https://doi.org/10.5194/hess-2020-133 Preprint. Discussion started: 1 April 2020 c Author(s) 2020. CC BY 4.0 License. A hydrological framework for persistent river pools in semi- arid environments 1 Sarah A. Bourke , Margaret Shanafield2, Paul Hedley3, Shawan Dogramaci3 5 1School of Earth Sciences, University of Western Australia, Crawley WA 6009 Australia 2College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia 3Rio Tinto Iron Ore, Perth, WA 6000 Australia Correspondence to: Sarah A. Bourke (
[email protected]) Abstract 10 Persistent surface water pools along non-perennial rivers represent an important water resource for the plants, animals, and humans that inhabit semi-arid regions. While ecological studies of these features are not uncommon, these are rarely accompanied by a rigorous examination of the hydrological and hydrogeological characteristics that create or support the pools. Here we present an overarching framework for understanding the hydrology of persistent pools based on data from 22 pools in the Hamersley Basin in Western Australia. Three dominant 15 mechanisms that control the occurrence of persistent pools have been identified; perched pools, through flow pools and groundwater discharge pools. Groundwater discharge pools are further categorized into those that are present because of a geological contact or barrier, and those that are controlled by topography. A suite of diagnostic tools (including geological mapping, hydraulic data and hydrochemical surveys) is generally required to identify the mechanism supporting persistent pools. Perched pools are sensitive to climate variability but their 20 persistence is largely independent of groundwater withdrawals. Water fluxes to pools from alluvial and bedrock aquifers can vary seasonally and resolving these inputs is generally non-trivial.