A Technical Overview of Oracle Supercluster White Paper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPARC/IOBP-CPU-56 Installation Guide
SPARC/IOBP-CPU-56 Installation Guide P/N 220226 Revision AB September 2003 Copyright The information in this publication is subject to change without notice. Force Computers, GmbH reserves the right to make changes without notice to this, or any of its products, to improve reliability, performance, or design. Force Computers, GmbH shall not be liable for technical or editorial errors or omissions contained herein, nor for indirect, special, incidental, or consequential damages resulting from the furnishing, performance, or use of this material. This information is provided "as is" and Force Computers, GmbH expressly disclaims any and all warranties, express, implied, statutory, or otherwise, including without limitation, any express, statutory, or implied warranty of merchantability, fitness for a particular purpose, or non−infringement. This publication contains information protected by copyright. This publication shall not be reproduced, transmitted, or stored in a retrieval system, nor its contents used for any purpose, without the prior written consent of Force Computers, GmbH. Force Computers, GmbH assumes no responsibility for the use of any circuitry other than circuitry that is part of a product of Force Computers, GmbH. Force Computers, GmbH does not convey to the purchaser of the product described herein any license under the patent rights of Force Computers, GmbH nor the rights of others. CopyrightE 2003 by Force Computers, GmbH. All rights reserved. The Force logo is a trademark of Force Computers, GmbH. IEEER is a registered trademark of the Institute for Electrical and Electronics Engineers, Inc. PICMGR, CompactPCIR, and the CompactPCI logo are registered trademarks and the PICMG logo is a trademark of the PCI Industrial Computer Manufacturer’s Group. -
Oracle VM 3: Architecture and Technical Overview
An Oracle White Paper February 2013 Oracle VM 3: Architecture and Technical Overview Oracle VM 3: Architecture and Technical Overview Introduction ....................................................................................... 2 Overview of Oracle VM 3 Concepts and Components ....................... 4 Key Deployment Concepts ............................................................ 4 Oracle VM Manager .......................................................................... 5 Centralized Network and Storage Configuration and Management 6 Dynamic Resource Management ................................................... 7 Unified Server Virtualization Management for x86 and SPARC ..... 8 Oracle VM Manager Command Line Interface (CLI) ...................... 9 Oracle VM Server for x86 .................................................................. 9 Hypervisor and Management Domain ............................................ 9 Cluster File System – OCFS2 ...................................................... 10 Oracle VM Agent ......................................................................... 10 Types of Virtual Machines ........................................................... 10 Oracle VM Templates and Virtual Assemblies for Applications ........ 12 Integration with Oracle Exalogic Elastic Cloud ................................. 13 Full Stack Management with Oracle Enterprise Manager ................ 14 Conclusion ...................................................................................... 15 Appendix 1: -
LSU EE 4720 Homework 1 Solution Due: 3 March 2006
LSU EE 4720 Homework 1 Solution Due: 3 March 2006 Several Web links appear below and at least one is long, to avoid the tedium of typing them view the assignment in Adobe reader and click. Problem 1: Consider these add instructions in three common ISAs. (Use the ISA manuals linked to the references page, http://www.ece.lsu.edu/ee4720/reference.html.) # MIPS64 addu r1, r2, r3 # SPARC V9 add g2, g3, g1 # PA RISC 2 add r1, r2, r3 (a) Show the encoding (binary form) for each instruction. Show the value of as many bits as possible. Codings shown below. For PA-RISC the ea, ec, and ed ¯elds are labeled e1, e2, and e3, respectively in the instruction descriptions. There is no label for the eb ¯eld in the instruction description of the add and yes it would make sense to use e0 instead of e1 but they didn't for whatever reason. opcode rs rt rd sa func MIPS64: 0 2 3 1 0 0x21 31 26 25 21 20 16 15 11 10 6 5 0 op rd op3 rs1 i asi rs2 SPARC V9: 2 1 0 2 0 0 3 31 30 29 25 24 19 18 14 13 13 12 5 4 0 OPCD r2 r1 c f ea eb ec ed d t PA-RISC 2: 2 3 2 0 0 01 1 0 00 0 1 0 5 6 10 11 15 16 18 19 19 20 21 22 22 23 23 24 25 26 26 27 31 (b) Identify the ¯eld or ¯elds in the SPARC add instruction which are the closest equivalent to MIPS' func ¯eld. -
[1 ] Oracle® Fusion Middleware
Oracle®[1] Fusion Middleware Release Notes for Oracle Coherence 12c (12.1.3) E51564-05 December 2015 Oracle Fusion Middleware Release Notes for Oracle Coherence, 12c (12.1.3) E51564-05 Copyright © 2014, 2015, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. -
Ross Technology RT6224K User Manual 1 (Pdf)
Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Ross Technology RT6224K-200/512S at our website: Click HERE 830-0016-03 Rev A 11/15/96 PRELIMINARY Colorado 4 RT6224K hyperSPARC CPU Module Features D Based on ROSS’ fifth-generation D SPARC compliant — Zero-wait-state, 512-Kbyte or hyperSPARC processor — SPARC Instruction Set Architec- 1-Mbyte 2nd-level cache — RT620D Central Processing Unit ture (ISA) Version 8 compliant — Demand-paged virtual memory (CPU) — Conforms to SPARC Reference management — RT626 Cache Controller, Memory MMU Architecture D Module design Management, and Tag Unit — Conforms to SPARC Level 2 MBus — MBus-standard form factor: 3.30” (CMTU) Module Specification (Revision 1.2) (8.34 cm) x 5.78” (14.67 cm) — Four (512-Kbyte) or eight D Dual-clock architecture — Provides CPU upgrade path at (1-Mbyte) RT628 Cache Data Units module level (CDUs) Ċ CPU scaleable up to -
SPARC Assembly Language Reference Manual
SPARC Assembly Language Reference Manual 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. A Sun Microsystems, Inc. Business 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® system, licensed from UNIX Systems Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s Suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. -
Oracle Engineered Systems, Engineered for Extreme
Oracle Engineered Systems Engineered for Extreme Performance Not just higher performance, but extreme performance—from every Oracle engineered system. Radical processing speeds, significantly faster deployments, instant visuals for in-depth analysis, and big data that’s finally manageable. Oracle’s engineered systems bring extreme performance to every layer of the technology stack and every aspect of your business. Extreme performance—doing something faster, better, or more efficiently than it has ever been done before. It’s the hallmark of Oracle’s engineered systems and the ultimate embodiment of Oracle’s drive to simplify IT. For Oracle customers, extreme performance is not only about speedier query results or significantly higher throughput. It’s not only about how you can go from box to clustered database in a few hours or how your users can deploy an application with just a few clicks. For Oracle customers, extreme performance is about taking advantage of new opportunities, discovering new areas of efficiency, and enabling innovation to deliver the kind of results and business performance that—until now—simply weren’t possible. With an inclusive “in-a-box” strategy, Oracle’s engineered systems combine best-of-breed hardware and software components with game-changing technical innovations. Designed, engineered, and tested to work best together, Oracle’s engineered systems can power the cloud or streamline data center operations to make traditional deployments even more efficient. The components of Oracle’s engineered systems are preassembled for targeted functionality and then—as a complete system—optimized for extreme performance. By taking the guesswork out of these high-availability, purpose-built solutions, Oracle delivers a sophisticated simplicity that’s completely integrated throughout every layer of the technology stack—a simplicity that translates into less risk and lower costs for your business. -
Solaris Powerpc Edition: Installing Solaris Software—May 1996 What Is a Profile
SolarisPowerPC Edition: Installing Solaris Software 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. A Sun Microsystems, Inc. Business Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems, the Sun logo, Solaris, Solstice, SunOS, OpenWindows, ONC, NFS, DeskSet are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. -
V850 Series Development Environment Pamphlet
To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. -
Unit 2: Instruction Set Architectures
Computer Architecture Unit 2: Instruction Set Architectures Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania'' with'sources'that'included'University'of'Wisconsin'slides' by'Mark'Hill,'Guri'Sohi,'Jim'Smith,'and'David'Wood' Computer Architecture | Prof. Milo Martin | Instruction Sets 1 Instruction Set Architecture (ISA) Application • What is an ISA? OS • A functional contract Compiler Firmware • All ISAs similar in high-level ways • But many design choices in details CPU I/O • Two “philosophies”: CISC/RISC Memory • Difference is blurring Digital Circuits • Good ISA… Gates & Transistors • Enables high-performance • At least doesn’t get in the way • Compatibility is a powerful force • Tricks: binary translation, µISAs Computer Architecture | Prof. Milo Martin | Instruction Sets 2 Readings • Suggested reading: • “The Evolution of RISC Technology at IBM” by John Cocke and V. Markstein Computer Architecture | Prof. Milo Martin | Instruction Sets 3 Execution Model Computer Architecture | Prof. Milo Martin | Instruction Sets 4 Program Compilation int array[100], sum;! void array_sum() {! for (int i=0; i<100;i++) {! sum += array[i];! }! }! • Program written in a “high-level” programming language • C, C++, Java, C# • Hierarchical, structured control: loops, functions, conditionals • Hierarchical, structured data: scalars, arrays, pointers, structures • Compiler: translates program to assembly • Parsing and straight-forward translation • Compiler also optimizes • Compiler itself another application … who compiled compiler? Computer Architecture | Prof. Milo Martin | Instruction Sets 5 Assembly & Machine Language • Assembly language • Human-readable representation • Machine language • Machine-readable representation • 1s and 0s (often displayed in “hex”) • Assembler • Translates assembly to machine Example is in “LC4” a toy instruction set architecture, or ISA Computer Architecture | Prof. -
Evaluation of Synthesizable CPU Cores
Evaluation of synthesizable CPU cores DANIEL MATTSSON MARCUS CHRISTENSSON Maste r ' s Thesis Com p u t e r Science an d Eng i n ee r i n g Pro g r a m CHALMERS UNIVERSITY OF TECHNOLOGY Depart men t of Computer Engineering Gothe n bu r g 20 0 4 All rights reserved. This publication is protected by law in accordance with “Lagen om Upphovsrätt, 1960:729”. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the authors. Daniel Mattsson and Marcus Christensson, Gothenburg 2004. Evaluation of synthesizable CPU cores Abstract The three synthesizable processors: LEON2 from Gaisler Research, MicroBlaze from Xilinx, and OpenRISC 1200 from OpenCores are evaluated and discussed. Performance in terms of benchmark results and area resource usage is measured. Different aspects like usability and configurability are also reviewed. Three configurations for each of the processors are defined and evaluated: the comparable configuration, the performance optimized configuration and the area optimized configuration. For each of the configurations three benchmarks are executed: the Dhrystone 2.1 benchmark, the Stanford benchmark suite and a typical control application run as a benchmark. A detailed analysis of the three processors and their development tools is presented. The three benchmarks are described and motivated. Conclusions and results in terms of benchmark results, performance per clock cycle and performance per area unit are discussed and presented. Sammanfattning De tre syntetiserbara processorerna: LEON2 från Gaisler Research, MicroBlaze från Xilinx och OpenRISC 1200 från OpenCores utvärderas och diskuteras. -
Jamaicavm Provides Hard Realtime Guarantees for Most Common Realtime Operating Systems Are Sup- All Primitive Java Operations
��������� Java-Technology for Critical Embedded Systems ��������� �������� ���������� ����������� ������� ���������� ������� ������� ���������� ����������� ���������� ������ ��������� Java-Tools for developers of critical software applications. Key Technologies Interoperability Hard realtime execution Ported to standard RTOSes The JamaicaVM provides hard realtime guarantees for Most common realtime operating systems are sup- all primitive Java operations. This enables all of Java’s ported by JamaicaVM, ports for VxWorks, QNX, Linux- features to be used for your hard realtime tasks. Fea- variants, RTEMS, etc. exist. The supported architectures tures essential to object-oriented software develop- include SH4, PPC, x86, ARM, XScale, ERC32, and many ment like dynamic allocation of objects, inheritance, more. To support your specific system, we can provide and dynamic binding become available to the real- you with the required porting service. time developer. ROMable code Realtime Garbage Collection Class files and the Jamaica Virtual Machine may be The JamaicaVM provides the only Java implementa- linked into a standalone binary for execution out of tion with an efficient hard realtime garbage collector. ROM. A filesystem in not necessary for running Java It operates in small increments of only a few machine code. instructions and guarantees to recycle all garbage memory, to avoid memory fragmentation, and to Library and JNI Native Code bound the execution time for allocations. Existing library code or low level performance critical code for hardware access can be embedded into Fast & Small your realtime application using the Java Native Inter- A highly optimizing static compiler ensures best runtime face. performance. A profiling tool gathers information for providing the best trade-off between runtime perfor- mance and code size. Jamaica Toolset Sophisticated automatic class file compaction, dead- � � � � � � � � � � code elimination and profile-guided partial compila- tion techniques reduce the code footprint to the bare ���������� minimum.