Protecting Headwaters: the SCIENTIFIC BASIS for SAFEGUARDING STREAM and RIVER ECOSYSTEMS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blackstone River Watershed 2008 Benthic Macroinvertebrate Bioassessment
Technical Memorandum CN 325.2 BLACKSTONE RIVER WATERSHED 2008 BENTHIC MACROINVERTEBRATE BIOASSESSMENT Peter Mitchell Division of Watershed Management Watershed Planning Program Worcester, MA January, 2014 Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs Richard K. Sullivan, Jr., Secretary Department of Environmental Protection Kenneth L. Kimmell, Commissioner Bureau of Resource Protection Bethany A. Card, Assistant Commissioner (This page intentionally left blank) Contents INTRODUCTION.............................................................................................................................................1 METHODS ......................................................................................................................................................1 Macroinvertebrate Sampling - RBPIII..........................................................................................................1 Macroinvertebrate Sample Processing and Data Analysis .........................................................................4 Habitat Assessment.....................................................................................................................................6 RESULTS AND DISCUSSION........................................................................................................................6 SUMMARY....................................................................................................................................................10 LITERATURE -
Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge. -
Modifying Wepp to Improve Streamflow Simulation in a Pacific Northwest Watershed
MODIFYING WEPP TO IMPROVE STREAMFLOW SIMULATION IN A PACIFIC NORTHWEST WATERSHED A. Srivastava, M. Dobre, J. Q. Wu, W. J. Elliot, E. A. Bruner, S. Dun, E. S. Brooks, I. S. Miller ABSTRACT. The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow, soil water, and deep percolation. However, to adequately simulate hydrologic conditions with significant quantities of groundwater flow into streams, a baseflow component for WEPP is needed. The objectives of this study were (1) to simulate streamflow in the Priest River Experimental Forest in the U.S. Pacific Northwest using the WEPP model and a baseflow routine, and (2) to compare the performance of the WEPP model with and without including the baseflow using observed streamflow data. The baseflow was determined using a linear reservoir model. The WEPP- simulated and observed streamflows were in reasonable agreement when baseflow was considered, with an overall Nash- Sutcliffe efficiency (NSE) of 0.67 and deviation of runoff volume (Dv) of 7%. In contrast, the WEPP simulations without including baseflow resulted in an overall NSE of 0.57 and Dv of 47%. On average, the simulated baseflow accounted for 43% of the streamflow and 12% of precipitation annually. Integration of WEPP with a baseflow routine improved the model’s applicability to watersheds where groundwater contributes to streamflow. Keywords. Baseflow, Deep seepage, Forest watershed, Hydrologic modeling, Subsurface lateral flow, Surface runoff, WEPP. -
Research Report110
~ ~ WISCONSIN DEPARTMENT OF NATURAL RESOURCES A Survey of Rare and Endangered Mayflies of Selected RESEARCH Rivers of Wisconsin by Richard A. Lillie REPORT110 Bureau of Research, Monona December 1995 ~ Abstract The mayfly fauna of 25 rivers and streams in Wisconsin were surveyed during 1991-93 to document the temporal and spatial occurrence patterns of two state endangered mayflies, Acantha metropus pecatonica and Anepeorus simplex. Both species are candidates under review for addition to the federal List of Endang ered and Threatened Wildlife. Based on previous records of occur rence in Wisconsin, sampling was conducted during the period May-July using a combination of sampling methods, including dredges, air-lift pumps, kick-nets, and hand-picking of substrates. No specimens of Anepeorus simplex were collected. Three specimens (nymphs or larvae) of Acanthametropus pecatonica were found in the Black River, one nymph was collected from the lower Wisconsin River, and a partial exuviae was collected from the Chippewa River. Homoeoneuria ammophila was recorded from Wisconsin waters for the first time from the Black River and Sugar River. New site distribution records for the following Wiscon sin special concern species include: Macdunnoa persimplex, Metretopus borealis, Paracloeodes minutus, Parameletus chelifer, Pentagenia vittigera, Cercobrachys sp., and Pseudiron centra/is. Collection of many of the aforementioned species from large rivers appears to be dependent upon sampling sand-bottomed substrates at frequent intervals, as several species were relatively abundant during only very short time spans. Most species were associated with sand substrates in water < 2 m deep. Acantha metropus pecatonica and Anepeorus simplex should continue to be listed as endangered for state purposes and receive a biological rarity ranking of critically imperiled (S1 ranking), and both species should be considered as candidates proposed for listing as endangered or threatened as defined by the Endangered Species Act. -
Isoperla Bilineata (Group)
Steven R Beaty Biological Assessment Branch North Carolina Division of Water Resources [email protected] 2 DISCLAIMER: This manual is unpublished material. The information contained herein is provisional and is intended only to provide a starting point for the identification of Isoperla within North Carolina. While many of the species treated here can be found in other eastern and southeastern states, caution is advised when attempting to identify Isoperla outside of the study area. Revised and corrected versions are likely to follow. The user assumes all risk and responsibility of taxonomic determinations made in conjunction with this manual. Recommended Citation Beaty, S. R. 2015. A morass of Isoperla nymphs (Plecoptera: Perlodidae) in North Carolina: a photographic guide to their identification. Department of Environment and Natural Resources, Division of Water Resources, Biological Assessment Branch, Raleigh. Nymphs used in this study were reared and associated at the NCDENR Biological Assessment Branch lab (BAB) unless otherwise noted. All photographs in this manual were taken by the Eric Fleek (habitus photos) and Steve Beaty (lacinial photos) unless otherwise noted. They may be used with proper credit. 3 Keys and Literature for eastern Nearctic Isoperla Nymphs Frison, T. H. 1935. The Stoneflies, or Plecoptera, of Illinois. Illinois Natural History Bulletin 20(4): 281-471. • while not containing species of isoperlids that occur in NC, it does contain valuable habitus and mouthpart illustrations of species that are similar to those found in NC (I. bilineata, I richardsoni) Frison, T. H. 1942. Studies of North American Plecoptera with special reference to the fauna of Illinois. Illinois Natural History Bulletin 22(2): 235-355. -
The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
Biological Monitoring of Surface Waters in New York State, 2019
NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect. -
The River Continuum Redux: Aquatic Insect Diets Reveal the Importance of Autochthonous Resources in the Salmon River, Idaho
Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 2011 The River Continuum Redux: Aquatic Insect Diets Reveal the Importance of Autochthonous Resources in the Salmon River, Idaho Kathryn Vallis Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Vallis, Kathryn, "The River Continuum Redux: Aquatic Insect Diets Reveal the Importance of Autochthonous Resources in the Salmon River, Idaho" (2011). Master's Theses. 561. https://ecommons.luc.edu/luc_theses/561 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2011 Kathryn Vallis LOYOLA UNIVERSITY CHICAGO THE RIVER CONTINUUM REDUX: AQUATIC INSECT DIETS REVEAL THE IMPORTANCE OF AUTOCHTHONOUS RESOURCES IN THE SALMON RIVER, IDAHO A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM IN BIOLOGY BY KATHRYN LYNDSEY VALLIS CHICAGO, ILLINOIS DECEMBER 2011 Copyright by Kathryn Lyndsey Vallis, 2011 All rights reserved. ACKNOWLEDGEMENTS Although the end result of a Master’s program is a degree celebrating an individual’s achievement, the journey to get to that point is certainly not traveled alone. I would first like to thank all of those that I had the privilege of working alongside in the Rosi-Marshall lab at Loyola and the Cary Institute, particularly Dr. -
Biogeochemical and Metabolic Responses to the Flood Pulse in a Semi-Arid Floodplain
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU 1 Running Head: Semi-arid floodplain response to flood pulse 2 3 4 5 6 Biogeochemical and Metabolic Responses 7 to the Flood Pulse in a Semi-Arid Floodplain 8 9 10 11 with 7 Figures and 3 Tables 12 13 14 15 H. M. Valett1, M.A. Baker2, J.A. Morrice3, C.S. Crawford, 16 M.C. Molles, Jr., C.N. Dahm, D.L. Moyer4, J.R. Thibault, and Lisa M. Ellis 17 18 19 20 21 22 Department of Biology 23 University of New Mexico 24 Albuquerque, New Mexico 87131 USA 25 26 27 28 29 30 31 present addresses: 32 33 1Department of Biology 2Department of Biology 3U.S. EPA 34 Virginia Tech Utah State University Mid-Continent Ecology Division 35 Blacksburg, Virginia 24061 USA Logan, Utah 84322 USA Duluth, Minnesota 55804 USA 36 540-231-2065, 540-231-9307 fax 37 [email protected] 38 4Water Resources Division 39 United States Geological Survey 40 Richmond, Virginia 23228 USA 41 1 1 Abstract: Flood pulse inundation of riparian forests alters rates of nutrient retention and 2 organic matter processing in the aquatic ecosystems formed in the forest interior. Along the 3 Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created 4 riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are 5 still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain 6 isolated from flooding (i.e., disconnected). -
Behavioral Responses of Zooplankton to Predation
BULLETIN OF MARINE SCIENCE, 43(3): 530-550, 1988 BEHAVIORAL RESPONSES OF ZOOPLANKTON TO PREDATION M. D. Ohman ABSTRACT Many behavioral traits of zooplankton reduce the probability of successful consumption by predators, Prey behavioral responses act at different points of a predation sequence, altering the probability of a predator's success at encounter, attack, capture or ingestion. Avoidance behavior (through spatial refuges, diel activity cycles, seasonal diapause, locomotory behavior) minimizes encounter rates with predators. Escape responses (through active motility, passive evasion, aggregation, bioluminescence) diminish rates of attack or successful capture. Defense responses (through chemical means, induced morphology) decrease the probability of suc- cessful ingestion by predators. Behavioral responses of individuals also alter the dynamics of populations. Future efforts to predict the growth of prey and predator populations will require greater attention to avoidance, escape and defense behavior. Prey activities such as occupation of spatial refuges, aggregation responses, or avoidance responses that vary ac- cording to the behavioral state of predators can alter the outcome of population interactions, introducing stability into prey-predator oscillations. In variable environments, variance in behavioral traits can "spread the risk" (den Boer, 1968) of local extinction. At present the extent of variability of prey and predator behavior, as well as the relative contributions of genotypic variance and of phenotypic plasticity, -
New York State Artificial Reef Plan and Generic Environmental Impact
TABLE OF CONTENTS EXECUTIVE SUMMARY ...................... vi 1. INTRODUCTION .......................1 2. MANAGEMENT ENVIRONMENT ..................4 2.1. HISTORICAL PERSPECTIVE. ..............4 2.2. LOCATION. .....................7 2.3. NATURAL RESOURCES. .................7 2.3.1 Physical Characteristics. ..........7 2.3.2 Living Resources. ............. 11 2.4. HUMAN RESOURCES. ................. 14 2.4.1 Fisheries. ................. 14 2.4.2 Archaeological Resources. ......... 17 2.4.3 Sand and Gravel Mining. .......... 18 2.4.4 Marine Disposal of Waste. ......... 18 2.4.5 Navigation. ................ 18 2.5. ARTIFICIAL REEF RESOURCES. ............ 20 3. GOALS AND OBJECTIVES .................. 26 3.1 GOALS ....................... 26 3.2 OBJECTIVES .................... 26 4. POLICY ......................... 28 4.1 PROGRAM ADMINISTRATION .............. 28 4.1.1 Permits. .................. 29 4.1.2 Materials Donations and Acquisitions. ... 31 4.1.3 Citizen Participation. ........... 33 4.1.4 Liability. ................. 35 4.1.5 Intra/Interagency Coordination. ...... 36 4.1.6 Program Costs and Funding. ......... 38 4.1.7 Research. ................. 40 4.2 DEVELOPMENT GUIDELINES .............. 44 4.2.1 Siting. .................. 44 4.2.2 Materials. ................. 55 4.2.3 Design. .................. 63 4.3 MANAGEMENT .................... 70 4.3.1 Monitoring. ................ 70 4.3.2 Maintenance. ................ 72 4.3.3 Reefs in the Exclusive Economic Zone. ... 74 4.3.4 Special Management Concerns. ........ 76 4.3.41 Estuarine reefs. ........... 76 4.3.42 Mitigation. ............. 77 4.3.43 Fish aggregating devices. ...... 80 i 4.3.44 User group conflicts. ........ 82 4.3.45 Illegal and destructive practices. .. 85 4.4 PLAN REVIEW .................... 88 5. ACTIONS ........................ 89 5.1 ADMINISTRATION .................. 89 5.2 RESEARCH ..................... 89 5.3 DEVELOPMENT .................... 91 5.4 MANAGEMENT .................... 96 6. ENVIRONMENTAL IMPACTS ................. 97 6.1 ECOSYSTEM IMPACTS.