Hans Freudenthal in Prewar Amsterdam Harm Jan Smid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
E.W. Beth Als Logicus
E.W. Beth als logicus ILLC Dissertation Series 2000-04 For further information about ILLC-publications, please contact Institute for Logic, Language and Computation Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam phone: +31-20-525 6051 fax: +31-20-525 5206 e-mail: [email protected] homepage: http://www.illc.uva.nl/ E.W. Beth als logicus Verbeterde electronische versie (2001) van: Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magni¯cus prof.dr. J.J.M. Franse ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit op dinsdag 26 september 2000, te 10.00 uur door Paul van Ulsen geboren te Diemen Promotores: prof.dr. A.S. Troelstra prof.dr. J.F.A.K. van Benthem Faculteit Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam Copyright c 2000 by P. van Ulsen Printed and bound by Print Partners Ipskamp. ISBN: 90{5776{052{5 Ter nagedachtenis aan mijn vader v Inhoudsopgave Dankwoord xi 1 Inleiding 1 2 Levensloop 11 2.1 Beginperiode . 12 2.1.1 Leerjaren . 12 2.1.2 Rijpingsproces . 14 2.2 Universitaire carriere . 21 2.2.1 Benoeming . 21 2.2.2 Geleerde genootschappen . 23 2.2.3 Redacteurschappen . 31 2.2.4 Beth naar Berkeley . 32 2.3 Beth op het hoogtepunt van zijn werk . 33 2.3.1 Instituut voor Grondslagenonderzoek . 33 2.3.2 Oprichting van de Centrale Interfaculteit . 37 2.3.3 Logici en historici aan Beths leiband . -
On His Students PM Van Hiele
Sketch of the influence by G. Mannoury (1867-1956) on his students P.M. van Hiele (1909-2010) and A.D. de Groot (1914- 2006), and the continued importance of this influence for a general theory of epistemology (2015), didactics of mathematics (2008) and methodology of science (including the humanities) (1990) Thomas Colignatus February 18 2016 http://thomascool.eu Draft Summary A discussion on epistemology and its role for mathematics and science is more fruitful when it is made more specific by focussing on didactics of mathematics and methodology of science (including the humanities). Both philosophy and mathematics run the risk of getting lost in abstraction, and it is better to have an anchor in the empirical science of the didactics of mathematics. The General Theory of Knowledge (GTOK) presented by Colignatus in 2015 has roots in the work of three figures in Holland 1926-1970, namely G. Mannoury (1867-1956) and his students P.M. van Hiele (1909-2010) and A.D. de Groot (1914-2006). The work by Van Hiele tends to be lesser known by philosophers, because Van Hiele tended to publish his work under the heading of didactics of mathematics. This article clarifies the link from Mannoury (didactics and significs / semiotics) to the epistemology and didactics with Van Hiele levels of insight (for any subject and not just mathematics). The other path from Mannoury via De Groot concerns methodology. Both paths join up into GTOK. This article has an implication for education in mathematics. The German immigrant Hans Freudenthal (1905-1990) was a stranger to Mannoury's approach, and developed "realistic mathematics education" (RME) based upon Jenaplan influences (by his wife) and a distortion and intellectual theft of Van Hiele's work (which distortion doesn't reduce the theft). -
Jarník's Notes of the Lecture Course Allgemeine Idealtheorie by BL Van
Jarník’s Notes of the Lecture Course Allgemeine Idealtheorie by B. L. van der Waerden (Göttingen 1927/1928) Bartel Leendert van der Waerden (1903-1996) In: Jindřich Bečvář (author); Martina Bečvářová (author): Jarník’s Notes of the Lecture Course Allgemeine Idealtheorie by B. L. van der Waerden (Göttingen 1927/1928). (English). Praha: Matfyzpress, 2020. pp. 7–[32]. Persistent URL: http://dml.cz/dmlcz/404377 Terms of use: Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz 7 BARTEL LEENDERT VAN DER WAERDEN (1903 – 1996) Family, childhood and studies Bartel Leendert van der Waerden was born on February 2, 1903 in Amster- dam in the Netherlands. His father Theodorus van der Waerden (1876–1940) studied civil engineering at the Delft Technical University and then he taught mathematics and mechanics in Leewarden and Dordrecht. On August 28, 1901, he married Dorothea Adriana Endt (?–1942), daughter of Dutch Protestants Coenraad Endt and Maria Anna Kleij. In 1902, the young family moved to Amsterdam and Theodorus van der Waerden continued teaching mathematics and mechanics at the University of Amsterdam where he had become interes- ted in politics; all his life he was a left wing Socialist. In 1910, he was elected as a member of the Sociaal-Democratische Arbeiderspartij to the Provincial government of North Holland. -
Research Review of Mathematics During 2003–2008 at the Six Dutch
Research Review of Mathematics during 2003–2008 at the six Dutch Universities of Amsterdam (UvA), Amsterdam (VU), Groningen (RUG), Leiden (UL), Nijmegen (RU), and Utrecht (UU) June 22, 2010 Contents 1 Introduction 7 1.1 The Dutch System for Quality Assessment of Research . ............ 7 1.2 TheReviewCommitteeforMathematics. ........ 7 1.3 Independence .................................... ... 8 1.4 ScopeoftheAssessment .. .. .. .. .. .. .. .. .. .. .. .. ..... 8 1.5 DataprovidedtotheCommittee . ...... 8 1.6 ProceduresfollowedbytheCommittee . ......... 8 2 General Remarks 10 3 Korteweg-de Vries Institute for Mathematics of the UvA 13 3.1 AssessmentatInstitutionalLevelUvA . .......... 13 3.1.1 Introduction .................................. 13 3.1.2 Leadership .................................... 14 3.1.3 MissionandGoals ............................... 14 3.1.4 StrategyandPolicy ............................. .. 14 3.1.5 Resources ..................................... 15 3.1.6 FundingPolicies ............................... .. 16 3.1.7 AcademicReputation . .. .. .. .. .. .. .. .. .. .. .. .. 17 3.1.8 SocietalRelevance . .. .. .. .. .. .. .. .. .. .. .. .. ... 17 3.1.9 BalanceofStrengthsandWeaknesses . ...... 19 3.2 AssessmentperProgrammeUvA . ..... 20 3.2.1 UvA1 Algebra, Geometry and Mathematical Physics . ......... 20 3.2.2 UvA2 Analysis (Pure, Applied and Numerical) . ........ 22 3.2.3 UvA3Stochastics............................... .. 23 4 Department of Mathematics of the VU University Amsterdam (VU) 26 4.1 AssessmentatInstitutionalLevelVU. -
Modern Logic 1850-1950, East and West Editors Francine F
Studies in Universal Logic Francine F. Abeles Mark E. Fuller Editors Modern Logic 1850 –1950, East and West Studies in Universal Logic Series Editor Jean-Yves Béziau (Federal University of Rio de Janeiro and Brazilian Research Council, Rio de Janeiro, Brazil) Editorial Board Members Hajnal Andréka (Hungarian Academy of Sciences, Budapest, Hungary) Mark Burgin (University of California, Los Angeles, USA) Razvan˘ Diaconescu (Romanian Academy, Bucharest, Romania) Josep Maria Font (University of Barcelona, Barcelona, Spain) Andreas Herzig (Centre National de la Recherche Scientifique, Toulouse, France) Arnold Koslow (City University of New York, New York, USA) Jui-Lin Lee (National Formosa University, Huwei Township, Taiwan) Larissa Maksimova (Russian Academy of Sciences, Novosibirsk, Russia) Grzegorz Malinowski (University of Łód´z, Łód´z, Poland) Darko Sarenac (Colorado State University, Fort Collins, USA) Peter Schröder-Heister (University Tübingen, Tübingen, Germany) Vladimir Vasyukov (Russian Academy of Sciences, Moscow, Russia) This series is devoted to the universal approach to logic and the development of a general theory of logics. It covers topics such as global set-ups for fundamental theorems of logic and frameworks for the study of logics, in particular logical matrices, Kripke structures, combination of logics, categorical logic, abstract proof theory, consequence operators, and algebraic logic. It includes also books with historical and philosophical discussions about the nature and scope of logic. Three types of books will appear in the series: graduate textbooks, research monographs, and volumes with contributed papers. More information about this series at http://www.springer.com/series/7391 Francine F. Abeles • Mark E. Fuller Editors Modern Logic 1850-1950, East and West Editors Francine F. -
MYSTIC, GEOMETER, and INTUITIONIST This Page Intentionally Left Blank MYSTIC, GEOMETER, and INTUITIONIST
MYSTIC, GEOMETER, AND INTUITIONIST This page intentionally left blank MYSTIC, GEOMETER, AND INTUITIONIST The Life of L. E. J. Brouwer 1881–1966 Volume 2 Hope and Disillusion DIRK VAN DALEN Department of Philosophy Utrecht University CLARENDON PRESS • OXFORD 2005 3 Great Clarendon Street, Oxford OX26DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York c Dirk van Dalen, 2005 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights -
The Dutch Mathematical Landscape
The Dutch mathematical landscape The 16th and 17th centuries The Dutch mathematical landscape took shape in the 16th century. The first university in the Netherlands was Leiden (1575), followed by Franeker (1585), Groningen (1614), Amsterdam (1632), and Utrecht (1636). All were places of mathematics teaching and research, as was the University of Leuven (founded in 1425 as the oldest university in the Low Countries, with a mathematical Chair established in 1563). Teaching was still based on the quadrivium: arithmetic and geometry were seen as mathematica pura, whilst astronomy, and music belonged to mathematica mixta, i.e. applied mathematics. The latter also included fields like mechanics, (mathematical) optics, cartography, etc. Outside the universities (where the written language was Latin), everyday use of mathematics - like calculating with fractions - by practical people like merchants was promoted through books written in Dutch, like Die maniere om te leeren cyffren na die rechte consten Algorismi. Int gheheele ende int ghebroken (1508) by the well-known publisher Thomas van der Noot (1475-1525) in Brussels. The following brief history will concentrate on the Netherlands, but in any case, with a few exceptions like Newton!s distinguished predecessor René- François de Sluse (1622-1685), Belgian mathematics went into decline already at the end of the16th century, about a hundred years before a similar fate befell Dutch mathematics. The well-known marxist historian of mathematics Dirk Jan Struik (1894-2000) characterized the Dutch mathematical landscape of the 16th century as follows: “In this period mathematics appeared mainly as an applied science useful for the many and growing needs of the new economic and political system. -
Onderwijs En Onderzoek in Logica En Wetenschapsfilosofie
Onderwijs en onderzoek in logica en wetenschapsfilosofie P. van Ulsen 7 november 2017 Inhoudsopgave 1 Wiskunde-onderwijs 5 1.1 Beschavingswerk — Beths drijfveer tot onderwijs . 5 1.2 Leerproces . 13 1.2.1 Onderwijsverstrekkers. 13 1.2.2 Hoofdlijnen . 16 1.2.3 Wiskundige fasen . 19 1.2.4 Verdere leerfactoren . 26 1.3 Commissies en organisaties . 36 1.4 Evaluatie. 39 2 Filosofie-onderwijs 39 2.1 Academische wijsbegeerte eind 19e, begin 20e eeuw . 39 2.2 Is filosofie wel wetenschap? . 42 2.3 Het scheiden van het kaf van het koren . 46 3 Beth als hoogleraar 50 3.1 Oorlogstijd: Beth, Pos en Dijksterhuis . 50 3.2 Beths benoeming . 55 3.2.1 Beths onderwijs . 59 3.2.2 Studium generale. 61 4 Centrale Interfaculteit 62 4.1 Het voorspel . 62 4.2 Hoe Beth de wijsgeren in het gareel bracht . 67 4.3 Hernieuwd Academisch Statuut . 70 4.4 Opvolgingsperikelen in Amsterdam . 74 4.5 Het einde van de Centrale Interfaculteit . 77 1 5 De Amsterdamse Wiskunde Afdeling 79 5.1 Wiskunde in verandering . 79 5.1.1 Tweedracht binnen Amsterdam . 79 5.1.2 Herinrichting Amsterdamse wiskundestudie. 90 5.2 Beths Instituut voor Grondslagenonderzoek . 91 5.2.1 Opzet van een eigen instituut. 91 5.2.2 Beths insituut in werking. 93 5.2.3 E.W. Beth: evaluatie. 97 6 Euratom-contract 98 6.1 Ambtelijke beslommeringen . 100 6.1.1 De contracten . 104 6.2 Doelstellingen en onderzoek . 108 6.2.1 Euratoms doelstellingen . 108 6.2.2 Beths onderzoeksprogramma . 109 6.2.3 Eerste contract .