Quick viewing(Text Mode)

The Fossil Insects of the Quercy Region 127

The Fossil Insects of the Quercy Region 127

The Fossil of the Quercy Region 127

Entomologie heute 28 (2016): 127-142

The Fossil Insects of the Quercy Region: A Historical Review

Die fossilen Insekten der Quercy Region: eine historische Übersicht

ACHIM H. SCHWERMANN, MICHAEL WUTTKE, TOMY DOS SANTOS ROLO, MICHAEL S. CATERINO, GÜNTER BECHLY, HEIKO SCHMIED, TILO BAUMBACH & THOMAS VAN DE KAMP

Summary: At the end of the 19th century, numerous mineralized insects from the Paleogene were dis- covered during phosphorite mining in the former province of Quercy in France. Despite their unusual three-dimensional preservation, the Quercy insects received only minor attention from the scientifi c community. During the time of mining, the only detailed study on the subject was provided in 1890 by KARL FLACH, who described two carrion species. More than fi ve decades later, the Swiss entomologist EDUARD HANDSCHIN published the fi rst and hitherto only comprehensive study on the Quercy insects. Unfortunately, his detailed work did not draw the attention of paleoentomologists to these fascinating fossils. More than 70 years after HANDSCHIN’s study, recent examinations provided fascinating new insights into this almost forgotten fossil type. While the descriptions by the early researchers were largely restricted to the external shape of the specimens, X-ray microtomography now permits detailed non-destructive examination of their internal composition. The latest study revealed extraordinarily well-preserved ana- tomical characters in a fossil hister beetle (: Onthophilus intermedius Handschin, 1944), which was largely hidden inside a stony matrix. This fi nding suggests that the Quercy specimens constitute a rich but yet largely unexploited source for anatomical data of fossil insects.

Keywords: Paleogene, phosphatization, mineralization, FRANÇOIS GERVAIS, HENRI FILHOL, ARMAND THÉVENIN, KARL FLACH, EDUARD HANDSCHIN

Zusammenfassung: Gegen Ende des 19. Jahrhunderts wurden während des Phosphorit-Abbaus in der ehemaligen Provinz Quercy in Frankreich zahlreiche mineralisierte Insekten aus dem Paläogen gefunden. Trotz ihrer ungewöhnlichen dreidimensionalen Erhaltung haben die Quercy-Insekten jedoch nur wenig Beachtung in der wissenschaftlichen Welt erfahren. KARL FLACH veröffentlichte 1890 die einzige während der Abbauphase entstandene Studie zu dem Thema, in der er zwei Aaskäferarten beschreibt. Mehr als fünf Jahrzehnte später publizierte der Schweizer Entomologe EDUARD HANDSCHIN die erste und bisher einzige umfassende Studie über die Quercy-Insekten. Unglücklicherweise hat auch seine detaillierte Arbeit nicht die Beachtung der Paläoentomologen für diese faszinierenden Fossilien wecken können. Mehr als 70 Jahre nach HANDSCHINs Studie ermöglichten aktuelle Untersuchungen nun faszinierende neue Einsichten in einen fast vergessenen Fossilientyp. Während die Untersuchun- gen der ersten Bearbeiter weitgehend auf die äußere Form der Stücke beschränkt waren, erlaubt die Röntgen-Mikrotomographie heutzutage eine zerstörungsfreie Untersuchung ihres internen Aufbaus. Die jüngste Arbeit offenbarte außergewöhnlich umfassend überlieferte anatomische Merkmale eines Stutzkäfers (Histeridae: Onthophilus intermedius Handschin, 1944), der größtenteils im Gestein verborgen ist. Dieses Ergebnis verdeutlicht, dass die Quercy-Insekten eine reichhaltige und bislang weitgehend unerschlossene Quelle für anatomische Informationen fossiler Insekten darstellen.

Schlüsselwörter: Paläogen, Phosphatisierung, Mineralisation, FRANÇOIS GERVAIS, HENRI FILHOL, ARMAND THÉVENIN, KARL FLACH, EDUARD HANDSCHIN

Entomologie heute 28 (2016) 128 ACHIM H. SCHWERMANN et al.

1. Introduction phatized – most of them insects – were found alongside the vertebrate fossils. fossils occur in many varieties, A fascinating feature of the Quercy arthropods e.g. as compressions and impressions, casts, is their three-dimensional preservation, while embeddings, or inclusions in amber (GRI- most fossil arthropods – with the exception MALDI et al. 1994; MARTÍNEZ-DELCLÒS et al. of amber inclusions – are compressed to two- 2004; GRIMALDI & ENGEL 2005; PENNEY & dimensional objects. However, despite their JEPSON 2014). While amber inclusions are unusual properties, the insects of the Quercy most famous for their exquisite preservation received only minor attention in the scientifi c of three-dimensional shape, sometimes even community. preserving soft tissues (PERREAU & TAFFO- Here we highlight the scientific history REAU 2011; VAN DE KAMP et al. 2014), 3D of the Quercy insects, comment on their arthropod fossils are also known from con- fossilization and demonstrate how state-of- cretions, hollow casts, encapsulations and the-art digital imaging techniques facilitate mineral replications. In mineralized fossils, fascinating new insights into a fossil type that organic tissues are replaced by minerals like was largely neglected by paleoentomologists calcite (MCCOBB et al. 1998), silica (MILLER for more than a century. & LUBKIN 2001), pyrite (GRIMALDI & ENGEL 2005), or phosphate (DUNCAN & BRIGGS 2. The history of the Quercy locality 1996; HELLMUND & HELLMUND 1996; WA- LOSZEK 2003). These fossils are known from Phosphate was discovered to be a potent many localities and geological ages, but while fertilizer by JUSTUS VON LIEBIG in 1840, there are several examples of mineralized triggering the search and mining of natural arthropod fossils from marine deposits (e.g. accumulations of phosphorite in the second MA et al. 2013; CONG et al. 2014; EDGECOMBE half of 19th century. After phosphorite was et al. 2015; SIVETER et al. 2007, 2013, 2014), found in the fi ssure fi llings of Quercy in mineralization within subaerial conditions 1865 (THÉVENIN 1903), intensive mining are generally less known. took place from 1870 until the end of that At the end of the 19th century nu mer ous fossils century (FILHOL 1876b; HANDSCHIN 1944; were discovered in the former Quercy pro- Fig. 1A). The fi ssure fi llings originate mainly vince in southwestern France. Whereas most from the Paleogene (LEGENDRE et al. 1997), vertebrates from that locality were represented when Mesozoic bedrocks of the region of merely by bones and teeth, a smaller number the Quercy ( limestones and marls, of body fossils of mineralized – or more pre- calcareous sandstones and reefal cisely phosphatized – frogs, salamanders, and clayey limestones) were subject to erosion snakes were described (FILHOL 1876a; LALOY and karstifi cation. The environment was et al. 2013; TISSIER et al. 2015). Multiple phos- like a tropical rainforest, crossed by rivers

Fig. 1: The locality and related researchers. A Phosphorite mine in the Quercy region (photograph taken from THÉVENIN 1903). B FRANÇOIS LOUIS PAUL GERVAIS (1816-1879); public domain picture originally published in “Popular Science Monthly”, August 1887. C PIERRE ANTOINE HENRI FILHOl (1843-1902); source unknown; restored by DIDIER DESCOUENS, Muséum de . D EDUARD HANDSCHIN (1894-1962); courtesy of W. ETTER, Naturhistorisches Museum Basel. Abb. 1: Der Fundort und seine Bearbeiter. A Phosphoritmine im Quercy (Foto aus THÉVENIN 1903). B FRANÇOIS LOUIS PAUL GERVAIS (1816-1879); gemeinfreies Bild, ursprünglich gedruckt in „Popular Science Monthly“, August 1887. C PIERRE ANTOINE HENRI FILHOL (1843-1902); Quelle unbekannt; restauriert von Didier Descouens, Muséum de Toulouse. D Eduard Handschin (1894- 1962); freundlicherweise zur Verfügung gestellt von W. ETTER, Naturhistorisches Museum Basel. The Fossil Insects of the Quercy Region 129

Entomologie heute 28 (2016) 130 ACHIM H. SCHWERMANN et al. coming down from the Massif Central. Wa- In 1890 the German entomologist KARL ter, enriched with carbon dioxide, penetrated L. FLACH (1856-1920) documented four through fractures within the rocks, and dis- specimens from Caylus1: an ootheca of a solved and dug cavities into the subsurface cockroach species (genus Blatta), a larva of of the Jurassic limestones (BRUXELLES et al. a cicada, and two carrion (Silphidae), 2008). The tropical erosion at the surface which he illustrated in detail (FLACH 1890; led to an intense lateritization of the Jurassic Fig. 2). He compared both beetle specimens and Cretaceous sediments, which partly were with modern taxa, found most similarities accumulated as limey clays and sands, rich with the genera Necrodes and Ptomascopus, and in iron and phosphate (GÉZE 1938, 1949), described them as new species (Palaeosilpha within the karstic cavities. Additionally those Fraasii [sic!] & Ptomascopus aveyronensis). Flach cavities acted as traps for vertebrate remains assumed a slow fossilization process invol- like teeth and bones and invertebrates. ving adipocere, and hypothesized vertebrate Unfortunately, little attention was paid to bones as the primary phosphate source, the stratigraphic differences between the which triggered the mineralization: multiple localities during the excavations in “Die Umwandlung scheint eine sehr langsame gewe- the 19th century. As known nowadays, they sen zu sein und nimmt man an, daſs der Versteine- cover mainly the time of the Middle and rung ein Zustand der Leichenwachsmetamorphose Late Eocene up to the beginning of the (Adipocire-Bildung) vorausgegangen sei. Die später late Oligocene. But also fossils from the sich einlagernden Phosphorsalze entstammen vorzüg- early Eocene (about 50 Ma) up to the lower lich Thier- bezw. Knochenresten in der Umgebung Miocene (about 20 Ma) are known (SIGÉ et und es ist nicht undenkbar, daſs die beiden Käfer al. 1991; LEGENDRE et al. 1997; RAGE 2006). (Aasfresser!) den Knochen desselben Thieres ihre Thus, the fossils from the Quercy region Erhaltung verdanken, dessen Leichnam sie einst zu cover about 30 Ma of natural history in vertilgen bestrebt waren.“ (FLACH 1890, S. 105) Europe, including important faunal inter- [Transformation seems to have occurred changes with Asia. very slowly, and a preceding process of an Massive accumulations of remains in adipocerous metamorphosis is supposed. the phosphorites of Quercy were reported The later incorporated phosphoric salts pro- to the Académie des sciences de Paris on bably originate from animal or bone remains October 30th 1871 (FILHOL 1876b) after the in the vicinity and it is not unimaginable beginning of mining, initiating the paleon- that both beetles (carrion eaters!) owe their tological collecting activities in the Quercy. preservation to the bones of the very same Soon, several collections in different insti- animal, whose corpse they were once eager tutions worldwide were developed. to devour.] (Translated by the authors) He recognized the extraordinary preserva- 3. Early reports of fossils tion of those specimens and encouraged further research: In 1877 FRANÇOIS LOUIS PAUL GERVAIS (1816- 1879; Fig. 1B), a French paleontologist 1 FLACH wrote “Caylux”. This is a synonym of holding the chair for comparative anatomy the modern commune Caylus, which is located at the Paris Muséum national d’histoire about 40 km northeast of . The name Caylux was used by FLACH (1890) and also naturelle, reported new “Fossiles du Quercy”, by THÉVENIN (1903) and is cited in that way by including a butterfl y pupa from the fi ssure HANDLIRSCH (1907). HANDSCHIN (1944) also used fi llings. When this fi rst fossil insect was pub- the term “Caylux” and pointed also to the locality lished, mining in the Quercy region already “Bach”. This is the commune next to Caylus to persisted for more than ten years. the north. The Fossil Insects of the Quercy Region 131

Fig. 2: FLACH’s drawings of the two fossil carrion beetles (Silphidae) and two extant species, which he considered to be most closely related to them (FLACH 1890). His fi gure caption (translated from German): “Fig. 1. Palaeosilpha Fraasii [sic!] m.; a. from top, b. from below, c. head from top, d. eye from top, e. from below, f. sculpture of the covers [elytra – author’s note], g. position of stigmata [spiracles – a/n] (st.). Fig. 2. Ptomascopus aveyronensis m.; a. from top, b. from the side, c. head from top, d. sculpture of the hind thorax [metaventrite – a/n] with both smooth stripes. Fig. 3. Ptomascopus morio Kraatz. ♂.; a. head from top, b. antenna. Fig. 4. Necrophorus [now Nicrophorus – a/n] vespilloides Herbst, without taking the line pattern into account; a. head from top, b. antenna. Fig. 5 Asbolus [now Necrodes – a/n] littoralis L. a. head from top, b. antenna.” Abb. 2: FLACHs Zeichnungen zweier fossiler Aaskäfer (Silphidae) und zweiter rezenter Arten, die er für nah mit ihnen verwandt hielt (Flach 1890). Seine Bildlegende: „Fig. 1. Palaeosilpha Fraasii [sic!] m.; a. von oben, b. von unten, c. Kopf von oben, d. Auge von oben, e. von unten, f. Sculptur der Decken [Elytren – Anm. d. Verf.], g. Stellung der Stigmen (st.). Fig. 2. Ptomascopus aveyronensis m.; a. von oben, b. von der Seite, c. Kopf von oben, d. Skulputur der Hinterbrust [Metaventrit – Anm. d. Verf.] mit den beiden glatten Streifen. Fig. 3. Ptomascopus morio Kraatz ♂.; a. Kopf von oben, b. Fühler, Fig. 4. Necrophorus [jetzt Nicrophorus – Anm. d. Verf.] vespilloides Herbst, ohne Berücksichtigung der Bindenzeichnung; a. Kopf von oben, b. Fühler. Fig. 5. Asbolus [jetzt Necrodes – Anm. d. Verf.] littoralis L.; a. Kopf von oben, b. Fühler.“

„Eine gründliche Untersuchung der Schichten an locality by the French colleagues with respect Ort und Stelle Seitens der französischen Collegen in to fossil insects would be very welcome and Hinsicht auf fossile Insekten wäre sehr erwünscht thanksworthy.] und dankenswerth.“ (FLACH 1890, S. 109) [A PIERRE ANTOINE HENRI FILHOL (1843-1902; thorough examination of the layers at the Fig. 2C) was engaged in paleontological

Entomologie heute 28 (2016) 132 ACHIM H. SCHWERMANN et al. research on the Quercy phophorites and were well-known to the paleontological wrote several articles about them (e.g. FILHOL community of that time, as indicated by 1876a, b, 1877, 1884). In 1894 he became citations in a couple of other contemporary chair for comparative anatomy at the Paris studies (e.g. HANDLIRSCH 1907; GAILLARD Muséum national d’Histoire Naturelle. He 1908). With the end of mining activity, described the phosphatized fossil amphibi- however, paleontological collecting stopped ans and reptiles, including preservation of for decades (LEGENDRE et al. 1997) and soft tissue remains, and suspected a very the arthropods of the Quercy got more rapid fi xation of the organic material by and more buried in oblivion. The detailed hydrothermal solutions (FILHOL 1876a). In investigation encouraged by FLACH (1890) 1892 he presented a dynastine beetle to the was never accomplished during the time of Société philomathique de Paris. Without any active mining of the Quercy phosphorites. published description he named it Pseudopen- todon blanchardi (see HANDSCHIN 1944). 4. HANDSCHIN’s study Eleven years later, ARMAND THÉVENIN (1870- 1918), a French paleontologist employed at In 1944, more than 50 years after FLACH’s the Muséum National d’Histoire Naturelle, study, the Swiss entomologist EDUARD described the geology of the southwest HANDSCHIN (1894-1962; Fig. 2D) published Massif central (THÉVENIN 1903). At this his article “Insekten aus den Phosphoriten time, mining had already signifi cantly de- des Quercy”, which constitutes by far the creased. He provided a map with the for- most comprehensive work on the Quercy mer phosphorite localities of the Quercy arthropods to date (HANDSCHIN 1944). region (THÉVENIN 1903; Pl. 13), including HANDSCHIN was professor for entomology the locations of the arthropod discoveries. at the University of Basel and at the same THÉVENIN reported millipedes (Julida and time employed by the Naturhistorisches Polydesmida), an orthopteran – later, HAND- Museum Basel, whose director he became SCHIN (1944) considered this specimen a in 1946. He discovered several specimens in Gryllotalpa –, and a large number of butterfl y the collection of the museum and pointed pupae and fl y puparia from the Collection out that they originated from three separate Rossignol at the Muséum d’Histoire Na- collections: turelle in Montauban. Contrary to FILHOL, “In der geologischen Sammlung des Naturhistori- THÉVENIN excluded a hypothermal origin schen Museums Basel befi nden sich eine Anzahl of the phosphorites. Further, he suggested fossiler Insekten, welche wegen ihres aussergewöhn- that the fossils do not represent the outer lichen Erhaltungszustandes besondere Beachtung shapes of the original , but rather verdienen. Sie stammen aus den Phosphoriten des representing natural casts: Quercy und sind zum Teil mit der Sammlung “Ils ont été englobés dans l’argile de remplissage Rossignol erworben, zum Teil von H.G. Stehlin de la poche et il y a eu ultérieurement moulage par und H. Helbing gesammelt worden.“ (HANDSCHIN le phosphate du creux formé ainsi dans l’argile.” 1944, p. 1). [The geological collection of the THÉVENIN 1903, p. 468) [They were embed- Naturhistorisches Museum Basel contains a ded in the clay that was fi lling the pocket number of fossil insects, which, given their and there was subsequently a casting pro- extraordinary preservation stage, deserve cess by the phosphate from the cavity thus special attention. They originate from the formed in the clay.] phosphorites of Quercy and were partly It is evident that fossil arthropods – and acquired with the Rossignol collection and especially insects – were frequently found in partly collected by H.G. Stehlin and H. the fi ssure fi llings of Quercy. Those fi ndings Helbing.] The Fossil Insects of the Quercy Region 133

Unfortunately, any details of these collecting conidarum gen. indet.”) in an Eophora pupa- sites are unknown, leaving some uncertainty rium. His study is accompanied by detailed in stratigraphic assignment of the speci- drawings (Figs 4, 5) created for this purpose mens. Like Flach, Handschin immediately by the distinguished scientifi c illustrator noticed the exceptional preservation of the OTTO GARRAUX (1904 - 1989). fossils and was astonished that they were Like FLACH, HANDSCHIN hoped to encourage completely disregarded by paleontologists other scientists to investigate the Quercy for more than fi ve decades: insect fauna: “Trotzdem dieser Erhaltungszustand zu Untersu- “Ich hoffe, damit auch die Aufmerksamkeit der chungen herausfordert und obschon Thévenin 1903 Fachgenossen auf diese so eigentümliche Insekten- in seiner Monographie des Quercy auf die zahlreiche fauna zu lenken, die sicher weit reicher ist, als man Insektenfauna der Phosphorite hingewiesen hat, bisher angenommen hat.” (HANDSCHIN 1944, hat sich erstaunlicherweise bis jetzt kein Bearbeiter p. 2) [I hope to call my colleagues’ attention derselben gefunden.“ (HANDSCHIN 1944, p. 1) to this peculiar insect fauna, which is cer- [Despite the preservation state urging in- tainly richer than expected. ] vestigations, and despite Thévenin (1903) However, following HANDSCHIN’s investi- having pointed out the large insect fauna gation, the arthropod fossils of the Quercy of the phosphorites in his monography of returned to their slumber. The next addition Quercy, amazingly no one has taken up the to their documented fossil record was an- challenge.] other 60 years later, when LAUDET & ANTO- HANDSCHIN examined hundreds of speci- INE (2004) reported pupal chambers of skin mens including: ca. 100 diplopod body parts beetles (Dermestidae) in rhinoceros bones he assigned to the new species Protosilvestra from the late Oligocene/earliest Miocene sculptata (Myriapoda: Juliadae; Fig. 3A); two of Quercy. oothecae of a Blatta (Blattodea; Fig. 3B); three abdomina of a mole cricket species 5. Recent investigations he named Gryllotalpa aveyronensis (Orthop- tera: Ensifera; Fig. 3C); one caterpillar and While the early descriptions of the Quercy four pupae of a moth species (Lepidoptera: insects – with the exception of the thin or Tineidae; Fig. 3D); 25 beetles (Coleoptera) polished sections by HANDSCHIN – were incl. 13 specimens of Ptomascopus aveyronensis based solely on their external morphology, (Silphidae), a pronotum of Thanatophilus sp. state of the art imaging methods now per- (Silphidae; Fig. 3E), an unidentifi ed silphid mits the non-destructive examination of larva, eight specimens of a hister beetle their internal structures. species he described as Onthophilus intermedius HANDSCHIN described the hister beetle (Histeridae; Fig. 3F), one abdomen of Apho- Onthophilus intermedius (Coleoptera: Histeri- dius sp. (Scarabaeidae) and a pronotum of a dae) from eight specimens, and considered longhorn beetle species he named Dorcadion it closely related to the extant European bachense (Cerambycidae); multiple puparia of species O. striatus (Forster, 1771). His phorid fl ies (Phoridae) incl. 41 specimens description was based mainly on the two of Megaselia (Fig. 3G), 22 of Spiniphora and apparently best-preserved specimens, which several hundreds of a genus he described as he did not identify. More than 70 years after Eophora (Fig. 3H). HANDSCHIN’s study, we had the opportunity HANDSCHIN created sections of some pu- to reexamine all eight specimens of O. inter- paria, revealing a fl y pupa inside an Eophora medius from his collection using synchrotron specimen (Fig. 4A). Moreover, he even X-ray microtomography (SCHWERMANN et reports a parasitoid braconid wasp (“Bra- al. 2016). This non-destructive imaging

Entomologie heute 28 (2016) 134 ACHIM H. SCHWERMANN et al.

Fig. 3: Photographs of specimens described and determined by Handschin. A Fragment of a myriapod (Protosilvestria sculpta). B Ootheca of a cockroach (Blatta sp.). C Abdomen of a mole cricket (Gryllotalpa averonensis). D Pupa of a moth (family Tineidae). E Abdomen and parts of the metathorax of a silphid beetle (Ptomascopus aveyronensis). F Hister beetle (Onthophilus intermedius). G, H Puparia of phorid fl ies (G: Megaselia sp.; H: Eophora sp.). I Sliced puparium of Eophora sp.; note the fl y pupa inside (compare with Fig. 5). Abb. 3: Fotos einiger von Handschin beschriebener Stücke. A Fragment eines Tausendfüßers (Protosilvestria sculpta). B Oothek einer Schabe (Blatta sp.). C Abdomen einer Maulwurfgrille (Gryllo- talpa averonensis). D Puppe einer Motte (Familie Tineidae). E Abdomen und Teile des Methathorax eines Aaskäfers (Ptomascopus aveyronensis). F Stutzkäfer (Onthophilus intermedius). G, H Puparien von Buckelfl iegen (G: Megaselia sp.; H: Eophora sp.). I Aufgeschnittenes Puparium von Eophora sp.; man beachte die Fliegenpuppe im Innern (vgl. Fig. 5).

Fig. 4: Drawings of Megaselia puparia (top) and a moth pupa (bottom) created by GARRAUX for HANDSCHIN’s study. Abb. 4: Von GARRAUX für HANDSCHIN erstellte Zeichnungen von Megaselia-Puparien (oben) und einer Mottenpuppe (unten). The Fossil Insects of the Quercy Region 135

Entomologie heute 28 (2016) 136 ACHIM H. SCHWERMANN et al.

Fig. 5: Drawings of a section of an Eophora puparium (top) and a hister beetle (Onthophilus intermedius; bottom) created by GARRAUX for HANDSCHIN’s study. Compare with Fig. 3F, I. Abb. 5: Von GARRAUX für HANDSCHIN erstellte Zeichnungen eines angeschnittenen Eophora-Pupa- riums (oben) und eines Stutzkäfers (Onthophilus intermedius; unten; vgl. Abb. 3F, I). technique has become established for the comparison. Scans were done at the TOPO- three-dimensional examination of both ex- TOMO beamline (RACK et al. 2009) of the tant (e.g. BETZ et al. 2007; BOSSELAERS et al. ANKA Synchrotron Radiation Facility (VAN 2010; VAN DE KAMP et al. 2011, 2014, 2015; DE KAMP et al. 2013) at Karlsruhe Institute BREHM et al. 2015; SOMBKE et al. 2015) and of Technology. extinct (SUTTON, 2008; SUTTON et al. 2014) One specimen strikingly differs from all other arthropods, including fossils preserved in specimens of the collection by the presence amber (PERREAU & TAFFOREAU 2011; LAK of a stony matrix covering the ventral part et al. 2009; POHL et al. 2010; SORIANO et of the beetle; its dorsal part and head are al. 2010; RIEDEL et al. 2012). In addition exposed (Fig. 6A, B). The elytra are missing, to the fossils, we performed tomographic the exposed surface is partly eroded and no scans of the extant O. striatus for a direct appendages are visible from the outside. The Fossil Insects of the Quercy Region 137

Fig. 6: Digital reconstruction of Onthophilus intermedius (from SCHWERMANN et al. 2016). A Photo- graph of the fossil ventrally embedded in a stony matrix. B Digital reconstruction showing fossil- ized beetle (b) and matrix (m). C Beetle digitally isolated from the stone, revealing well-preserved morphology hidden by the matrix. D Perspective view of the fossil showing parts of exoskeleton, tracheal network, alimentary canal and genitals. Abb. 6: Digitale Rekonstruktion eines Onthophilus intermedius (aus SCHWERMANN et al. 2016). A Foto des Fossils, das ventral in eine Steinmatrix eingebettet ist. B Digitale Rekonstruktion mit Käfer (b) und Matrix (m). C Der digital vom Stein befreite Käfer offenbart gut erhaltene, in der Matrix verborgene morphologische Strukturen. D Die perspektivische Ansicht des Fossils zeigt Teile von Exoskelett, Tracheennetzwerk, Verdauungstrakt und Genitalien. Ironically, this very specimen – apparently the ornamentation, fragile appendages, tracheal worst from the collection – proved to be the system, alimentary canal and genitals (Fig. 6C, most completely preserved fossil and revealed D). Our results facilitated a redescription of remarkable details. Hidden by the matrix and the species based on modern standards and invisible to HANDSCHIN, large parts of the allowed a phylogenetic analysis, which placed beetle’s exoskeleton and internal anatomy are O. intermedius into a different evolutionary extraordinarily preserved, including detailed lineage from O. striatus.

Entomologie heute 28 (2016) 138 ACHIM H. SCHWERMANN et al.

Further, we found that the sclerotized exo- anatomical data of fossil insects. Whereas skeletal parts are largely missing and repre- HANDSCHIN (1944) was forced to create po- sented by voids inside a stony marix. Thus, lished or thin sections of selected specimens the external surface of the beetle fossils is to examine their inner structures, we are now actually a natural cast of the inner surface able to investigate a large quantity of fossils by of the original exoskeleton and the charac- non-destructive methods. Our latest results teristic surface pattern of the outer cuticle, illustrate that one should not merely rely on as well as appendages (antennae, legs) are the outer shape of a fossil to estimate its missing (except in the single specimen that worth, as even those specimens that appear was embedded in a stony matrix). The same poorly preserved on the outside can provide condition may apply for the two silphid invaluable new insights. beetles described by FLACH (1890; Fig. 2). Future examinations of the Quercy arth- He noticed missing appendages and men- ropod fauna may also reveal the recon- tioned missing characteristic structures on struction of the different taphonomic the outer exoskeleton, which are present in processes yielding those fossils. Unequal Recent relatives. Therefore, we can partially kinds of preservation (simple natural casts verify THÉVENIN’s (1903) natural cast theory. or complex internal characters) within the arthropod fauna may refl ect different 6. Concluding remarks stages of decomposition at the beginning of the phosphatization process. Such in- In retrospect, it may appear strange that the vestigations will yield critical data testing insects of the Quercy region have received the adipocere-hypothesis of FLACH (l.c.) so little attention by the scientifi c commu- and the hydrothermal-solution-hypothesis nity. However, three-dimensionally preserved of FILHOL (l.c.) and compare them with a insects in amber are much more famous and diagenetic driven fossilization by originally certainly more attractive to the naked eye. phosphate rich cave sediment. An improved It is therefore easy to imagine that com- understanding of the taphonomy of those paratively shabby mineralized specimens arthropods, plus the mode of phosphate – despite their unusual 3D preservation enrichments in lateritic sediments, is critical – were likely considered inferior in quality. to testing pioneering reconstructions of Moreover, while amber inclusions are widely phosphatization of the Quercy arthropods available, the Quercy insects are confi ned to and to facilitate future interpretations. only a handful of museum collections. Like FLACH (1890) and HANDSCHIN (1944) Most information on the internal morphol- before, we would like to call the attention ogy of fossil insects was so far obtained from of paleo-entomologists to the fascinating amber inclusions, which causes a represen- Quercy insects – we sincerely hope, this time tational bias toward generally arboreal taxa it will not take decades until the next study (MARTÍNEZ-DELCLÒS et al. 2004). In contrast, on the subject. the Quercy insects represent an assemblage more typically associated with forest fl oor Acknowledgments communities (HANDSCHIN 1944), which are less commonly preserved than those of We are exceptionally grateful to WALTER many other environments (KIDWELL & FLESSA ETTER (Naturhistorisches Museum Basel), 1996). Modern 3D imaging techniques now who instantly answered all of our questions enable us to appreciate the true value of these regarding the Quercy fossils housed in Basel. almost forgotten fossils, which indeed may Furthermore he kindly provided the scans provide a rich complementary source for of GARRAUX‘s original drawings and the The Fossil Insects of the Quercy Region 139 portrait of EDUARD HANDSCHIN. Last but FILHOL, H. (1876a): Sur les reptiles fossiles des not least he and OLIVIER SCHMIDT enabled phosphorites du Quercy. Bulletin de la Société the loaning of the specimens for CT scan- des Philomathique de Paris 11: 27-28. FILHOL, H. (1876b): Recherches sur les phos- ning. CLAUDE ANTONY, RUTH HEINE (both phorites du Quercy; é tude des fossiles qu’on KIT, Eggenstein-Leopoldshafen), SERGE y rencontre et spé cialement des mammifè res. LEGENDRE (French National Centre for Sci- Annales Science Géologique 7: 1-220. entifi c Research, Paris), and BASTIAN MÄHLER F ILHOL, H. (1877): Recherches sur les phosphorites (Steinmann Institute, University of Bonn) du Quercy; étude des fossiles qu’on y rencontre are thanked for their help with translations et spécialement des mammifères. Masion; Paris. from French, explanation of the historical F ILHOL, H. (1884): Observations relatives à des Quercy collections, and fruitful discussions. mammifères fossiles nouveaux provenant des depots de phosphate de chaux du Quercy. Literature Bulletin de la Société des Sciences Physiques et Naturelles de Toulouse 5: 159-203. BETZ, O., WEGST, U., WEIDE, D., HEETHOFF, F LACH, K. (1890): Ueber zwei fossile Silphiden M., HELFEN, L., LEE, W.-K., & CLOETENS, P. (Coleoptera) aus den Phosphoriten von Cay- (2007): Imaging applications of synchrotron lux. Deutsche Entomologische Zeitschrift X-ray phase-contrast microtomography in 34: 105-109. biological morphology and biomaterials sci- G AILLARD, C. (1908): Les oiseaux des phospho- ence. I.General aspects of the technique and rites du Quercy. Annales du L‘Université de its advantages in the analysis of millimetre- Lyon, Nouvelle Série 23: 1-100. sized arthropod structure. Journal of Micro- G ERVAIS, P. (1877): Fossiles du Quercy. Journal scopy 227: 51-71. de Zoologie 6: 67-68. B OSSELAERS, J., DIERICK, M., CNUDDE, V., MASS- G ÉZE, B. (1938): La genèse des phosphorites du CHAELE, B., VAN HOOREBEKE, L., & JACOBS, P. Quercy. Comptes Rendus de l’Académie des (2010): High-resolution X-ray computed to- Sciences 206: 759-761. mography of an extant new Donuea (Araneae: GÉZE, B. (1949): Les gouffres à phosphate du Liocranidae) species in Madagascan copal. Quercy. Essai de paléospéléologie. Annales Zootaxa 2427: 25-35. de Spéléologie IV: 89-107. BREHM, G., FISCHER, M., GORB, S., KLEINTEICH, T., GRIMALDI, D., BONWICH, E., DELANNOY, M., & KÜHN, B., NEUBERT, D., POHL, H., WIPFLER, B., DOBERSTEIN, S. (1994): Electron microscopic & WURDINGER, S. (2015): The unique sound studies of mummifi ed tissues in amber fossils. production of the Death’s-head hawkmoth American Museum Novitates 3097: 1-31. (Acherontia atropos (Linnaeus, 1758)) revisited. G RIMALDI, D., & ENGEL, M.S. (2005): Evolution The Science of Nature 102: 43. of the insects. Cambridge University Press, BRUXELLES, L., MARCHET, P., & TARRISSE, A. Cambridge. (2008): Excursions en Quercy – Livret Guide. H ANDLIRSCH, A. (1907): Die fossilen Insekten. Journées AFK/AGSO/CFH 11, 12, 13 et 14 IV. Tertiäre Insekten. Wilhelm Engelmann; Septembre 2008. Leipzig. CONG, P., MA, X., HOU, X., EDGECOMBE, G.D., H ANDSCHIN, E. (1944): Insekten aus den Phos- & STRAUSFELD, N.J. (2014): Brain structure phoriten des Quercy. Schweizerische Paläon- resolves the segmental affi nity of anoma- tologische Abhandlungen 64: 1-23. locaridid appendages. Nature 513: 538-542. H ELLMUND, M., & HELLMUND, W. (1996): Phos- DUNCAN, I.J., & BRIGGS, D.E.G. (1996): Three- phoritisierte Insekten- und Annelidenreste dimensionally preserved insects. Nature 381: aus der mitteloligozänen Karstspaltenfül- 30-31. lung „Ronheim 1” bei Harburg (Bayern, E DGECOMBE, G.D., MA, X., & STRAUSFELD, N.J. Süddeutschland). Stuttgarter Beiträge zur (2015): Unlocking the early fossil record of Naturkunde, Serie B (Geologie und Paläon- the arthropod central nervous system. Phi- tologie) 241: 1-21. losophical Transactions of the Royal Society K IDWELL, S.M., & FLESSA, K.W. (1996): The qua- B: Biological Sciences 370: 2015-2038. lity of the fossil record: populations, species,

Entomologie heute 28 (2016) 140 ACHIM H. SCHWERMANN et al.

and communities. Annual Review of Earth P ERREAU, M., & TAFFOREAU, P. (2011): Virtual and Planetary Sciences 24: 433-464. dissection using phase-contrast X-ray syn- L AK, M., FLECK, G., AZAR, D., ENGEL, M.S., chrotron microtomography: reducing the gap KADDUMI, H.F., NERAUDEAU, D., TAFFOREAU, between fossils and extant species. Systematic P., & NEL, A. (2009): Phase contrast X-ray Entomology 36: 573-580. synchrotron microtomography and the oldest P OHL, H., WIPFLER, B., GRIMALDI, D., BECKMANN, damselfl ies in amber (: Zygoptera: F., & BEUTEL, R.G. (2010): Reconstructing Hemiphlebiidae). Zoological Journal of the the anatomy of the 42-million-year-old fossil Linnean Society 156: 913-923. Mengea tertiaria (Insecta, Strepsiptera). Natur- LALOY, F., RAGE, J.C., EVANS, S.E., BOISTEL, wissenschaften 97: 855–859. R., LENOIR, N., & LAURIN, M. (2013): A re- RACK, A., WEITKAMP, T., BAUER TRABELSI, S., interpretation of the Eocene anuran Thau- MODREGGER, P., CECILIA, A., DOS SANTOS mastosaurus based on microCT examination ROLO, T., RACK, T., HAAS, D., SIMON, R., of a ‘mummifi ed’ specimen. PLoS ONE 8: HELDELE, R., SCHULZ, M., MAYZEL, B., DANI- e74874. LEWSKY, A.N., WATERSTRADT, T., DIETE, W., L AUDET, F., & ANTOINE, P.-O. (2004): Des cham- RIESEMEIER, H., MÜLLER, B.R., & BAUMBACH, bres de pupation de Dermestidae (Insecta : T. (2009): The micro-imaging station of the Coleoptera) sur un os de mammifère terti- TopoTomo beamline at the ANKA syn- aire (phosphorites du Quercy): implications chrotron light source. Nuclear Instruments taphonomiques et paléoenvironnementales. and Methods in Physics Research Section B: Geobios 37: 376-381. Beam Interactions with Materials and Atoms L EGENDRE, S., SIGÉ, B., ASTRUC, J.G., BONIS, L., 267: 1978-1988. CROCHET, J.-Y., DENYS, C., GODINOT, M., HAR- R AGE, J.C. (2006): The lower vertebrates from the TENBERGER, J.-L., LEVEQUE, F., MARANDAT, B., Eocene and Oligocene of the phosphorites MOURER-CHAUVIRÉ, C., RAGE, J.-C., REMY, J.A., du Quercy (France): an overview. Strata 13: SUDRE, J., & VIANEY-LIAUD, M. (1997): Les 161-173. phosphorites du Quercy: 30 ans de recherche. R IEDEL, A., DOS SANTOS ROLO, T., CECILIA, A., Bilan et perspectives. Geobios 20: 331–345. & VAN DE KAMP, T. (2012): Sayrevilleinae M A, X., CONG, P., HOU, X., EDGECOMBE, G.D., Legalov, a newly recognised subfamily of & STRAUSFELD, N.J. (2014): An exceptionally fossil (Coleoptera, Curculionoidea, preserved arthropod cardiovascular system Attelabidae) and the use of synchrotron from the Early . Nature Commu- microtomography to examine inclusions in nications 5: 3560. amber. Zoological Journal of the Linnean MARTÍNEZ-DELCLÒS, X., BRIGGS, D.E.G., & Society 165: 773-794. PEÑALVER, E. (2004): Taphonomy of insects SCHWERMANN, A.H., DOS SANTOS ROLO, T., in carbonates and amber. Palaeogeography, CATERINO, M.S., BECHLY, G., SCHMIED, H., Palaeoclimatology, Palaeoecology 203: 19-64. BAUMBACH, T. & VAN DE KAMP, T. (2016): M CCOBB, L.M.E., DUNCAN, I.J., JARZEMBOWSKI, Preservation of three-dimensional anatomy E.A., STANKIEWICZ, B.A., WILLS, M.A., & in phosphatized fossil arthropods enriches BRIGGS, D.E.G. (1998): Taphonomy of the evolutionary inference. eLife 5: e12129. insects from the Insect Bed (Bembridge S IGÉ, B., AGUILAR, J.-P., MARANDAT, B., & ASTRUC, Marls), late Eocene, Isle of Wight, England. J.-G. (1991): Extension au Miocène inférieur Geological Magazine 135: 553-563. des remplissages phosphatés du Quercy. La M ILLER, K.B., & LUBKIN, S.H. (2001): Calicovatellus faune de vertébrés de Crémat (, France). petrodytes, a new genus and species of primitive Geobios 24: 497-502. vatelline diving beetle (Coleoptera: Dytiscidae: S IVETER, D.J., FORTEY, R.A., SUTTON, M.D., Hydroporinae: Vatellini) from the Miocene BRIGGS, D.E.G., & SIVETER, D.J. (2007): A Silu- Barstow Formation, Southern California, rian ‘marrellomorph’ arthropod. Proceedings USA. Journal of Paleontology 75: 890-894. of the Royal Society B: Biological Sciences P ENNEY, D., & JEPSON, J.E. (2014): Fossil insects 274: 2223-2229. – an introduction to palaeoentomology. Siri SIVETER, D.J., SUTTON, M.D., BRIGGS, D.E.G., & Scientifi c Press; Castleton. SIVETER, D.J. (2007): A new probable stem The Fossil Insects of the Quercy Region 141

lineage crustacean with three-dimensionally VAN DE KAMP, T., DOS SANTOS ROLO, T., VAGOVIč, preserved soft parts from the Herefordshire P., BAUMBACH, T., RIEDEL, A., & EVANS, A.R. () Lagerstätte, UK. Proceedings of (2014): Three-dimensional reconstructions the Royal Society B: Biological Sciences 274: come to life – interactive 3D PDF animations b2099-2108. in functional morphology. PLoS ONE 9: SIVETER, D.J., TANAKA, G., FARRELL, U.C., MARTIN, e102355-102357. M.J., SIVETER, D.J., & BRIGGS, D.E. (2014): VAN DE KAMP, T., CECILIA, A., DOS SANTOS ROLO, Exceptionally preserved 450-million-year- T., VAGOVIč, P., BAUMBACH, T., & RIEDEL, A. old ostracods with brood care. (2015): Comparative thorax morphology of Current Biology 24: 801-806. death-feigning flightless cryptorhynchine SORIANO, C., ARCHER, M., AZAR, D., CREASER, P., weevils (Coleoptera: ) based on DELCLÒS, X., GODTHELP, H., HAND, S., JONES, 3D reconstructions. Arthropod Structure & A., NEL, A., NÉRAUDEAU, D., ORTEGA-BLANCO, Development 44: 509-523. J., PÉ REZ-DE LA FUENTE, R., PERRICHOT, V., SAU- WALOSZEK, D. (2003): The “Orsten” window – a PE, E., KRAEMER, M.S., & TAFFOREAU, P. (2010): three-dimensionally preserved Upper Cambri- Synchrotron X-ray imaging of inclusions in an meiofauna and its contribution to our un- amber. Comptes Rendus Palevol 9: 361-368. derstanding of the evolution of Arthopoda. SUTTON, M.D. (2008): Tomographic techniques Paleontological Research 7: 71-88. for the study of exceptionally preserved Dr. Achim H. Schwermann fossils. Proceedings of the Royal Society B: Biological Sciences 275: 1587-1593. Dr. Heiko Schmied SUTTON, M.D., RAHMAN, I.A., & GARWOOD, R. University of Bonn (2014): Techniques for virtual palaeontology. Steinmann Institute for Geology, Wiley-Blackwell; Chichester. Mineralogy and Paleontology SOMBKE, A., LIPKE, E., MICHALIK, P., UHL, G., & Nussallee 8 HARZSCH, S. (2015): Potential and limitations D-53115 Bonn of X-ray micro-computed tomography in ar- E-Mail: [email protected] thropod neuroanatomy: a methodological and comparative survey. Journal of Comparative Dr. Michael Wuttke Neurology 523: 1281-1295. Department of Palaeoanthropology and THÉVENIN, A. (1903): Etude géologique sur la Messel Research bordure sud-ouest du Massif central. Bulletin Section Palaeoclimate- and Palaeoenviron- des services de la carte géologique del a France ment Research et des topographies souterraines 14: 353-548. Senckenberganlage 25 T ISSIER, J., RAGE, J.-C., BOISTEL, R., FERNANDEZ, D-60325 Frankfurt am Main V., POLLET, N., GARCIA, G., & LAURIN, M. (2015): Synchrotron analysis of a ‘mummifi ed’ Dr. Michael S. Caterino salamander (Vertebrata: Caudata) from the Clemson University Eocene of Quercy, France. Zoological Journal Department of Plant and Environmental of the Linnean Society 177: 147-164. Sciences VAN DE KAMP, T., VAGOVIč, P., BAUMBACH, T., & Clemson, South Carolina 29634-0310, USA RIEDEL, A. (2011): A biological screw in a beetle’s leg. Science 333: 52. Dr. Günter Bechly VAN DE KAMP, T., ERSHOV, A., DOS SANTOS ROLO, Staatliches Museum für Naturkunde T., RIEDEL, A., & BAUMBACH, T. (2013): Insect Stuttgart imaging at the ANKA Synchrotron Radiation Rosenstein 1 Facility. Entomologie heute 25: 147-160. D-70191 Stuttgart VAN DE KAMP, T., DOS SANTOS ROLO, T., BAUM- BACH, T., & KROGMANN, L. (2014): Scanning Dr. Thomas van de Kamp the past – Synchrotron X-ray microtomogra- Dipl.-Ing. (FH) Tomy dos Santos Rolo phy of fossil wasps in amber. Entomologie Prof. Dr. Tilo Baumbach heute 26: 151-160. Karlsruhe Institute of Technology (KIT)

Entomologie heute 28 (2016) 142 ACHIM H. SCHWERMANN et al.

Institute for Photon Science and Synchro- tron Radiation (IPS) & Laboratory for Applications of Synchro- tron Radiation (LAS) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen E-Mail: [email protected]