On a New Orbit the Space Progamme in India Started Off Modestly in the 1960S, but Has Taken Off on an Exciting Journey of Late

Total Page:16

File Type:pdf, Size:1020Kb

On a New Orbit the Space Progamme in India Started Off Modestly in the 1960S, but Has Taken Off on an Exciting Journey of Late Space On a new Orbit The space progamme in India started off modestly in the 1960s, but has taken off on an exciting journey of late. The recent launch of yet another satellite, writes Roshesh. P, establishes India’s emergence as a signifi cant space and satellite power DPA 40 NDIA steps across the threshold of its 60th year of Independence, fi rmly securing another milestone in Iadvancing its space technology. The September launch of the GSLV-F04 put into orbit the Insat 4CR satellite, not just taking India’s satellite launching capabili- ties a notch higher in the world market, but also augmenting the country’s booming television and telecommunica- tion sectors. The Insat 4CR satellite will for the next 10 years provide direct-to-home televi- sion broadcasting, video picture transmis- sions and digital satellite news-gathering services from its geo-stationary orbit. The launch is also a pointer to India’s ambition to be a signifi cant player in the race for the $2.5 billion global satellite launch business. Even as it celebrates the success of the GSLV-F04, the premiere national space agency — the Indian Space Research Organisation (ISRO) — is preparing the DPA launch of the fi rst GSLV-Mark III series. SCANNING THE SKIES: For ISRO, 2007 has been a resounding success in determining its capabilities in high-end technologies Slated for launch in early 2009, it will arm ISRO with the competence to launch four- domestic satellite by an indigenously built country to access super-specialty medical tonne payloads into geo-transfer orbit. rocket in 1980, India has had an exciting care. Around 230 hospitals are on this For ISRO, 2007 has been a resounding journey into space over the last two telemedicine network, bringing together success in determining its capabilities in decades. India aims at tripling its current 190 small clinics in remote rural areas in high end and critical technologies. “ISRO fi ve-year space budget to nearly $12 touch with medical experts in 40 super- in fact has managed around two launches billion by 2012, in order to launch more specialty hospitals in major cities. every year in the last fi ve years. Now it satellites and rockets for local and foreign Edusat, launched in 2004, was the will be more than four a year,” explains G. customers. The country is also busy fi rst thematic satellite dedicated to educa- Madhavan Nair, chairman of the premier preparing the ground to send an astronaut tional services. It took one-way TV broad- space body. into space in the next decade. cast, interactive TV, video conferencing, The Space Capsule Recovery Experi- Launched in the 1980s, Insat is the computer conferencing and web-based ment in 2007 was a triumph, marking largest domestic communication satel- instructions to more than 10,000 class- the beginning of a new era for the Indian lite system in the Asia-Pacifi c region, rooms all over the country. space programme. Scientists can now providing services in telecommunications, With the moon being the most tanta- have experiments conducted in arduous television broadcasting, meteorology, and lising dream mission for any country, micro gravity environments of space disaster warning. Meteorological data India has now embarked on its own and be assured that the samples will from Insat is used for weather forecasting — Chandrayaan-1, set for launch in early land safely back on earth. It also bears and specially designed disaster warning 2008. ISRO plans to carry out high-resolu- testimony to the fact that India is now receivers have been installed in vulnerable tion mapping of the moon, creating a spearheading vital technologies like aero- coastal areas for direct transmission of three-dimensional atlas of regions that thermodynamics, recovery through decel- warnings against disasters like cyclones. are of scientifi c interest. The spacecraft eration and fl oatation systems, navigation, There have been several innovative will carry six Indian scientifi c instruments, guidance and control. These technologies applications of the Insat system in a besides two from America’s National will further fi nd applications in re-recover- country with an expansive demographic Aeronautics and Space Administration able and reusable launch vehicles, as well spread. ISRO has always stressed on (NASA), three instruments from the as in future manned space missions. shared community use of its advanced European Space Agency and another from The Indian space programme started technologies. It is only in recent years that the Bulgarian Academy of Sciences. modestly in the 1960s with the launching the commercial potential of its technolo- A Deep Space Network (DSN) station of small sounding rockets to investigate gies are being tapped and enhanced. is being completed about 40 km from the ionosphere. Space-based telemedicine has enabled Bangalore, consisting of fully steerable With its fi rst successful launch of a people in the remotest corners of the 18m and 32m diameter antennas, to 41 SPACE track Chandrayaan-1 as well as for future EVOLVING INNOVATIVE APPLICATIONS missions. “There’s global interest in exploring ISRO chairman G. Madhavan Nair The thrust areas of applications will the moon,” observed Roddam Narasimha, says the most signifi cant aspect of the include expansion and growth of tele- professor emeritus at the research body Indian space programme has been to education, telemedicine and village National Institute of Advanced Studies. “In realise the vision of achieving self-reliant resource centres management with the the last few years, ISRO has built a robust capability in building a variety of satellites, involvement of other central and state launch capability. They can now afford to orbit them with indigenous rockets and ministries and NGOs.” think of a lunar mission without looking at evolve innovative applications to benefi t In the longer run, over the next how much money is being spent.” society. two decades, he also foresees that ISRO is working to develop an indig- “Today, Indian space systems like there could be a major thrust towards enous manned space vehicle in about Insat for communication, television permanent habitation in space and on eight years. It will be designed to carry broadcasting, meteorology and disaster some of the nearest objects like moon a two-member crew to low earth orbit. warning and the Indian Remote Sensing and Mars. “Already, efforts towards A manned mission is expected to cost satellite (IRS) for resources monitoring these possibilities have begun and more than $2.5 billion and will be under- and management are playing a major role most of the space agencies (of various taken once approved by the government, in the national developmental tasks,” he countries) have a framework developed according to ISRO chairman Nair. The explains. “The major emphasis in satellite to achieve this. Low cost access to organisation ultimately hopes to develop a ommunications will be towards meeting space and more reliable platforms for fully autonomous manned space vehicle, the growing demand for transponders, space exploration could be realised,” to be launched by the GSLV (geosynchro- continuous improvement in technology. says the ISRO chief. nous satellite launch vehicle). Manned space programme studies have been going on for the past few years toward establishing an indigenous satel- and hardware in the international market. at ISRO and an overview of the concept lite navigation system. In fact this commercial wing raked in developed was presented to 80 senior The space agency has also initiated revenues of over $100 million in 2005-06. scientists from across the country in a GPS and GEO Augmented Navigation These fi gures are expected to cross the November 2006, says Nair. system called Gagan with the Airport $125 million mark this year. The space agency’s major emphasis Authority of India to enhance accuracy of India’s Polar Satellite Launch Vehicle in the coming years will be to meet air navigation and therefore, safety, in the (PSLV-C8) successfully launched AGILE, the growing demand for transponders, country. a satellite of the Italian Space Agency, increasing the capacity to about 500, from Gagan is also expected to provide in April 2007 under a commercial agree- the current 200. satellite-based navigation services in the ment. Recently, ISRO inked a pact with a Scientists at ISRO are also working to Asia Pacifi c region. As part of advanced European company for joint development produce an Indian Regional Navigational technology initiatives in the area of air- of communication satellites for the inter- Satellite System (IRNSS) – a constellation breathing propulsion, a stable supersonic national market. of seven satellites – to provide naviga- combustion has been demonstrated for ISRO’s launch contracts are competi- tion and timing services over the Indian nearly seven seconds with inlet air at tively priced and with the launch of GSLV- subcontinent, marking another step Mach-six. This takes the country on par MkIII, these rates could be slashed by with countries like Russia, China, Japan, half. and Australia that are in the ground test “Chandrayaan-1 will be followed by phase; the USA alone has conducted an a multi-wavelength astronomy satellite, There have been in-fl ight demonstration of this technology Astrosat, and a climatic research satellite so far. Megha-Tropiques. These missions will be several innovative ISRO is now planning to use this followed by Chandrayaan-2 and Astrosat- technology to fl ight test an integrated 2 for pursuing scientifi c exploration,” says applications of Scramjet propulsion system to demon- Madhavan Nair, stressing on ISRO’s goals strate air intake combustion and nozzle, toward further space discoveries. the Insat system using its Rohini Sounding Rocket. A new generation of micro satellites in a country with While the primary objective of ISRO has that pack in a lot more in less than 100 been to make sure that space technology kg is also part of the agency’s plan toward an expansive fi nds applications that are benefi cial to making space systems more compact.
Recommended publications
  • Maintenance Strategy and Its Importance in Rocket Launching System-An Indian Prospective
    ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 5, Issue 5, May 2016 Maintenance Strategy and its Importance in Rocket Launching System-An Indian Prospective N Gayathri1, Amit Suhane2 M. Tech Research Scholar, Mechanical Engineering, M.A.N.I.T, Bhopal, M.P. India Assistant Professor, Mechanical Engineering, M.A.N.I.T, Bhopal, M.P. India ABSTRACT: The present paper mainly describes the maintenance strategies followed at rocket launching system in India. A Launch pad is an above-ground platform from which a rocket or space vehicle is vertically launched. The potential for advanced rocket launch vehicles to meet the challenging , operational, and performance demands of space transportation in the early 21st century is examined. Space transportation requirements from recent studies underscoring the need for growth in capacity of an increasing diversity of space activities and the need for significant reductions in operational are reviewed. Maintenance strategies concepts based on moderate levels of evolutionary advanced technology are described. The vehicles provide a broad range of attractive concept alternatives with the potential to meet demanding operational and maintenance goals and the flexibility to satisfy a variety of vehicle architecture, mission, vehicle concept, and technology options. KEY WORDS: Preventive Maintenance, Rocket Launch Pad. I. INTRODUCTION A. ROCKET LAUNCH PAD A Launch pad is associate degree above-ground platform from that a rocket ballistic capsule is vertically launched. A launch advanced may be a facility which incorporates, and provides needed support for, one or a lot of launch pads.
    [Show full text]
  • 25 Years of Indian Remote Sensing Satellite (IRS)
    2525 YearsYears ofof IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) SeriesSeries Vinay K Dadhwal Director National Remote Sensing Centre (NRSC), ISRO Hyderabad, INDIA 50 th Session of Scientific & Technical Subcommittee of COPUOS, 11-22 Feb., 2013, Vienna The Beginning • 1962 : Indian National Committee on Space Research (INCOSPAR), at PRL, Ahmedabad • 1963 : First Sounding Rocket launch from Thumba (Nov 21, 1963) • 1967 : Experimental Satellite Communication Earth Station (ESCES) established at Ahmedabad • 1969 : Indian Space Research Organisation (ISRO) established (15 August) PrePre IRSIRS --1A1A SatellitesSatellites • ARYABHATTA, first Indian satellite launched in April 1975 • Ten satellites before IRS-1A (7 for EO; 2 Met) • 5 Procured & 5 SLV / ASLV launch SAMIR : 3 band MW Radiometer SROSS : Stretched Rohini Series Satellite IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) –– 1A1A • First Operational EO Application satellite, built in India, launch USSR • Carried 4-band multispectral camera (3 nos), 72m & 36m resolution Satellite Launch: March 17, 1988 Baikanur Cosmodrome Kazakhstan SinceSince IRSIRS --1A1A • Established of operational EO activities for – EO data acquisition, processing & archival – Applications & institutionalization – Public services in resource & disaster management – PSLV Launch Program to support EO missions – International partnership, cooperation & global data sets EarlyEarly IRSIRS MultispectralMultispectral SensorsSensors • 1st Generation : IRS-1A, IRS-1B •
    [Show full text]
  • Satish Dhawan: Refractions from Another Time*
    SPECIAL SECTION: Satish Dhawan: Refractions from another time* Venkatasubbiah Siddhartha1,† and Yagnaswami Sundara Rajan2 1International Strategic Studies Programme, National Institute of Advanced Studies, Bengaluru 560 012, India 2Former Scientific Secretary ISRO/Former Dr Vikram Sarabhai Distinguished Professor ISRO/DOS, ISRO Headquarters, Bengaluru 560 231, India A preword financial outlays a line item on ‘technology transfer and utilization’. That line item has now grown into the busi- REMINISCING about his time at the California Institute of ness plans of two commercial enterprises of DoS3. Technology (Caltech), USA, the late Sitaram Rao Valluri Accounts by other Indian Space Research Organisation (Director, National Aeronautical Laboratory, NAL), (ISRO) insiders (e.g. refs 4–6) have expatiated in their related to me an occasion when, in a conversation at respective distinctive styles the techno-managerial nitty- Caltech with the legendary Hans Liepmann, the latter gritty of the execution of launch vehicle and satellite pointed to a blackboard with ‘Satish’s writing on it’. programmes of ISRO4–6. Also revealed in them are deci- Liepmann said he had sprayed the board with a transpa- sions made under SD’s watch for the early seeding and rent coating so ‘it could not be rubbed off’. subsequent sprouting of a comprehensive portfolio of ‘Each time I had a difficult decision to make at NAL’, long-gestation enabling technologies and test facilities, Valluri confessed to me, ‘I would ask myself: “Would for liquid propulsion systems in particular. Satish approve?” ’ So, this essay is mostly about my interactions with During its composition, the draft title (‘SD: A Ratna of Dhawan on matters concerning the warp and weft of his Bharat’) of this essay, and several paragraphs drifted into contributions to, and concerns with, the fashioning of the hagiography – albeit sincere.
    [Show full text]
  • India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years.
    [Show full text]
  • Human Spaceflight Plans of Russia, China and India
    Presentation to the ASEB Committee on NASA Technology Roadmaps Panel on Human Health and Surface Exploration June 1, 2011 by Marcia S. Smith Space and Technology Policy Group, LLC Russia Extensive experience in human spaceflight First animal in space (1957), first man in space (1961), first woman in space (1963), first spacewalk (1965), first space station (1971) Seven successful space stations (Salyut 1, 3, 4, 5, 6, 7 and Mir) before partnering in International Space Station (ISS) No people beyond low Earth orbit (LEO), however For earth orbit, continues to rely on Soyuz, first launched in 1967, but upgraded many times and is key to ISS operations Designed space shuttle, Buran, but launched only once in automated mode (no crew) in 1988 06-01-2011 2 Russia (2) Existing reliable launch vehicles Proton is largest: 21 tons to LEO; 5.5 tons to geostationary transfer orbit (GTO) Attempts to build Saturn V-equivalent in 1960s and 1970s failed (N1 failed four times in four attempts 1969-1972) Energiya booster in 1980s only flew twice (1987 with Polyus and 1988 with Buran). Abandoned for financial reasons. Was 100 tons to LEO; 18-20 tons to GTO; 32 tons to lunar trajectory. RD-170 engines for Energiya’s strap-ons live on today in other forms for Zenit, Atlas V, and Angara (under development) 06-01-2011 3 Russia (3) Robotic planetary space exploration mixed Excellent success at – Moon (Luna and Lunokhod series, plus Zond circumlunar flights) Venus (Venera series) Halley’s Comet (Vega 1 and 2—also Venus) Jinxed at Mars More than a dozen failures in 1960s - 1970s Partial success with Phobos 2 in 1988 (Phobos 1 failed) Mars 96 failed to leave Earth orbit Phobos-Grunt scheduled for later this year; designed as sample return from Phobos (includes Chinese orbiter) 06-01-2011 4 Russia (4) Grand statements over decades about sending people to the Moon and Mars, but never enough money to proceed.
    [Show full text]
  • Access to Space Through Isro Launch Vehicles
    Volume -2, Issue-4, October 2012 ACCESS TO SPACE THROUGH ISRO subsystems of a complex launch vehicle but also the maturity attained in conceiving, designing and realizing LAUNCH VEHICLES other vital elements viz., control, guidance, navigation Introduction : and staging systems. The nation’s capability to plan, integrate and carry out a satellite launch mission which is Climbing out of the Earth’s gravity well and transcending truly a multi-disciplinary technological challenge was the dense atmospheric shield is the most energy intensive proved on July 18, 1980 when India successfully orbited crucial first step in the journey into space and the Launch Rohini-1 satellite on SLV-3 E02 flight. Vehicles are the primary viable means of accomplishing this task. India acquired the capability to orbit a satellite While the sub-orbital sounding rockets which just carry in 1980, when SLV-3 the indigenously developed all the payload instruments upto a height of 100 to 200 solid launcher deployed the 40 kg Rohini satellite around kilometers have very few sub-systems apart from the earth. Tremendous progress has been made in this area propulsive device, a Satellite Launcher which has to in the last three decades and today, India is one among import a velocity of around 8 km/sec and precisely the leading space-faring nations with assured access to deliver the payload into a pre targeted injection vector in space through the work-horse operational launcher space has far more complex systems all of which have to PSLV, the Polar Satellite Launch Vehicle. function flawlessly for a successful orbital mission.
    [Show full text]
  • Space Collaboration Between India and France Asie.Visions 78
    AAssiiee..VViissiioonnss 7788 ______________________________________________________________________ Space Collaboration between India and France -Towards a New Era- _________________________________________________________________ Ajey LELE September 2015 . Center for Asian Studies The Institut français des relations internationales (Ifri) is a research center and a forum for debate on major international political and economic issues. Headed by Thierry de Montbrial since its founding in 1979, Ifri is a non- governmental and a non-profit organization. As an independent think tank, Ifri sets its own research agenda, publishing its findings regularly for a global audience. Using an interdisciplinary approach, Ifri brings together political and economic decision-makers, researchers and internationally renowned experts to animate its debate and research activities. With offices in Paris and Brussels, Ifri stands out as one of the rare French think tanks to have positioned itself at the very heart of European debate. The opinions expressed in this text are the responsibility of the author alone. ISBN: 978-2-36567-433-1 © All rights reserved, Ifri, 2015 IFRI IFRI-BRUXELLES 27, RUE DE LA PROCESSION RUE MARIE-THÉRÈSE, 21 75740 PARIS CEDEX 15 – FRANCE 1000 – BRUXELLES – BELGIQUE Tel: +33 (0)1 40 61 60 00 Tel: +32 (0)2 238 51 10 Fax: +33 (0)1 40 61 60 60 Fax: +32 (0)2 238 51 15 Email: [email protected] Email: [email protected] WEBSITE: www.ifri.org Ifri Center for Asian Studies Asia is at the core of major global economic, political and security challenges. The Centre for Asian Studies provides documented expertise and a platform of discussion on Asian issues through the publication of research papers, partnerships with international think-tanks and the organization of seminars and conferences.
    [Show full text]
  • SICSA Mars Project
    SICSA Mars Project Space Architecture Spring 2010 Jessica Corbett James Doehring Frank Eichstadt Michael Fehlinger Kristine Ferrone Loi Nguyen Sasakawa International Center for Space Architecture, University of Houston College of Architecture Mission Statement: Student Project • Explore and define an architectural framework through which to study space architecture, space operations and mission planning, and functional relationships of systems, elements and people • Facilitate multi-disciplinary and cooperative study involving numerous students pursuing discrete aspects of the architecture Sasakawa International Center for Space Architecture, University of Houston College of Architecture Mission Statement: Mars Architecture • Provide sustainable, scalable and expandable capability to access and operate throughout the Martian system • Enable human visitation and Earth-return from Martian system, including orbits, natural satellites and eventually to the surface • Enable recovery of Martian artifacts • Contribute to the continued evolution Sasakawa International Center for Space Architecture, University of Houston College of Architecture Context of Mars Exploration Sasakawa International Center for Space Architecture, University of Houston College of Architecture Deployment Strategy • Earth Region – Incoming –Surface •Crew •Artifacts • Industry – Solar Orbit • Academia • Communication Satellites • Politics • Mars Region • Launch facilities – Approach –Orbital •Braking • LEO construction –Orbital • L4/L5 depot •OMV Ops • Departure trajectory
    [Show full text]
  • Indian Remote Sensing Satellites (IRS)
    Topic: Indian Remote Sensing Satellites (IRS) Course: Remote Sensing and GIS (CC-11) M.A. Geography (Sem.-3) By Dr. Md. Nazim Professor, Department of Geography Patna College, Patna University Lecture-5 Concept: India's remote sensing program was developed with the idea of applying space technologies for the benefit of human kind and the development of the country. The program involved the development of three principal capabilities. The first was to design, build and launch satellites to a sun synchronous orbit. The second was to establish and operate ground stations for spacecraft control, data transfer along with data processing and archival. The third was to use the data obtained for various applications on the ground. India demonstrated the ability of remote sensing for societal application by detecting coconut root-wilt disease from a helicopter mounted multispectral camera in 1970. This was followed by flying two experimental satellites, Bhaskara-1 in 1979 and Bhaskara-2 in 1981. These satellites carried optical and microwave payloads. India's remote sensing programme under the Indian Space Research Organization (ISRO) started off in 1988 with the IRS-1A, the first of the series of indigenous state-of-art operating remote sensing satellites, which was successfully launched into a polar sun-synchronous orbit on March 17, 1988 from the Soviet Cosmodrome at Baikonur. It has sensors like LISS-I which had a spatial resolution of 72.5 meters with a swath of 148 km on ground. LISS-II had two separate imaging sensors, LISS-II A and LISS-II B, with spatial resolution of 36.25 meters each and mounted on the spacecraft in such a way to provide a composite swath of 146.98 km on ground.
    [Show full text]
  • Improved Process Quality for Spacecraft Manufacturing
    Improved Process Quality for Spacecraft Manufacturing About the Client VSSC (Vikram Sarabhai Space Centre), Thiruvananthapuram, Kerala is one of the main space research and development establishments of the Indian Space Research Organisation (ISRO), focusing on rocket and space vehicles for India's satellite programme. The ISRO has successfully deployed Satellites in Polar Orbits, Geosyn- chronous Orbits, Moon Missions and Mars Mission. The centre is an entirely indige- nous facility working on the development of sounding rockets, the Rohini and Menaka launchers, and the ASLV, PSLV, GSLV and GSLV Mk III families of launch vehicles. Business Challenge The ISRO has many contracted ‘work-centers’ throughout India, notably around Banga- lore and Chennai. These work centres are government owned organizations who are contracted out the development of the components and sub-assemblies which are critical in the assembly of launch vehicles. These components are manufactured at the ‘work-centers’ and are quality checked and despatched to the VSSC. Once in VSSC, these components are assembled into ‘Assemblies’ which are then combined to form the Launch Vehicle. Some of the challenges faced by the client include Lack of an integrated system for data sharing and quality monitoring. Workers having to manually conduct quality charting. "Post implementing QC automation tool, we have seen that the number of errors in the inspection reports for both PSLV & GSLV structures has reduced drastically (even to nil) since all the reports are through QC automation system. This has helped us to accelerate the clearance proce- dure for the structures and with no queries to the work centres. I consider this as a great appreciation for the QC automation project.
    [Show full text]
  • Dm{F©H {Anmoq©
    PSLV-C19 RISAT-1 PSLV-C21 GSAT-10 PSLV-C20 SARAL dm{f©H {anmoQ© ANNUAL REPORT Panoramic view of SARAL (top) and smaller satellites (below) attached to the fourth stage of PSLV-C20 dm{f©H {anmoQ© ANNUAL REPORT CITIZENS’ CHARTER OF DEPARTMENT OF SPACE Department of Space (DOS) has the primary responsibility of promoting the development of space science, technology and applications towards achieving self-reliance and facilitating in all round development of the nation. With this basic objective, DOS has evolved the following programmes: • Indian National Satellite (INSAT) programme for telecommunication, television broadcasting, meteorology, developmental education, societal applications such as telemedicine, tele-education, tele-advisories and similar such services • Indian Remote Sensing (IRS) programme for management of natural resources and various developmental projects across the country using space based imagery • Indigenous capability for design and development of satellite and associated technologies for communications, navigation, remote sensing and space sciences • Design and development of launch vehicles for access to space and orbiting INSAT, IRS satellites and space science missions • Research and development in space sciences and technologies as well as application programmes for national development The Department of Space is committed to: • Carrying out research and development in satellite and launch vehicle technology with a goal to achieve total self reliance • Provide national space infrastructure for telecommunications
    [Show full text]
  • Sns College of Technology
    SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) DEPARTMENT OF AERONAUTICAL ENGINEERING Subject Code & Name: 16AE409 ROCKETS AND MISSILES Date:09.07.19 DAY: 06 UNIT: 1: BASICS OF LAUNCH VEHICLES AND MISSILES TOPIC: 6: various Indian space launch vehicles : LVL3,PSLV,GSLV,ULV& HLV HISTORIC 1. SLV: Satellite Launch Vehicle Satellite Launch Vehicle-3 (SLV-3) was India's first experimental satellite launch vehicle, which was an all solid, four stage vehicle weighing 17 tonnes with a height of 22m and capable of placing 40 kg class payloads in Low Earth Orbit (LEO). SLV-3 was successfully launched on July 18, 1980 from Sriharikota Range (SHAR), when Rohini satellite, RS-1, was placed in orbit, thereby making India the sixth member of an exclusive club of space-faring nations. SLV-3 employed an open loop guidance (with stored pitch programme) to steer the vehicle in flight along a pre-determined trajectory. The first experimental flight of SLV-3, in August 1979, was only partially successful. Apart from the July 1980 launch, there were two more launches held in May 1981 and April 1983, orbiting Rohini satellites carrying remote sensing sensors. The successful culmination of the SLV-3 project showed the way to advanced launch vehicle projects such as the Augmented Satellite Launch Vehicle (ASLV), Polar Satellite Launch Vehicle (PSLV) and the Geosynchronous satellite Launch Vehicle (GSLV). 2. ASLV: Augmented Satellite Launch Vehicle With a lift off weight of 40 tonnes, the 24 m tall ASLV was configured as a five stage, all-solid propellant vehicle, with a mission of orbiting 150 kg class satellites into 400 km circular orbits.
    [Show full text]