Mather Field Vernal Pools Soap Plant Or Soaproot

Total Page:16

File Type:pdf, Size:1020Kb

Mather Field Vernal Pools Soap Plant Or Soaproot Mather Field Vernal Pools common name Soap Plant or Soaproot scientific name Chlorogalum pomeridianum family Liliaceae (lily) habitat grassland size cluster of leaves 1 foot or more across, flower 1.5 to 2.5 cm © Carol Witham fun facts Native Americans used the root of this plant as a soap and to stun fish. It contains chemicals which make it slippery like soap. These same chemicals paralyze the gills of fish. description Member of the lily family. The flowers have three petals and three sepals which are similarly colored and appear to be six petals. The flowers are white or pale pink. The leaves are in a bunch at the Beatrice F. Howitt, © California Academy of Sciences base of the plant (a basal rosette) and have wavy edges. life cycle Soap Plant is a bulb-forming perennial. For most of the year, the plant consists of a cluster of leaves about a foot in diameter. In May, the plant sends up a tall stalk with many branches and delicate flowers. ecology Flowers are pollinated by night flying moths and open just as the sun goes down. They are very fragrant in order to attract their pollinators which are flying around in the dark of night. Try visiting at sunset to see and smell the Soap Plant flowers. investigate Caterpillars of the moth that pollinates the Soap Plant eat the flowers and seeds of the plant. They usually feed very early in the morning and crawl to the bottom of the plant during the heat of the day. Can you find evidence of their feeding? © .
Recommended publications
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • Chlorogalum Pomeridianum
    Chlorogalum pomeridianum Puspa Ghimire Hort 5051 Scientific name: Chlorogalum pomeridianum Family: Liliaceae 5 known species of the Genus: C.parviflorum, C. grandiflorum, C. Purpureum, C. aungustifolium, and C. pomeridianum. No synonyms. Many common names: soap plant, amole plant, Indian soap root, Indian soap plant, soap lily etc. Mediterranean climates of southwest corner of Oregon and in southern California 37-42 degree North latitude Dry open hills and plains below 1500m altitude ponderosa shrub forest Oregon oak woods California oakwoods Chaparral Montane chaparral coastal sagebrush and California steppe. • Bulbs are 7-15 cm long. • Bulbs are covered with thick coat of tough fibers. Each bulb weighs from 20-350 grams. Chlorogalum pomeridianum plant sprouting from its bulb in February. Photo: http://www.perspective.com/nature/plantae/soap-plant.html Leaves are 2.5 cm wide, linear up to 46 cm in length. Leaves are linear and all the Leaves arise from the underground bulb in early winter. It does not have visual stem. Panicle arises from the middle of leaves in early June. Photo:http://www.fs.fed.us/database/feis/plants/forb/chlpom/all.html Flowers are numerous in number with 3 white petals and sepals. Vespertine (one flower opens only once for few hours only) The rachis are thin and flowers seems to be floating in the air. Photo: http://www.perspective.com/nature/plantae/soap-plant.html There are three accepted varieties of C. pomeridianum. All of them are found in wild stages only. C. pomeridianum Var. pomeridianum D.c Kunth C.pomeridianum Var. minus Hoover C.pomeridianum Var.divaricatum (lindl) Hoover.
    [Show full text]
  • Agavaceae Subf. Chlorogaloideae)
    Taylor, D.W. and D.J. Keil. 2018. Hooveria , a new genus liberated from Chlorogalum (Agavaceae subf. Chlorogaloideae). Phytoneuron 2018-67: 1–6. Published 1 October 2018. ISSN 2153 733X HOOVERIA , A NEW GENUS LIBERATED FROM CHLOROGALUM (AGAVACEAE SUBF. CHLOROGALOIDEAE) DEAN W. TAYLOR Redwood Drive Aptos, California 95003-2517 [email protected] DAVID J. KEIL Professor Emeritus Biological Sciences Department California Polytechnic State University San Luis Obispo, California 93407 [email protected] ABSTRACT Molecular phylogenetic analyses have indicated that Chlorogalum (sensu lato) (Agavaceae subf. Chlorogaloideae) comprises more than one lineage. A recently published study indicated that Chlorogalum is paraphyletic, with two well-supported clades that are successive sister groups to the remainder of the Chlorogaloideae. The first is composed of three vespertine-flowering species (Chlorogalum sensu stricto), and the second comprises two diurnally flowering species. Additional morphological and cytological evidence independently support recognition of two lineages. Hooveria , gen. nov. , is proposed to accommodate the diurnally flowering species of the second lineage. Three taxa are transferred from Chlorogalum to the new genus: Hooveria parviflora (S. Wats.) D.W. Taylor & D.J. Keil, comb. nov. , H. purpurea (Brandeg.) D.W. Taylor & D.J. Keil, comb. nov. , and H. purpurea var. reducta (Hoover) D.W. Taylor & D.J. Keil, comb. nov. A neotype is designated for Chlorogalum parviflorum S. Wats. Chlorogalum Kunth (Agavaceae subf. Chlorogaloideae) as treated traditionally is a genus of five species with nine terminal taxa (Jernstedt 2002; Callahan 2015a, b; Table 1). Chlorogalum is endemic to the California Floristic Province, extending from its northern limit in southern Coos County, Oregon (Callahan 2015b), southward to extreme northwestern Baja California (Rebman et al.
    [Show full text]
  • Northern Coastal Scrub and Coastal Prairie
    GRBQ203-2845G-C07[180-207].qxd 12/02/2007 05:01 PM Page 180 Techbooks[PPG-Quark] SEVEN Northern Coastal Scrub and Coastal Prairie LAWRENCE D. FORD AND GREY F. HAYES INTRODUCTION prairies, as shrubs invade grasslands in the absence of graz- ing and fire. Because of the rarity of these habitats, we are NORTHERN COASTAL SCRUB seeing increasing recognition and regulation of them and of Classification and Locations the numerous sensitive species reliant on their resources. Northern Coastal Bluff Scrub In this chapter, we describe historic and current views on California Sagebrush Scrub habitat classification and ecological dynamics of these ecosys- Coyote Brush Scrub tems. As California’s vegetation ecologists shift to a more Other Scrub Types quantitative system of nomenclature, we suggest how the Composition many different associations of dominant species that make up Landscape Dynamics each of these systems relate to older classifications. We also Paleohistoric and Historic Landscapes propose a geographical distribution of northern coastal scrub Modern Landscapes and coastal prairie, and present information about their pale- Fire Ecology ohistoric origins and landscapes. A central concern for describ- Grazers ing and understanding these ecosystems is to inform better Succession stewardship and conservation. And so, we offer some conclu- sions about the current priorities for conservation, informa- COASTAL PRAIRIE tion about restoration, and suggestions for future research. Classification and Locations California Annual Grassland Northern Coastal Scrub California Oatgrass Moist Native Perennial Grassland Classification and Locations Endemics, Near-Endemics, and Species of Concern Conservation and Restoration Issues Among the many California shrub vegetation types, “coastal scrub” is appreciated for its delightful fragrances AREAS FOR FUTURE RESEARCH and intricate blooms that characterize the coastal experi- ence.
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • California Geophytesgeophytes
    $12.00 (Free to Members) VOL. 44, NO.3 • DECEMBER 2016 FREMONTIAFREMONTIA JOURNAL OF THE CALIFORNIA NATIVE PLANT SOCIETY SPECIAL ISSUE: VOL. 44, NO. 3, DECEMBER 2016 FREMONTIA CALIFORNIACALIFORNIA GEOPHYTESGEOPHYTES V44_3_cover.pmd 1 2/20/17, 5:26 AM CALIFORNIA NATIVE PLANT SOCIETY CNPS, 2707 K Street, Suite 1; Sacramento, CA 95816-5130 FREMONTIA Phone: (916) 447-2677 Fax: (916) 447-2727 Web site: www.cnps.org Email: [email protected] VOL. 44, NO. 3, DECEMBER 2016 MEMBERSHIP Copyright © 2016 Members receive many benefits, including subscriptions to Fremontia and California Native Plant Society the CNPS Bulletin. Membership form is on inside back cover. Mariposa Lily . $1,500 Family or Group . $75 Benefactor . $600 International or Library . $75 M. Kat Anderson, Guest Editor Patron . $300 Individual . $45 Michael Kauffmann, Editor Plant Lover . $100 Student/Retired/Limited Income . $25 CORPORATE/ORGANIZATIONAL Beth Hansen-Winter, Designer 10+ Employees . $2,500 4-6 Employees . $500 7-10 Employees . $1,000 1-3 Employees . $150 california Native STAFF & CONTRACTORS Plant Society Dan Gluesenkamp: Executive Director Marin: Charlotte Torgovitsky Chris Brown: Admin Assistant Milo Baker: Leia Giambastiani, Sarah Protecting California’s Native Flora Jennifer Buck-Diaz: Vegetation Ecologist Gordon Since 1965 Catherine Curley: Assistant Botanist Mojave Desert: Timothy Thomas Joslyn Curtis, Assistant Veg. Ecologist Monterey Bay: Christopher Hauser The views expressed by authors do not Julie Evens: Vegetation Program Dir. Mount Lassen: Woody Elliot necessarily
    [Show full text]
  • Cross-Cultural Folk Classifications of Ethnobotanically Improtant
    250 JOURNAL OF CALIFORNIA AND GREAT BASIN ANTHROPOLOGY Adjacent Regions. American Anthropolo­ the Far West. These cross-cultural, geographi­ gist 40(3):384-415. cally variable, and idiosyncratic taxonomies have Sampson, C. Garth been used by Native Americans, Euroamerican 1985 Nightfire Island: Later Holocene Lake- marsh Adaptation on the Westem Edge of settlers, anthropologists, and historians to clas­ the Great Basin. Eugene: University of sify various species of Native American foods. Oregon Anthropological Papers No. 33. Portions of these taxonomies survive in field Skinner, Craig E. notes, ethnographies, and historical sources, as 1983 Obsidian Studies in Oregon: An Introduc­ well as within the folk vocabularies of Native tion to Obsidian and an Investigation of Selected Methods of Obsidian Characteri­ American and Euroamerican peoples. Those who zation Utilizing Obsidian Collected at Pre­ incorporated these categories into oral and writ­ historic Quarry Sites in Oregon. Master's ten descriptions during the early postcontact pe­ thesis. University of Oregon, Eugene. riod have left anthropologists to puzzle out their Spier, Leslie intended taxonomies as best they can. 1930 Klamath Ethnography. University of Cali­ fomia Ihiblications in American Archaeol­ An analysis of these folk categories provides ogy and Ethnology 30. a better perspective with which to evaluate eth- nobotanical aspects of the ethnohistoric record, enabling anthropologists to more accurately iden­ tify plants mentioned in ethnographic, historical, and folk literature.
    [Show full text]
  • Approved Plant List
    APPENDIX Approved planting list for the CSU, Chico campus. This list is not all inclusive, but particular attention should be to planting native species whenever possible for consistency with the EM. Common Name Scientific Name Large Trees Valley Oak Quercus lobata Big Leaf maple Acer macrophyllum Magnolia Magnolia grandiflorum Magnolia (saucer) Magnolia soulangiana Pine Pinus ponderosa Interior Live Oak Quercus wislizenii Incense cedar Calocedrus decurrens McNab Cypress Cupressus macnabiana Oregon Ash Fraxinus latifolia California sycamore Platanus racemosa Black oak Quercus kelloggii California nutmeg Torreya californica Fremont's cottonwood Populus fremontii Coastal redwood Sequioa sempervirens Bald Cypress Taxodium distichum Northern California black walnut Juglans hindsii Medium Trees Ginkgo Ginkgo biloba Bay laurel Umbelluaria californica Blue oak Quercus douglasii Madrone Arbutus menziesii California Juniper Juniperus californicus Mountain mahogany Cercocarpus betufolia Pacific dogwood Cornus nuttallii Red Osier dogwood Cornus sericea White alder Alnus rhombifolia Arroyo willow Salix lasiolepis Bittercherry Prunus emarginata California Bay Umbelluraria californica Blue Oak Quercus douglasii Garry oak Quercus garryana Box elder Acer negundo Shrubs Western Redbud Cercis occidentalis California buckeye Aesculus californicus Flannel bush Fremontodendron californicum Manzanitas Arctostaphylos spp. California fuchsia Epilobium canum Sticky monkey flower Diplacus aurantiacus Chamise Adenostoma fasciculatum Spice bush Calycanthus occidentalis
    [Show full text]
  • Landscape Master Plan - Gateway Valley - 85 - Stormwater Detention/ Water EBMUD Quality Areas Reservoir the Ponds
    6.3.3 CIRCULATION SYSTEM 6.3.6 EBMUD RESERVOIR Pursuant to the requirements of the Development Agreement, the right of way for Gateway Boulevard, The area designated for the new EBMUD reservoir and access road, located within the Quarry Hill the primary collector road through the Valley, will be improved by OGLLC and dedicated on the Final Open Space Area, will be dedicated to EBMUD on the Final Map, and will be constructed, owned, and Map to the City as a public road. maintained by EBMUD. The City will be responsible for the road, but the landscaping along Gateway Boulevard will be maintained 6.3.7 RELOCATED PG&E 115KV POWERLINE AND EASEMENT and funded by the Homeowner’s Association. The area designated for the relocated PG&E 115kv power line easement will be dedicated to PG&E The secondary collector roads and neighborhood roads will be owned, maintained and funded by the on the Final Map. OGLLC, in cooperation with PG&E, is responsible for construction of the new line Homeowners’ Association, subject to public access easements dedicated on the Final Map. and demolition of the existing line. Upon completion and dedication, PG&E will be responsible for ownership and maintenance of the relocated 115kv powerline and easement. 6.3.4 TRAILS, PATHS, AND TRAILHEADS Per Appendix D of the DA, “the PG&E high voltage (115kv) powerlines may be relocated approximately Trails and trailheads will be located on and through various components of the project, which may as shown on Figure D.10, Conceptual Power Line Realignment Plan, subject to City, EBMUD and be owned by the Long-Term Owners, the City or the Homeowners’ Association.
    [Show full text]
  • Plant Identification of Younger Lagoon Reserve
    Plant Identification of Younger Lagoon Reserve A guide written by Rebecca Evans with help from Dr. Karen Holl, Elizabeth Howard, and Timothy Brown 1 Table of Contents Introduction to Plant Identification ............................................................................................. 3 Plant Index ................................................................................................................................. 6 Botanical Terminology ............................................................................................................. 12 Habits, Stem Conditions, Root Types ................................................................................ 12 Leaf Parts .......................................................................................................................... 13 Stem Features .................................................................................................................... 14 Leaf Arrangements ............................................................................................................ 16 Leaf Shape ........................................................................................................................ 18 Leaf Margins and Venation ............................................................................................... 20 Flowers and Inflorescences ................................................................................................ 21 Grasses .............................................................................................................................
    [Show full text]
  • And Type the TITLE of YOUR WORK in All Caps
    PHYLOGENOMIC PLACEMENT OF ANCIENT POLYPLOIDY EVENTS WITHIN THE POALES AND AGAVOIDEAE (ASPARAGALES) by MICHAEL RAMON MCKAIN (Under the Direction of James H. Leebens-Mack) ABSTRACT Polyploidy has been an important component to the evolution of angiosperms. Recent studies have shown that an ancient polyploid (paleopolyploid) event can be traced to the lineage leading to the diversification of all angiosperms, and it has long been known that recurring polyploid events can be found throughout the angiosperm tree of life. With the advent of high- throughput sequencing, the prominent place of paleopolyploid events in the evolutionary history of angiosperms has become increasingly clear. Polyploidy is thought to spur both diversification and trait innovation through the duplication and reworking of gene networks. Understanding the evolutionary impact of paleopolyploidy within the angiosperms requires knowing when these events occurred during angiosperm evolution. This study utilizes a high-throughput phylogenomic approach to identify the timing of paleopolyploid events by comparing the origin of paralogous genes within a gene family to a known species tree. Transcriptome data derived from taxa in lineages with previously little to no genomic data, were utilized to assess the timing of duplication events within hundreds of gene families. Previously described paleopolyploid events in the history of grasses, identified through analyses of syntenic blocks within Poaceae genomes, were placed on the Poales phylogeny and the implications of these events were considered. Additionally, a previously unverified paleopolyploidy event was found to have occurred in a common ancestor of all members of the Asparagales and commelinids (including Poales, Zingiberales, Commelinales, Arecales and Dasypogonales). The phylogeny of the Asparagaceae subfamily Agavoideae was resolved using whole chloroplast genomes, and two previously unknown paleopolyploid events were described within the context of that phylogeny.
    [Show full text]
  • Multilocus Phylogenetic Inference in Subfamily Chlorogaloideae and Related Genera of Agavaceae – Informing Questions in Taxonomy at Multiple Ranks ⇑ Jenny K
    Molecular Phylogenetics and Evolution 84 (2015) 266–283 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus phylogenetic inference in subfamily Chlorogaloideae and related genera of Agavaceae – Informing questions in taxonomy at multiple ranks ⇑ Jenny K. Archibald a, , Susan R. Kephart b, Kathryn E. Theiss b, Anna L. Petrosky c, Theresa M. Culley d a Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA b Department of Biology, Willamette University, Salem, OR 97301, USA c Department of Integrative Biology, University of California, Berkeley, CA 94709, USA d Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA article info abstract Article history: A series of taxonomic questions at the subfamilial, generic, and intrageneric levels have remained within Received 21 July 2014 subfamily Chlorogaloideae s.s. (comprising Camassia, Chlorogalum, Hastingsia, and Schoenolirion) and Revised 8 December 2014 relatives in Agavaceae. We present the first phylogenetic hypotheses focused on Chlorogaloideae that Accepted 16 December 2014 are based on multiple independent loci and include a wide sampling of outgroups across Agavaceae. In Available online 10 January 2015 addition to chloroplast regions ndhF and trnL–trnF, we used nrDNA ITS for phylogenetic inference. Incom- plete concerted evolution of the latter is indicated by intra-individual site polymorphisms for nearly half Keywords: of the individuals. Comparisons of four coding and analysis methods for these characters indicate that the Agavaceae region remains phylogenetically informative. Our results confirm that Chlorogaloideae s.s. is not Chlorogaloideae Chlorogalum monophyletic, due to the close relationship of Schoenolirion with Hesperaloe and Hesperoyucca, as well Hesperaloe as the likely sister relationship between Hesperocallis and core Chlorogaloideae (Camassia, Chlorogalum, Hesperocallis and Hastingsia).
    [Show full text]