seasons, whereas silica influenced species assemblage in the wet season.
    [Show full text]
  • Ground Sharks
    click for previous page - v - TABLE OF CONTENTS Code Page 9. ORDER CARCHARHINIFORMES - GROUND SHARKS ....................................................................................... 251 9.1 FAMILY SCYLIORHINIDAE - Catsharks .................................................. SCYL ........................................... 253 Apristurus....................................................................................................... SCYL Aprist ................................ 257 A. atlanticus ..................................................................................... SCYL Aprist 1 ............................... 261 A. brunneus ...................................................................................... SCYL Aprist 2 ............................... 262 A. canutus ............................................................................................ SCYL Aprist 3 ............................... 263 A. herklotsi ........................................................................................ SCYL Aprist 4 ............................... 264 A. indicus ............................................................................................. SCYL Aprist 5 ............................... 265 A. investigatoris ................................................................................... SCYL Aprist 6 ............................... 267 A. japonicus ....................................................................................... SCYL Aprist 7 ............................... 268
    [Show full text]
  • The Seasonal Variability of Sea Surface Temperature and Chlorophyll-A Concentration in the South of Makassar Strait
    Available online at www.sciencedirect.com ScienceDirect Procedia Environmental Sciences 33 ( 2016 ) 583 – 599 The 2nd International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring 2015, LISAT-FSEM 2015 The seasonal variability of sea surface temperature and chlorophyll-a concentration in the south of Makassar Strait Bisman Nababan*, Novilia Rosyadi, Djisman Manurung, Nyoman M. Natih, and Romdonul Hakim Department of Marine Science and Technology, Bogor Agricultural University, Jl. Lingkar Akademik, Kampus IPB Darmaga, Bogor 16680, Indonesia Abstract The sea surface temperature (SST) and chlorophyll-a (Chl-a) variabilities in the south of Makassar Strait were mostly affected by monsoonal wind speed/directions and riverine freshwater inflows. The east-southeast (ESE) wind (May-October) played a major role in an upwelling formation in the region starting in the southern tip of the southern Sulawesi Island. Of the 17 years time period, the variability of the SST values ranged from 25.7°C (August 2004) - 30.89°C (March 2007). An upwelling initiation typically occurred in early May when ESE wind speed was at <5 m/s, a fully developed upwelling event usually occurred in June when ESE wind speed reached >5 m/s, whereas the largest upwelling event always occurred in August of each year. Upwelling event generally diminished in September and terminated in October. At the time of the maximum upwelling events (August), the formation of upwelling could be observed up to about 330 km toward the southwest of the southern tip of the Sulawesi island. Interannually, El Niño Southern Oscillation (ENSO) intensified the upwelling event during the east season through an intensification of the ESE wind speed.
    [Show full text]
  • Checklist of Philippine Chondrichthyes
    CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 Checklist of Philippine chondrichthyes. Bibliography. ISBN 1 876996 95 1. 1. Chondrichthyes - Philippines. 2. Sharks - Philippines. 3. Stingrays - Philippines. I. Compagno, Leonard Joseph Victor. II. CSIRO. Marine Laboratories. (Series : Report (CSIRO. Marine Laboratories) ; 243). 597.309599 1 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V.1, Last, P.R.2, Stevens, J.D.2, and Alava, M.N.R.3 1 Shark Research Center, South African Museum, Iziko–Museums of Cape Town, PO Box 61, Cape Town, 8000, South Africa 2 CSIRO Marine Research, GPO Box 1538, Hobart, Tasmania, 7001, Australia 3 Species Conservation Program, WWF-Phils., Teachers Village, Central Diliman, Quezon City 1101, Philippines (former address) ABSTRACT Since the first publication on Philippines fishes in 1706, naturalists and ichthyologists have attempted to define and describe the diversity of this rich and biogeographically important fauna. The emphasis has been on fishes generally but these studies have also contributed greatly to our knowledge of chondrichthyans in the region, as well as across the broader Indo–West Pacific. An annotated checklist of cartilaginous fishes of the Philippines is compiled based on historical information and new data. A Taiwanese deepwater trawl survey off Luzon in 1995 produced specimens of 15 species including 12 new records for the Philippines and a few species new to science.
    [Show full text]
  • Cusk Eels, Brotulas [=Cherublemma Trotter [E
    FAMILY Ophidiidae Rafinesque, 1810 - cusk eels SUBFAMILY Ophidiinae Rafinesque, 1810 - cusk eels [=Ofidini, Otophidioidei, Lepophidiinae, Genypterinae] Notes: Ofidini Rafinesque, 1810b:38 [ref. 3595] (ordine) Ophidion [as Ophidium; latinized to Ophididae by Bonaparte 1831:162, 184 [ref. 4978] (family); stem corrected to Ophidi- by Lowe 1843:92 [ref. 2832], confirmed by Günther 1862a:317, 370 [ref. 1969], by Gill 1872:3 [ref. 26254] and by Carus 1893:578 [ref. 17975]; considered valid with this authorship by Gill 1893b:136 [ref. 26255], by Goode & Bean 1896:345 [ref. 1848], by Nolf 1985:64 [ref. 32698], by Patterson 1993:636 [ref. 32940] and by Sheiko 2013:63 [ref. 32944] Article 11.7.2; family name sometimes seen as Ophidionidae] Otophidioidei Garman, 1899:390 [ref. 1540] (no family-group name) Lepophidiinae Robins, 1961:218 [ref. 3785] (subfamily) Lepophidium Genypterinae Lea, 1980 (subfamily) Genypterus [in unpublished dissertation: Systematics and zoogeography of cusk-eels of the family Ophidiidae, subfamily Ophidiinae, from the eastern Pacific Ocean, University of Miami, not available] GENUS Cherublemma Trotter, 1926 - cusk eels, brotulas [=Cherublemma Trotter [E. S.], 1926:119, Brotuloides Robins [C. R.], 1961:214] Notes: [ref. 4466]. Neut. Cherublemma lelepris Trotter, 1926. Type by monotypy. •Valid as Cherublemma Trotter, 1926 -- (Pequeño 1989:48 [ref. 14125], Robins in Nielsen et al. 1999:27, 28 [ref. 24448], Castellanos-Galindo et al. 2006:205 [ref. 28944]). Current status: Valid as Cherublemma Trotter, 1926. Ophidiidae: Ophidiinae. (Brotuloides) [ref. 3785]. Masc. Leptophidium emmelas Gilbert, 1890. Type by original designation (also monotypic). •Synonym of Cherublemma Trotter, 1926 -- (Castro-Aguirre et al. 1993:80 [ref. 21807] based on placement of type species, Robins in Nielsen et al.
    [Show full text]
  • Lombok Island, Sumbawa Island, and Samalas Volcano
    ECOLE DOCTORALE DE GEOGRAPHIE DE PARIS (ED 4434) Laboratoire de Géographie Physique - UMR 8591 Doctoral Thesis in Geography Bachtiar Wahyu MUTAQIN IMPACTS GÉOMORPHIQUES DE L'ÉRUPTION DU SAMALAS EN 1257 LE LONG DU DÉTROIT D'ALAS, NUSA TENGGARA OUEST, INDONÉSIE Defense on: 11 December 2018 Supervised by : Prof. Franck LAVIGNE (Université Paris 1 – Panthhéon Sorbonne) Prof. HARTONO (Universitas Gadjah Mada) Rapporteurs : Prof. Hervé REGNAULD (Université de Rennes 2) Prof. SUWARDJI (Universitas Mataram) Examiners : Prof. Nathalie CARCAUD (AgroCampus Ouest) Dr. Danang Sri HADMOKO (Universitas Gadjah Mada) 1 Abstract As the most powerful event in Lombok’s recent eruptive history, volcanic materials that were expelled by the Samalas volcano in 1257 CE covered the entire of Lombok Island and are widespread in its eastern part. Almost 800 years after the eruption, the geomorphological impact of this eruption on the island of Lombok remains unknown, whereas its overall climatic and societal consequences are now better understood. A combination of stratigraphic information, present-day topography, geophysical measurement with two-dimensional resistivity profiling technique, local written sources, as well as laboratory and computational analysis, were used to obtain detailed information concerning geomorphic impacts of the 1257 CE eruption of Samalas volcano on the coastal area along the Alas Strait in West Nusa Tenggara Province, Indonesia. This study provides new information related to the geomorphic impact of a major eruption volcanic in coastal areas, in this case, on the eastern part of Lombok and the western coast of Sumbawa. In the first place, the study result shows that since the 1257 CE eruption, the landscape on the eastern part of Lombok is still evolved until the present time.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]