A Synopsis of the Iberian Clade of Linaria Subsect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology
molecules Review Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology Bahare Salehi 1 , Mangalpady Shivaprasad Shetty 2, Nanjangud V. Anil Kumar 3 , Jelena Živkovi´c 4, Daniela Calina 5 , Anca Oana Docea 6, Simin Emamzadeh-Yazdi 7, Ceyda Sibel Kılıç 8, Tamar Goloshvili 9, Silvana Nicola 10 , Giuseppe Pignata 10, Farukh Sharopov 11,* , María del Mar Contreras 12,* , William C. Cho 13,* , Natália Martins 14,15,* and Javad Sharifi-Rad 16,* 1 Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran 2 Department of Chemistry, NMAM Institute of Technology, Karkala 574110, India 3 Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India 4 Institute for Medicinal Plants Research “Dr. Josif Panˇci´c”,Tadeuša Koš´cuška1, Belgrade 11000, Serbia 5 Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania 6 Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania 7 Department of Plant and Soil Sciences, University of Pretoria, Gauteng 0002, South Africa 8 Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey 9 Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi 0162, Georgia 10 Department of Agricultural, Forest and Food Sciences, University of Turin, I-10095 Grugliasco, Italy 11 Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan 12 Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain 13 Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR 999077, China 14 Faculty of Medicine, University of Porto, Alameda Prof. -
Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees. -
(Linaria Vulgaris) and Dalmatian Toadflax (Linaria
DISSERTATION VIABILITY AND INVASIVE POTENTIAL OF HYBRIDS BETWEEN YELLOW TOADFLAX (LINARIA VULGARIS) AND DALMATIAN TOADFLAX (LINARIA DALMATICA) Submitted by Marie F.S. Turner Department of Soil and Crop Sciences In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2012 Doctoral Committee: Advisor: Sarah Ward Christopher Richards David Steingraeber George Beck Sharlene Sing Copyright by Marie Frances Sundem Turner 2012 All Rights Reserved ABSTRACT VIABILITY AND INVASIVE POTENTIAL OF HYBRIDS BETWEEN YELLOW TOADFLAX (LINARIA VULGARIS) AND DALMATIAN TOADFLAX (LINARIA DALMATICA) Although outcomes of hybridization are highly variable, it is now considered to play an important role in evolution, speciation, and invasion. Hybridization has recently been confirmed between populations of yellow (or common) toadflax (Linaria vulgaris) and Dalmatian toadflax (Linaria dalmatica) in the Rocky Mountain region of the United States. The presence of hybrid toadflax populations on public lands is of concern, as both parents are aggressive invaders already listed as noxious weeds in multiple western states. A common garden experiment was designed to measure differences in quantitative (shoot length, biomass, flowering stems, seed capsule production) phenological (time of emergence, first flowering and seed maturity) and ecophysiological (photosynthesis, transpiration and water use efficiency (WUE)) traits for yellow and Dalmatian toadflax, F1 and BC1 hybrids, as well as natural field-collected hybrids from two sites. Genotypes were cloned to produce true replicates and the entire common garden was also replicated at two locations (Colorado and Montana); physiological data were collected only in Colorado. All genotypes grew larger and were more reproductively active in Colorado than in Montana, and hybrids outperformed parent taxa across vegetative and reproductive traits indicating heterosis. -
Systematic Treatment of Veronica L
eISSN: 2357-044X Taeckholmia 38 (2018): 168-183 Systematic treatment of Veronica L. Section Beccabunga (Hill) Dumort (Plantaginaceae) Faten Y. Ellmouni1, Mohamed A. Karam1, Refaat M. Ali1, Dirk C. Albach2 1Department of Botany, Faculty of Science, Fayoum University, 63514 Fayoum, Egypt. 2Institute of biology and environmental sciences, Carl von Ossietzky-University, 26111 Oldenburg, Germany. *Corresponding author: [email protected] Abstract Veronica species mostly occur in damp fresh water places and in the Mediterranean precipitation regime. Members of this genus grow at different altitudes from sea level to high alpine elevations. They show a high level of polymorphism and phenotypic plasticity in their responses to variations of the enviromental factors, a quality that allows them to occur over a wide range of conditions. A group with particular high levels of polymorphism is the group of aquatic Veronica L. species in V. sect. Beccabunga (Hill) Dumort. Here, we attempt to unravel some confusion in the taxonomic complexity in V. section Beccabunga. We recognize 20 taxa in V. sect. Beccabunga and explore the occurrence of V. section Beccabunga, mainly in the Mediterranean basin; especially in Egypt (Nile delta and Sinai), Turkey and Iran with each country containing 10 taxa, from a total of 20 taxa, and characterized by endemics, or near-endemic as Veronica anagalloides ssp. taeckholmiorum.The results confirmed that V. section Beccabunga is divided into three subsections Beccabunga, Anagallides and Peregrinae, which essentially can be differentiated by the absence or presence of apetiole. Keywords: Morphological key, systematic treatment, Veronica, V. section Beccabunga Introduction The tribe Veroniceae, formerly part of the genus include: life-form (subshrubby/perennial vs. -
Evolution, Biogeography and Systematics of the Genus Cymbalaria Hill Evolució, Biogeografia I Sistemàtica Del Gènere Cymbalaria Hill Ph.D
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Evolution, biogeography and systematics of the genus Cymbalaria Hill Evolució, biogeografia i sistemàtica del gènere Cymbalaria Hill Ph.D. Thesis Pau Carnicero Campmany Unitat de Botànica Departament de Biologia Animal, Biolo- gia Vegetal i Ecologia Facultat de Biociències Universitat Autònoma de Barcelona Evolution, biogeography and systematics of the genus Cymbalaria Hill Ph.D. Thesis Pau Carnicero Campmany Bellaterra, 2017 Programa de doctorat en Ecologia Terrestre Unitat de Botànica Departament de Biologia Animal, Biolo- gia Vegetal i Ecologia Facultat de Biociències Universitat Autònoma de Barcelona Evolution, biogeography and systematics of the genus Cymbalaria Hill Memòria presentada per: Pau Carnicero Campmany per optar al grau de Doctor amb el vist-i-plau dels directors de tesi: Dra. Mercè Galbany Casals Dr. Llorenç Sáez Gonyalons (Directora i Tutora acadèmica) Unitat de Botànica Unitat de Botànica Departament de Biologia Departament de Biologia Animal, Vegetal i Ecologia Animal, Vegetal i Ecologia Facultat de Biociències Facultat de Biociències Universitat Autònoma de Barcelona Universitat Autònoma de Barcelona Dra. Núria Garcia Jacas Institut Botànic de Barcelona (IBB-CSIC-ICUB) Programa de doctorat en Ecologia Terrestre “When on board of H. -
CHARACTERIZATION of SCROPHULARIACEAE BASED on GROSS MORPHOLOGY and PETIOLE ANATOMY *Saikat Naskar PG Department of Botany, Barasat Govt
Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2015 Vol. 4 (4) October-December, pp. 121-126/Naskar Research Article CHARACTERIZATION OF SCROPHULARIACEAE BASED ON GROSS MORPHOLOGY AND PETIOLE ANATOMY *Saikat Naskar PG Department of Botany, Barasat Govt. College, Barasat, Kolkata- 700124 *Author for Correspondence ABSTRACT The family Scrophulariaceae s.l. has been treated differently by different taxonomists. In modern phylogenetic based classifications many traditional members of Scrophulariaceae have been placed under different families. Therefore in the present study gross morphological and petiole anatomical characters have been used to characterize the family Scrophulariaceae s.l. to understand the morphological and petiole anatomical distinctness among the families which are disintegrated from Scrophulariaceae s.l. INTRODUCTION Scrophulariaceae is considered as a problem family. It was treated variously by plant taxonomists. Scrophulariaceae s.l. is the largest family under Lamiales and has worldwide distribution from tropical to temperate regions. This family is recognisable by its bilaterally symmetric flowers, axile placentation with numerous ovules, capsular fruits and seed with endosperm. But, Scrophulariaceae shares these important morphological characters with related families. Due to absence of any morphological synapomorphic characters the monophyly of this family was in question. Bentham (1876) classified Scrophulariaceae into three subfamilies, viz. Pseudosolaneae, Antirrhinoideae and Rhinanthoideae where Pseudosolaneae was defined as a link with Solanaceae. Pennell (1935) suggested that the similarity of Scrophulariaceae with Solanaceae is actually derived independently within Scrophulariaceae. Therefore he eliminated subfamily Pseudosolaneaea and placed its genera to Antirrhinoideae. Melchior (1964) the included the families Orobanchaceae, Globulariaceae, Selaginaceae, Plantaginaceae and Lentibulariaceae within Scrophulariaceae. -
Diversity and Evolution of Asterids!
Diversity and Evolution of Asterids! . mints and snapdragons . ! *Boraginaceae - borage family! Widely distributed, large family of alternate leaved plants. Typically hairy. Typically possess helicoid or scorpiod cymes = compound monochasium. Many are poisonous or used medicinally. Mertensia virginica - Eastern bluebells *Boraginaceae - borage family! CA (5) CO (5) A 5 G (2) Gynobasic style; not terminal style which is usual in plants; this feature is shared with the mint family (Lamiaceae) which is not related Myosotis - forget me not 2 carpels each with 2 ovules are separated at maturity and each further separated into 1 ovuled compartments Fruit typically 4 nutlets *Boraginaceae - borage family! Echium vulgare Blueweed, viper’s bugloss adventive *Boraginaceae - borage family! Hackelia virginiana Beggar’s-lice Myosotis scorpioides Common forget-me-not *Boraginaceae - borage family! Lithospermum canescens Lithospermum incisium Hoary puccoon Fringed puccoon *Boraginaceae - borage family! pin thrum Lithospermum canescens • Lithospermum (puccoon) - classic Hoary puccoon dimorphic heterostyly *Boraginaceae - borage family! Mertensia virginica Eastern bluebells Botany 401 final field exam plant! *Boraginaceae - borage family! Leaves compound or lobed and “water-marked” Hydrophyllum virginianum - Common waterleaf Botany 401 final field exam plant! **Oleaceae - olive family! CA (4) CO (4) or 0 A 2 G (2) • Woody plants, opposite leaves • 4 merous actinomorphic or regular flowers Syringa vulgaris - Lilac cultivated **Oleaceae - olive family! CA (4) -
GENETIC OBSERVATIONS on the GENUS LINARIA a Few Years Ago, I
GENETIC OBSERVATIONS ON THE GENUS LINARIA E. M. EAST Harvard University, Bussey Institution, Jamaica Plain, Massachusetts Received January 9, 1933 A few years ago, I obtained seeds from eighteen presumably different species of the genus Linaria-chiefly through the kindness of Professor Doctor E. BAURand of HAAGEund ScHMIm-in order to determine the value' of this group for genetical investigation. The list of species follows, together with some notes on their compatibility with each other. 1. L. bipartita Willd. Hab. northern Africa. Erect, branching, annual type. Fls. large, violet-purple, with orange palates above, becoming whitish toward the base. Spurs long and curved. Closely related to Nos. 7,9, 10, 14, and probably will cross with them and give fertile hybrids. No crosses were obtained when the plants were used as female with Nos. 3 (12 pol.) and 17 (16 pol.). 2. L. canadensis Dumont. Hab. New Brunswick, New England, and south to southwest. Slender, erect, annual. Lvs. linear. Fls. small, violet-blue to purple. Late flowering. No crosses tried because of this point. 3. L. Cymbalaria Mill. (Kenilworth ivy). Hab. Europe. Four types grown, received under the names vulgare (trailing), alba (trailing with white flowers), globosa (bushy), and compacta (bushy). A trailing, glabrous plant, with reniform-orbicular, 5-9 lobed leaves. Fls. small, axillary, of various shades of purple above and of yellow at the lip. Spurs short. No crosses Earlier, I have made similar surveys of other genera; but, as no especially interesting con- tributions to genetic knowledge resulted, the results were not putlished. I now believe that this decision was a mistake. -
Evolution of Flower Shape in Plantago Lanceolata
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MURAL - Maynooth University Research Archive Library Plant Mol Biol (2009) 71:241–250 DOI 10.1007/s11103-009-9520-z Evolution of flower shape in Plantago lanceolata Wesley Reardon Æ David A. Fitzpatrick Æ Mario A. Fares Æ Jacqueline M. Nugent Received: 16 December 2008 / Accepted: 25 June 2009 / Published online: 11 July 2009 Ó Springer Science+Business Media B.V. 2009 Abstract Plantago lanceolata produces small actino- Introduction morphic (radially symmetric), wind-pollinated flowers that have evolved from a zygomorphic, biotically pollinated Flowering plants have evolved huge diversity in their floral ancestral state. To understand the developmental mecha- form and in their pollination strategies. One of the most nisms that might underlie this change in flower shape, and variable morphological characters is flower shape. Flowers associated change in pollination syndrome, we analyzed can be classified as zygomorphic (having only one plane of the role of CYC-like genes in P. lanceolata. Related reflectional symmetry or bilaterally symmetric), actino- zygomorphic species have two CYC-like genes that are morphic (having multiple planes of symmetry or radially expressed asymmetrically in the dorsal region of young symmetric) or asymmetric (having no plane of symmetry) floral meristems and in developing flowers, where they (Endress 2001). The gene regulatory network that deter- affect the rate of development of dorsal petals and stamens. mines zygomorphy is best understood in the model plant Plantago has a single CYC-like gene (PlCYC) that is not Antirrhinum majus (Corley et al. -
Systematics of Gratiola (Plantaginaceae)
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2008 Systematics of Gratiola (Plantaginaceae) Larry D. Estes University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Ecology and Evolutionary Biology Commons Recommended Citation Estes, Larry D., "Systematics of Gratiola (Plantaginaceae). " PhD diss., University of Tennessee, 2008. https://trace.tennessee.edu/utk_graddiss/381 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Larry D. Estes entitled "Systematics of Gratiola (Plantaginaceae)." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Randall L. Small, Major Professor We have read this dissertation and recommend its acceptance: Edward E. Schilling, Karen W. Hughes, Sally P. Horn Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a dissertation written by Larry Dwayne Estes entitled “Systematics of Gratiola (Plantaginaceae).” I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and Evolution. -
CFIA Distinguishing Toadflax Species
CSAAC Purity Presentation 2019 Linaria spp. - Toadflax May 29, 2019 Seed Science and Technology Section CFIA Saskatoon Laboratory © 2017 Her Majesty the Queen in Right of Canada (Canadian Food Inspection Agency), all rights reserved. Use without permission is prohibited. Learning objectives for this presentation 1. Become familiar with the structures and features of the seeds of selected Linaria spp. that analysts use to gather information about their identity. 2. Know how to apply botany knowledge to distinguish selected species of toadflax. 2 Linaria dalmatica fruit and seeds Immature seeds Angular shapes from close packing in capsule Seeds form inside of a 2-chambered capsule 3 Seed features of round Linaria spp. Prostrate toadflax Prostrate toadflax (Linaria supina) (Linaria supina) tuberculate form smooth form Yellow toadflax Melancholy toadflax Three-birds-flying (Linaria vulgaris) (Linaria tristis) (Linaria triornithophora) 4 Question #3 1. What are the 2 seed features used to separate the selected species of round-seeded Linaria spp.? 2. What are the 2 seed features that confirm yellow toadflax (L. vulgaris)? 5 Question #3 1. What are the 2 seed features used to separate the selected species of round-seeded Linaria spp.? • Shape of central area • Texture of the central area 1. What are the 2 seed features that confirm yellow toadflax (L. vulgaris)? • Oval central area • Tuberculate central area 6 Seed features of round Linaria spp. Feature/ Species Linaria tristis Linaria Linaria Linaria (melancholy supina triornithophora vulgaris toadflax) (prostrate (3 birds flying) (yellow toadflax) toadflax) Tuberculate centre Smooth centre Ridged centre Oval-shaped centre C-shaped centre Image 7 Seed features of angular Linaria spp. -
Field Identification of the 50 Most Common Plant Families in Temperate Regions
Field identification of the 50 most common plant families in temperate regions (including agricultural, horticultural, and wild species) by Lena Struwe [email protected] © 2016, All rights reserved. Note: Listed characteristics are the most common characteristics; there might be exceptions in rare or tropical species. This compendium is available for free download without cost for non- commercial uses at http://www.rci.rutgers.edu/~struwe/. The author welcomes updates and corrections. 1 Overall phylogeny – living land plants Bryophytes Mosses, liverworts, hornworts Lycophytes Clubmosses, etc. Ferns and Fern Allies Ferns, horsetails, moonworts, etc. Gymnosperms Conifers, pines, cycads and cedars, etc. Magnoliids Monocots Fabids Ranunculales Rosids Malvids Caryophyllales Ericales Lamiids The treatment for flowering plants follows the APG IV (2016) Campanulids classification. Not all branches are shown. © Lena Struwe 2016, All rights reserved. 2 Included families (alphabetical list): Amaranthaceae Geraniaceae Amaryllidaceae Iridaceae Anacardiaceae Juglandaceae Apiaceae Juncaceae Apocynaceae Lamiaceae Araceae Lauraceae Araliaceae Liliaceae Asphodelaceae Magnoliaceae Asteraceae Malvaceae Betulaceae Moraceae Boraginaceae Myrtaceae Brassicaceae Oleaceae Bromeliaceae Orchidaceae Cactaceae Orobanchaceae Campanulaceae Pinaceae Caprifoliaceae Plantaginaceae Caryophyllaceae Poaceae Convolvulaceae Polygonaceae Cucurbitaceae Ranunculaceae Cupressaceae Rosaceae Cyperaceae Rubiaceae Equisetaceae Rutaceae Ericaceae Salicaceae Euphorbiaceae Scrophulariaceae