E.W. Beth Als Logicus

Total Page:16

File Type:pdf, Size:1020Kb

E.W. Beth Als Logicus E.W. Beth als logicus ILLC Dissertation Series 2000-04 For further information about ILLC-publications, please contact Institute for Logic, Language and Computation Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam phone: +31-20-525 6051 fax: +31-20-525 5206 e-mail: [email protected] homepage: http://www.illc.uva.nl/ E.W. Beth als logicus Verbeterde electronische versie (2001) van: Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magni¯cus prof.dr. J.J.M. Franse ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit op dinsdag 26 september 2000, te 10.00 uur door Paul van Ulsen geboren te Diemen Promotores: prof.dr. A.S. Troelstra prof.dr. J.F.A.K. van Benthem Faculteit Natuurwetenschappen, Wiskunde en Informatica Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam Copyright c 2000 by P. van Ulsen Printed and bound by Print Partners Ipskamp. ISBN: 90{5776{052{5 Ter nagedachtenis aan mijn vader v Inhoudsopgave Dankwoord xi 1 Inleiding 1 2 Levensloop 11 2.1 Beginperiode . 12 2.1.1 Leerjaren . 12 2.1.2 Rijpingsproces . 14 2.2 Universitaire carriere . 21 2.2.1 Benoeming . 21 2.2.2 Geleerde genootschappen . 23 2.2.3 Redacteurschappen . 31 2.2.4 Beth naar Berkeley . 32 2.3 Beth op het hoogtepunt van zijn werk . 33 2.3.1 Instituut voor Grondslagenonderzoek . 33 2.3.2 Oprichting van de Centrale Interfaculteit . 37 2.3.3 Logici en historici aan Beths leiband . 39 2.3.4 Beth naar Johns Hopkins . 41 2.3.5 Huiselijke aangelegenheden . 43 2.4 Lange noten . 45 3 Methodologie en ¯loso¯e 49 3.1 Filoso¯e en wetenschap . 49 3.1.1 Complementaire kengebieden . 50 3.1.2 Afwijkingen van het rechte pad . 55 3.1.3 Signi¯ca en taal¯loso¯e . 58 3.2 Logica en methodologie . 61 3.2.1 Logica en wiskunde . 61 3.2.2 Logica en andere wetenschappen . 68 3.3 Lange noten . 78 vii 4 Semantiek 81 4.1 Semantiek en algebra . 81 4.1.1 Achtergronden . 81 4.1.2 Ups en downs . 84 4.2 Afwijkende valuaties en hun afgeleiden . 93 4.2.1 Gereduceerde logica . 94 4.2.2 Pseudovaluaties . 102 4.3 Lange noten . 111 5 De¯nitietheorie 115 5.1 Beths de¯nitiestelling . 115 5.1.1 Beths globale omschrijving . 115 5.1.2 Begrippen . 117 5.1.3 Geschiedenis van de de¯nitietheorie . 122 5.2 Beths bijdragen . 126 5.2.1 Schets van het bewijs . 126 5.3 Directe reacties . 136 5.3.1 De¯nitiestelling: syntax of semantiek? . 136 5.3.2 Interpolatie . 139 5.3.3 Consistentiestelling . 147 5.4 Beths latere werk . 152 5.4.1 Modellen en de¯nieerbaaarheid . 152 5.4.2 De¯nitietheorie vervolgd . 158 6 Semantische tableaus 163 6.1 De¯nitie van semantische tableaus . 163 6.1.1 Inleiding . 164 6.1.2 Het begin bij Beth . 166 6.1.3 Oorsprong van Beths tableaus . 171 6.2 Achtergronden . 175 6.2.1 Tableausequenten . 175 6.2.2 Beths eisen . 176 6.2.3 Resultaten . 177 6.3 Prioriteitskwesties . 183 6.3.1 Verwante systemen . 183 6.3.2 Beth versus Hintikka . 183 6.3.3 Hintikka's modelverzamelingen . 185 6.3.4 Intuijtionisme . 187 7 De logische machine 191 7.1 Tableaus en bewijsmachines . 191 7.1.1 Beths kennismaking met mechanisch bewijzen . 191 7.1.2 Tableaus en Gentzens methoden . 194 7.2 Euratom-project . 201 7.2.1 Bestuurlijke achtergronden . 201 7.2.2 Loop van het onderzoek . 205 viii 7.3 Lange noten . 213 8 Deductieve tableaus 215 8.1 De¯nities . 215 8.1.1 Overwegingen vooraf . 215 8.1.2 Van reductie naar deductie . 220 8.2 Deductieve tableaus en logische systemen . 226 8.2.1 Klassieke deductieve tableaus . 226 8.2.2 Intuijtionistische deductieve tableaus . 227 8.2.3 Achtergronden . 230 8.3 Dialoogtableaus . 234 8.3.1 Overeenkomsten en verschillen . 234 8.3.2 Bedoeling van de dialoogtableaus . 235 9 Implicatieve systemen 241 9.1 Implicatieve systemen en aanverwanten . 241 9.1.1 Zuiver implicatief: intuijtionistisch en klassiek fragment . 242 9.1.2 Toevoeging van andere operatoren . 244 9.2 Kripke's hulpvaluaties . 250 9.2.1 Beths hulptableaus . 252 9.2.2 Derivatieve implicatieve logica . 254 9.2.3 Modale systemen . 262 10 Beth-modellen 267 10.1 De basis van de Beth-modellen . 267 10.1.1 Spreiding en tegenmodel . 267 10.1.2 Syntax en semantiek . 281 10.2 Constructie van Beth-modellen . 284 10.2.1 Boomconstructies . 284 10.2.2 De¯nities voor modelconstructies . 286 10.3 Volledigheid . 298 10.3.1 Aanloop tot volledigheid . 298 10.3.2 Volledigheidsstellingen . 302 10.3.3 Beth-modellen en topologie . 308 11 Supplementen 311 11.1 Sequenten en tableaus. 311 11.1.1 Beths sequenten . 311 11.1.2 Overzicht tableaus . 312 11.2 Varia Beth . 314 11.2.1 Leven E.W. Beth . 314 11.2.2 Bronnen . 317 Afkortingen 319 Abstract 329 ix Bibliogra¯e 331 x Dankwoord Er zijn tal van personen en instellingen die aan het tot stand komen van deze dissertatie hebben bijgedragen. In de eerste instantie zijn dit de beide promotoren, de professoren A.S. Troel- stra en J.F.A.K. van Benthem. Niet alleen tijdens het leveren van commentaar op het aangedragen werk, maar ook in de dagelijkse omgang op het instituut heb ik het genoegen mogen smaken in hun nabijheid te hebben kunnen verkeren. Eveneens was dit het geval met de andere leden van de vakgroep. Naast de beide promotoren valt naar de moeite die de leden van promotie- commissie zich getroost hebben te refereren. Deze commissie bestond uit doc- tor D.H.J. de Jongh (Amsterdam), professor A.J. Kox (Amsterdam), professor A. Visser (Utrecht) en professor H. Visser (Maastricht). Van de mensen met wie ik in de loop der tijd de te behandelen stof heb kun- nen bespreken vallen met name W.J. Blok, H.C. Doets, A. Hendriks, D.H.J. de Jongh, E.C.W. Krabbe en M. van Lambalgen te noemen. Van de leden van het onderzoeksinstituut ILLC kunnen in het bijzonder enkelen van de afdeling theoretische informatica, P. van Emde Boas, Th. Janssen en L. Torenvliet, genoemd worden. Al in een vroeg stadium is door hun bemid- deling de mogelijkheid tot electronische tekstverwerking en werkruimte verkre- gen. De laatste was des te meer van belang, daar deze boven de bibliotheek van het Mathematisch Instituut gelegen was. Aangezien ik telkens weer historische teksten heb moeten raadplegen is dit voor mij van groot belang geweest. De medewerking van met name de bibliothecaris F. Kroon heeft het nodige daartoe bijgedragen. Het raadplegen van archieven was voor de tot standkoming van deze dis- sertatie essentieel. H. Visser en A.S. Troelstra zijn als beheerders van respec- tievelijk het Beth Archief en het Heyting Archief zo bereidwillig geweest deze archieven tot dit doel open te stellen. Tenslotte hebben uit andere hoofde E. Gaskill, F. van der Kolk, E.J. van der Linden, M. Pauly, M. Vervoort, G. Winkel en de behulpzame mensen van de Computer Netwerk Groep het nodige gedaan om het voltooien van deze dissertatie tot een goed einde te brengen. xi Amsterdam, augustus 2000 Paul van Ulsen Voor het verbeteren van de electronische versie in 2001 is mij de ruimte gegeven door de bibliotheek van de Faculteit Natuurwetenschappen, Wiskunde en Informatica; met name kan hier H. Harmsen genoemd worden. De verbeteringem betre®en vooral tekstuele. Schrappen van overbodige zin- nen of delen daarvan of stukjes tekst met herhaling van al eerder gegeven of overbodige informatie. Verder is er gekeken naar het beter laten verlopen van overgangen: hierdoor zijn enkele paragrafen omgewisseld. Onduidelijkheden zijn verbeterd, evenals drie fouten (schrappen van Beth bij een bespreking bij von Muralt (p. 29); een verticale kolomstreep links i.p.v. rechts t.o.v. de for- mules A(x); A(p) (p. 225, regel 7b); een 0 i.p.v. een 1 in een valuatiekolom op p. 259 9(v op ((A B) A) A). 0 ! ! ! Amsterdam, 2001 P. van Ulsen xii Hoofdstuk 1 Inleiding \There is a certain tendency to belittle the value of my work" 1 Evert Willem Beth, wiskundige, ¯losoof en organisator. Evert Willem Beth, 1908 { 1964, was hoogleraar in de logica en haar geschiedenis en de ¯loso¯e van de exacte wetenschappen aan de Universiteit van Amsterdam, vanaf 1946 tot aan zijn dood. Beth opereerde op een moeilijk grensvlak van disciplines. Hij werd door de ¯losofen als een wiskundige en logicus afgeschreven, door de wiskundigen en logici, evenmin positief bedoeld, voor een ¯losoof gehouden. Dit had inder- tijd, en ook nu nog, te maken met de onbekendheid van zijn vakgebied en de miskenning van het belang van zijn verdere bezigheden. Niettemin kwam de combinatie van logica, grondslagenonderzoek van de wiskunde, didactiek van de wiskunde, geschiedenis van de wetenschaps¯loso¯e (in de meest ruime zin), ¯loso¯e, wetenschaps¯loso¯e en organisatorisch vermogen in meer of mindere mate ook bij anderen voor. Die anderen waren, in Nederland in de tijd van Beth, niet de minsten. Men telde hieronder L.E.J. Brouwer, J. Clay, G. Man- noury, D. van Dantzig en A. Heyting.2 Volledig is de omschrijving op Beth van toepassing. Beth behoorde niet tot de wereldtop van de logici in die dagen. Hij speelde in Nederland wel een grote rol, maar men kan daar tegen inbrengen, dat dit nogal voor de hand lag in een land, arm aan dienaren van de logica en ¯loso¯e van de wiskunde.
Recommended publications
  • MATHEMATICS and the DIVINE: a HISTORICAL STUDY Edited by T
    MATHEMATICS AND THE DIVINE: AHISTORICAL STUDY Cover illustration by Erich Lessing MATHEMATICS AND THE DIVINE: AHISTORICAL STUDY Edited by T. KOETSIER Vrije Universiteit, Amsterdam, The Netherlands L. BERGMANS Université de Paris IV – Sorbonne, Paris, France 2005 Amsterdam • Boston • Heidelberg • London • New York • Oxford • Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo ELSEVIER B.V. ELSEVIER Inc. ELSEVIER Ltd ELSEVIER Ltd Sara Burgerhartstraat 25 525 B Street, Suite 1900 The Boulevard, Langford Lane 84 Theobalds Road P.O. Box 211, 1000 AE San Diego, CA 92101-4495 Kidlington, Oxford OX5 1GB London WC1X 8RR Amsterdam The Netherlands USA UK UK © 2005 Elsevier B.V. All rights reserved. This work is protected under copyright by Elsevier B.V., and the following terms and conditions apply to its use: Photocopying Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (+44) 1865 843830, fax (+44) 1865 853333, e-mail: [email protected]. Requests may also be completed on-line via the Elsevier homepage (http://www.elsevier.com/locate/permissions). In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone: (+44) 20 7631 5555; fax: (+44) 20 7631 5500.
    [Show full text]
  • Arxiv:2011.02915V1 [Math.LO] 3 Nov 2020 the Otniy Ucin Pnst Tctr)Ue Nti Ae R T Are Paper (C 1.1
    REVERSE MATHEMATICS OF THE UNCOUNTABILITY OF R: BAIRE CLASSES, METRIC SPACES, AND UNORDERED SUMS SAM SANDERS Abstract. Dag Normann and the author have recently initiated the study of the logical and computational properties of the uncountability of R formalised as the statement NIN (resp. NBI) that there is no injection (resp. bijection) from [0, 1] to N. On one hand, these principles are hard to prove relative to the usual scale based on comprehension and discontinuous functionals. On the other hand, these principles are among the weakest principles on a new com- plimentary scale based on (classically valid) continuity axioms from Brouwer’s intuitionistic mathematics. We continue the study of NIN and NBI relative to the latter scale, connecting these principles with theorems about Baire classes, metric spaces, and unordered sums. The importance of the first two topics re- quires no explanation, while the final topic’s main theorem, i.e. that when they exist, unordered sums are (countable) series, has the rather unique property of implying NIN formulated with the Cauchy criterion, and (only) NBI when formulated with limits. This study is undertaken within Ulrich Kohlenbach’s framework of higher-order Reverse Mathematics. 1. Introduction The uncountability of R deals with arbitrary mappings with domain R, and is therefore best studied in a language that has such objects as first-class citizens. Obviousness, much more than beauty, is however in the eye of the beholder. Lest we be misunderstood, we formulate a blanket caveat: all notions (computation, continuity, function, open set, et cetera) used in this paper are to be interpreted via their higher-order definitions, also listed below, unless explicitly stated otherwise.
    [Show full text]
  • Anton Pannekoek: Ways of Viewing Science and Society
    STUDIES IN THE HISTORY OF KNOWLEDGE Tai, Van der Steen & Van Dongen (eds) Dongen & Van Steen der Van Tai, Edited by Chaokang Tai, Bart van der Steen, and Jeroen van Dongen Anton Pannekoek: Ways of Viewing Science and Society Ways of Viewing ScienceWays and Society Anton Pannekoek: Anton Pannekoek: Ways of Viewing Science and Society Studies in the History of Knowledge This book series publishes leading volumes that study the history of knowledge in its cultural context. It aspires to offer accounts that cut across disciplinary and geographical boundaries, while being sensitive to how institutional circumstances and different scales of time shape the making of knowledge. Series Editors Klaas van Berkel, University of Groningen Jeroen van Dongen, University of Amsterdam Anton Pannekoek: Ways of Viewing Science and Society Edited by Chaokang Tai, Bart van der Steen, and Jeroen van Dongen Amsterdam University Press Cover illustration: (Background) Fisheye lens photo of the Zeiss Planetarium Projector of Artis Amsterdam Royal Zoo in action. (Foreground) Fisheye lens photo of a portrait of Anton Pannekoek displayed in the common room of the Anton Pannekoek Institute for Astronomy. Source: Jeronimo Voss Cover design: Coördesign, Leiden Lay-out: Crius Group, Hulshout isbn 978 94 6298 434 9 e-isbn 978 90 4853 500 2 (pdf) doi 10.5117/9789462984349 nur 686 Creative Commons License CC BY NC ND (http://creativecommons.org/licenses/by-nc-nd/3.0) The authors / Amsterdam University Press B.V., Amsterdam 2019 Some rights reserved. Without limiting the rights under copyright reserved above, any part of this book may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise).
    [Show full text]
  • Category Theory and Lambda Calculus
    Category Theory and Lambda Calculus Mario Román García Trabajo Fin de Grado Doble Grado en Ingeniería Informática y Matemáticas Tutores Pedro A. García-Sánchez Manuel Bullejos Lorenzo Facultad de Ciencias E.T.S. Ingenierías Informática y de Telecomunicación Granada, a 18 de junio de 2018 Contents 1 Lambda calculus 13 1.1 Untyped λ-calculus . 13 1.1.1 Untyped λ-calculus . 14 1.1.2 Free and bound variables, substitution . 14 1.1.3 Alpha equivalence . 16 1.1.4 Beta reduction . 16 1.1.5 Eta reduction . 17 1.1.6 Confluence . 17 1.1.7 The Church-Rosser theorem . 18 1.1.8 Normalization . 20 1.1.9 Standardization and evaluation strategies . 21 1.1.10 SKI combinators . 22 1.1.11 Turing completeness . 24 1.2 Simply typed λ-calculus . 24 1.2.1 Simple types . 25 1.2.2 Typing rules for simply typed λ-calculus . 25 1.2.3 Curry-style types . 26 1.2.4 Unification and type inference . 27 1.2.5 Subject reduction and normalization . 29 1.3 The Curry-Howard correspondence . 31 1.3.1 Extending the simply typed λ-calculus . 31 1.3.2 Natural deduction . 32 1.3.3 Propositions as types . 34 1.4 Other type systems . 35 1.4.1 λ-cube..................................... 35 2 Mikrokosmos 38 2.1 Implementation of λ-expressions . 38 2.1.1 The Haskell programming language . 38 2.1.2 De Bruijn indexes . 40 2.1.3 Substitution . 41 2.1.4 De Bruijn-terms and λ-terms . 42 2.1.5 Evaluation .
    [Show full text]
  • Alternative Claims to the Discovery of Modern Logic: Coincidences and Diversification
    Fran¸cois,K., L¨owe, B., Muller,¨ T., Van Kerkhove, B., editors, Foundations of the Formal Sciences VII Bringing together Philosophy and Sociology of Science Alternative claims to the discovery of modern logic: Coincidences and diversification Paul Ziche∗ Departement Wijsbegeerte, Universiteit Utrecht, Janskerkhof 13a, 3512 BL Utrecht, The Netherlands E-mail: [email protected] 1 Multiple and alternative discoveries No discipline could lay stronger claim to clarity and unequivocality than logic. Curiously, though, the historical genesis of modern logic presents a picture riven with rival claims over the discipline’s founding contributions. As will be shown, protagonists from highly different backgrounds assert that the genesis of modern logic—indeed, its very discovery—rests on their contribution. Not only are these claims, to some extent, mutually exclusive, they also cut across standards of scientificity and rationality. By standard narratives of the history of modern logic, some claimants to paternity seem downright obscure and anti-rational. Yet, all these claims are made within a narrow time-frame, and they all refer back to the same developments in mathematics. This makes it impossible to easily dismiss the rival claims. This paper argues that the co-existence of alternative claims concerning the discovery of modern logic, in fact, places the historian in an advanta- geous situation. It might appear as if the alternative claims make the the genesis of modern logic into a story of a multiple discovery, the coincidence of simultaneous discoveries of the same phenomenon. This is, however, not what the historical picture shows. The competing claims, very explicitly placed by the protagonists themselves, rather have to be viewed as stages within an open-ended process that would contribute not to an integrated picture of logic, but generate diversified conceptions of rationality.
    [Show full text]
  • Arxiv:1803.01386V4 [Math.HO] 25 Jun 2021
    2009 SEKI http://wirth.bplaced.net/seki.html ISSN 1860-5931 arXiv:1803.01386v4 [math.HO] 25 Jun 2021 A Most Interesting Draft for Hilbert and Bernays’ “Grundlagen der Mathematik” that never found its way into any publi- Working-Paper cation, and 2 CVof Gisbert Hasenjaeger Claus-Peter Wirth Dept. of Computer Sci., Saarland Univ., 66123 Saarbrücken, Germany [email protected] SEKI Working-Paper SWP–2017–01 SEKI SEKI is published by the following institutions: German Research Center for Artificial Intelligence (DFKI GmbH), Germany • Robert Hooke Str.5, D–28359 Bremen • Trippstadter Str. 122, D–67663 Kaiserslautern • Campus D 3 2, D–66123 Saarbrücken Jacobs University Bremen, School of Engineering & Science, Campus Ring 1, D–28759 Bremen, Germany Universität des Saarlandes, FR 6.2 Informatik, Campus, D–66123 Saarbrücken, Germany SEKI Editor: Claus-Peter Wirth E-mail: [email protected] WWW: http://wirth.bplaced.net Please send surface mail exclusively to: DFKI Bremen GmbH Safe and Secure Cognitive Systems Cartesium Enrique Schmidt Str. 5 D–28359 Bremen Germany This SEKI Working-Paper was internally reviewed by: Wilfried Sieg, Carnegie Mellon Univ., Dept. of Philosophy Baker Hall 161, 5000 Forbes Avenue Pittsburgh, PA 15213 E-mail: [email protected] WWW: https://www.cmu.edu/dietrich/philosophy/people/faculty/sieg.html A Most Interesting Draft for Hilbert and Bernays’ “Grundlagen der Mathematik” that never found its way into any publication, and two CV of Gisbert Hasenjaeger Claus-Peter Wirth Dept. of Computer Sci., Saarland Univ., 66123 Saarbrücken, Germany [email protected] First Published: March 4, 2018 Thoroughly rev. & largely extd. (title, §§ 2, 3, and 4, CV, Bibliography, &c.): Jan.
    [Show full text]
  • The Proper Explanation of Intuitionistic Logic: on Brouwer's Demonstration
    The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem Göran Sundholm, Mark van Atten To cite this version: Göran Sundholm, Mark van Atten. The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem. van Atten, Mark Heinzmann, Gerhard Boldini, Pascal Bourdeau, Michel. One Hundred Years of Intuitionism (1907-2007). The Cerisy Conference, Birkhäuser, pp.60- 77, 2008, 978-3-7643-8652-8. halshs-00791550 HAL Id: halshs-00791550 https://halshs.archives-ouvertes.fr/halshs-00791550 Submitted on 24 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem Göran Sundholm Philosophical Institute, Leiden University, P.O. Box 2315, 2300 RA Leiden, The Netherlands. [email protected] Mark van Atten SND (CNRS / Paris IV), 1 rue Victor Cousin, 75005 Paris, France. [email protected] Der … geführte Beweis scheint mir aber trotzdem . Basel: Birkhäuser, 2008, 60–77. wegen der in seinem Gedankengange enthaltenen Aussagen Interesse zu besitzen. (Brouwer 1927B, n. 7)1 Brouwer’s demonstration of his Bar Theorem gives rise to provocative ques- tions regarding the proper explanation of the logical connectives within intu- itionistic and constructivist frameworks, respectively, and, more generally, re- garding the role of logic within intuitionism.
    [Show full text]
  • Requirements and Theories of Meaning
    INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED07 28-31 AUGUST 2007, CITE DES SCIENCE ET DE L’INDUSTRIE, PARIS, FRANCE REQUIREMENTS AND THEORIES OF MEANING Ichiro Nagasaka Kobe University ABSTRACT In this paper, the fundamental characteristics of the concept of meaning in the traditional theory of design are discussed and the similarities between the traditional theory of design and the truth-conditional theory of meaning are pointed out. The difficulties brought by the interpretation of the model are explained in the context of theory of design and the argument that the sequence-of-use based proof-conditional theory of meaning could resolve the difficulties by changing the notion of the requirement is presented. Finally, based on the ideas of the proof-conditional theory of meaning we show the perspective of the formulation of the sequence-of-use based theory and discuss how the theory deals with the sequence of use in a constructive way. Keywords: Requirements, theories of meaning, constructive theory of design 1 INTRODUCTION As we all know, the requirement or the need has an essential role to play in the process of design. Most of the theories of design proposed since the early 1960s share the view on the requirement. For example: • Design begins with the recognition of a need and the conception of an idea to satisfy this need [1, p.iii]. • The main task of engineers is to apply their scientific and engineering knowledge to the solution of technical problems, and then to optimize those solutions within the requirements and constraints [...] [2, p.1]. • It is widely recognized that any serious attempt to make the environment work, must begin with a statement of user needs.
    [Show full text]
  • Intuitionistic Completeness of First-Order Logic with Respect to Uniform Evidence Semantics
    Intuitionistic Completeness of First-Order Logic Robert Constable and Mark Bickford October 15, 2018 Abstract We establish completeness for intuitionistic first-order logic, iFOL, showing that a formula is provable if and only if its embedding into minimal logic, mFOL, is uniformly valid under the Brouwer Heyting Kolmogorov (BHK) semantics, the intended semantics of iFOL and mFOL. Our proof is intuitionistic and provides an effective procedure Prf that converts uniform minimal evidence into a formal first-order proof. We have implemented Prf. Uniform validity is defined using the intersection operator as a universal quantifier over the domain of discourse and atomic predicates. Formulas of iFOL that are uniformly valid are also intuitionistically valid, but not conversely. Our strongest result requires the Fan Theorem; it can also be proved classically by showing that Prf terminates using K¨onig’s Theorem. The fundamental idea behind our completeness theorem is that a single evidence term evd wit- nesses the uniform validity of a minimal logic formula F. Finding even one uniform realizer guarantees validity because Prf(F,evd) builds a first-order proof of F, establishing its uniform validity and providing a purely logical normalized realizer. We establish completeness for iFOL as follows. Friedman showed that iFOL can be embedded in minimal logic (mFOL) by his A-transformation, mapping formula F to F A. If F is uniformly valid, then so is F A, and by our completeness theorem, we can find a proof of F A in minimal logic. Then we intuitionistically prove F from F F alse, i.e. by taking False for A and for ⊥ of mFOL.
    [Show full text]
  • Computability and Analysis: the Legacy of Alan Turing
    Computability and analysis: the legacy of Alan Turing Jeremy Avigad Departments of Philosophy and Mathematical Sciences Carnegie Mellon University, Pittsburgh, USA [email protected] Vasco Brattka Faculty of Computer Science Universit¨at der Bundeswehr M¨unchen, Germany and Department of Mathematics and Applied Mathematics University of Cape Town, South Africa and Isaac Newton Institute for Mathematical Sciences Cambridge, United Kingdom [email protected] October 31, 2012 1 Introduction For most of its history, mathematics was algorithmic in nature. The geometric claims in Euclid’s Elements fall into two distinct categories: “problems,” which assert that a construction can be carried out to meet a given specification, and “theorems,” which assert that some property holds of a particular geometric configuration. For example, Proposition 10 of Book I reads “To bisect a given straight line.” Euclid’s “proof” gives the construction, and ends with the (Greek equivalent of) Q.E.F., for quod erat faciendum, or “that which was to be done.” arXiv:1206.3431v2 [math.LO] 30 Oct 2012 Proofs of theorems, in contrast, end with Q.E.D., for quod erat demonstran- dum, or “that which was to be shown”; but even these typically involve the construction of auxiliary geometric objects in order to verify the claim. Similarly, algebra was devoted to developing algorithms for solving equa- tions. This outlook characterized the subject from its origins in ancient Egypt and Babylon, through the ninth century work of al-Khwarizmi, to the solutions to the quadratic and cubic equations in Cardano’s Ars Magna of 1545, and to Lagrange’s study of the quintic in his R´eflexions sur la r´esolution alg´ebrique des ´equations of 1770.
    [Show full text]
  • Abraham Robinson 1918–1974
    NATIONAL ACADEMY OF SCIENCES ABRAHAM ROBINSON 1918–1974 A Biographical Memoir by JOSEPH W. DAUBEN Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 82 PUBLISHED 2003 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. Courtesy of Yale University News Bureau ABRAHAM ROBINSON October 6, 1918–April 11, 1974 BY JOSEPH W. DAUBEN Playfulness is an important element in the makeup of a good mathematician. —Abraham Robinson BRAHAM ROBINSON WAS BORN on October 6, 1918, in the A Prussian mining town of Waldenburg (now Walbrzych), Poland.1 His father, Abraham Robinsohn (1878-1918), af- ter a traditional Jewish Talmudic education as a boy went on to study philosophy and literature in Switzerland, where he earned his Ph.D. from the University of Bern in 1909. Following an early career as a journalist and with growing Zionist sympathies, Robinsohn accepted a position in 1912 as secretary to David Wolfson, former president and a lead- ing figure of the World Zionist Organization. When Wolfson died in 1915, Robinsohn became responsible for both the Herzl and Wolfson archives. He also had become increas- ingly involved with the affairs of the Jewish National Fund. In 1916 he married Hedwig Charlotte (Lotte) Bähr (1888- 1949), daughter of a Jewish teacher and herself a teacher. 1Born Abraham Robinsohn, he later changed the spelling of his name to Robinson shortly after his arrival in London at the beginning of World War II. This spelling of his name is used throughout to distinguish Abby Robinson the mathematician from his father of the same name, the senior Robinsohn.
    [Show full text]
  • This Volume on the Vienna Circle's Influence in the Nordic Countries
    Vol. 8, no. 1 (2013) Category: Review essay Written by Carlo Penco This volume on the Vienna Circle’s influence in the Nordic countries gives a very interesting presentation of an almost forgotten landmark. In the years preceding the Second World War, European philosophy was at the high point of its intellectual vitality. Everywhere philosophical societies promoted a dense network of connections among scholars, with international meetings and strong links among individuals and associations. In this context, the Vienna Circle emerges as one of the many, also if probably the most well-known, centres of diffusion of a new style of philosophy, closely linked to the new logic and with a strongly empiricist attitude. At the same time, empiricism, formal logic and psychology constituted (and still constitute) the common background of most of the Nordic philosophers, a background which permitted them to develop connections with Vienna’s cultural environment (well known also for the work of psychologists such as Sigmund Freud, but also Charlotte and Karl Bühler). This piece of history, although limited to the connection between Nordic philosophy and Vienna Circle, helps to clarify the history of European philosophy, and the sharp difference of Nordic philosophy in respect of the development of philosophy in Southern and Central Europe in the half a century following the Second World War. The editors say in the introduction: . one of the least known networks of the Vienna Circle is the “Nordic connection”. This connection had a continuing influence for many of the coming decades, beginning with the earliest phase of the Vienna Circle and continuing with a number of adaptations and innovations well into contemporary times.
    [Show full text]