Generalised Subbundles and Distributions: a Comprehensive Review Andrew D

Total Page:16

File Type:pdf, Size:1020Kb

Generalised Subbundles and Distributions: a Comprehensive Review Andrew D Generalised subbundles and distributions: A comprehensive review Andrew D. Lewis∗ 2011/09/01 Last updated: 2014/07/21 Abstract Distributions, i.e., subsets of tangent bundles formed by piecing together subspaces of tangent spaces, are commonly encountered in the theory and application of differential geometry. Indeed, the theory of distributions is a fundamental part of mechanics and control theory. The theory of distributions is presented in a systematic way, and self-contained proofs are given of some of the major results. Parts of the theory are presented in the context of generalised subbundles of vector bundles. Special emphasis is placed on understanding the r^oleof sheaves and understanding the distinctions between the smooth or finitely differentiable cases and the real analytic case. The Orbit Theorem and applications, including Frobenius's Theorem and theorems on the equivalence of families of vector fields, are considered in detail. Examples illustrate the phenomenon that can occur with generalised subbundles and distributions. Keywords. Generalised subbundle, sheaf theory, distribution, Orbit Theorem, Frobe- nius's Theorem, equivalence of families of vector fields. AMS Subject Classifications (2020). 18F20, 32C05, 32C35, 32L10, 55N30, 57R27, 57R25, 58A30, 58A07, 93B05. Contents 1. Introduction2 2. A wee bit of sheaf theory5 2.1 Presheaves and sheaves of sets. .5 2.2 Germs and ´etalespaces. .7 2.3 Sheaves of rings and modules. .8 2.4 Morphisms and subsheaves. .9 2.5 Coherent real analytic sheaves. 10 2.6 Real analytic spaces. 12 2.7 The beginnings of sheaf cohomology. 14 2.8 Topologies on stalks of sheaves of sections. 15 The smooth case. 15 The real analytic case. 17 ∗Professor, Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada Email: [email protected], URL: http://www.mast.queensu.ca/~andrew/ 1 2 A. D. Lewis 3. Generalised subbundles of vector bundles 20 3.1 Generalised subbundles. 21 3.2 Regular and singular points of generalised subbundles. 22 3.3 Generalised subbundles and subsheaves of sections. 25 3.4 Generators for submodules and subsheaves of sections. 28 3.5 Patchy subsheaves. 30 4. Algebraic constructions associated to generalised subbundles 34 4.1 From stalks of a sheaf to fibres. 34 4.2 Subsheaves of sections of a real analytic vector bundle. 38 4.3 Locally finitely generated subsheaves of modules. 39 4.4 Relationship between various notions of \locally finitely generated". 46 5. Global generators for generalised subbundles 49 5.1 Global generators for Cr-generalised subbundles. 50 5.2 Global generators for real analytic generalised subbundles. 55 5.3 Swan's Theorem for regular generalised subbundles. 56 6. Differential constructions associated to distributions 58 6.1 Local diffeomorphisms and flows of vector fields. 59 6.2 Lie brackets, (local) diffeomorphisms, and sheaves. 59 6.3 Lie subalgebras of vector fields and subsheaves. 63 6.4 Distributions and subsheaves invariant under vector fields and diffeomorphisms. 71 7. The Orbit Theorem 76 7.1 Partially defined vector fields. 76 7.2 Orbits. 78 7.3 Fixed-time orbits. 82 7.4 The Orbit Theorem. 85 7.5 The finitely generated Orbit Theorem. 94 7.6 The fixed-time Orbit Theorem. 95 7.7 The finitely generated fixed-time Orbit Theorem. 102 8. Frobenius's Theorem for subsheaves and distributions 103 8.1 Involutive distributions and subsheaves. 103 8.2 Integral manifolds. 105 8.3 Frobenius's Theorem, examples, and counterexamples. 107 1. Introduction Distributions arise naturally in differential geometry (for example, in the characterisa- tion of a Poisson manifold as being a disjoint union of its symplectic leaves) and in many applications of differential geometry, such as mechanics (for example, as arising from non- holonomic constraints in mechanics), and control theory (for example, in characterisations of orbits of families of vector fields). As such, distributions have been widely studied and much is known about them. However, as is often the case with objects that are widely used, there has arisen certain conventions for handling distributions that are viable \a lot of the Generalised subbundles and distributions 3 time," but which, in fact, do not have a basis in the general theory. For just one example, when distributions are used, there is often an unstated assumption of the distribution and all distributions arising from it having locally constant rank. However, this assumption is not always valid, and interesting phenomenon arise when it does not hold, e.g., the gen- eral class of abnormal sub-Riemannian minimisers described by Liu and Sussmann [1994] rely on the distribution generated by certain brackets being singular. For this reason, it seems that there may be some benefit to assembling the basic theory of distributions in one place, with complete proofs of important results, and this is what we do in this paper. The objective is to present, in one place, precise and general definitions and results relating to these definitions. Many of these definitions and results are most naturally presented in the setting of generalised subbundles of general vector bundles, and not just tangent bundles. Thus a substantial part of the paper deals with this. A principal function of the paper is that of a review paper. However, there are also some other contributions which we now outline. One of the contributions of the paper is to explicate clearly the r^oleof sheaf theory in handling distributions. This contribution arises in four ways: (1) in understanding the difficulties of dealing with real analytic global sections of vector bundles, and the manner in which such global sections arise; (2) in understanding clearly the r^oleof analyticity in results which require certain modules to be finitely generated; (3) in understanding some of the algebraic properties of generalised subbundles; (4) in properly characterising some local constructions involving distributions, e.g., invariance under vector fields and flows. To carry out these objectives in full detail requires a great deal to be drawn from sheaf theory, particularly as it relates to complex differential geometry. In this paper we make these connections explicit, we believe for the first time. Apart from this explication of sheaves in the theory of generalised subbundles and dis- tributions, another contribution of the paper is to clarify certain \folklorish" parts of the theory, i.e., things which are known to be true, but for which it is difficult (and for the author, impossible) to put together complete proofs in the existing literature. Here are a few such bits of folklore: (1) the fact that the rank of a real analytic generalised sub- bundle attains its maximal rank on the complement of an analytic set (proved here as Proposition 3.7); (2) the Serre{Swan Theorem for general vector bundles (proved here as Theorem 5.3); (3) the Noetherian properties of real analytic germs (proved here as Propo- sition 4.6); (4) the r^oleof these Noetherian properties in the local finite generation of modules (proved here as Theorem 4.10); (5) all variants of the Orbit Theorem (i.e., all com- binations of fixed-time and arbitrary-time, and finitely generated and non-finitely generated versions); (6) a counterexample that shows that smooth involutive distributions need not be integrable. The proofs of many of these facts are a matter of putting together known results; nonetheless, this has not been done to the best knowledge of the author. There are also some new results in the paper. In Section 3.5 we introduce the class of \patchy" subsheaves of the sheaf of sections of a vector bundle. In we show that the subsheaf what? of sections of a generalised subbundle is patchy. We subsequently show in Corollary 4.11 that patchy real analytic subsheaves are coherent, and this provides for these subsheaves access to the machinery of the cohomology of coherent real analytic sheaves presented in Section 2.5. Other new results are presented in Section 6.4, where we consider the notions of invariance of subsheaves of vector fields under diffeomorphisms and vector fields, and discuss the relationship between invariance under a vector field and invariance under the 4 A. D. Lewis flow of the same vector field. Here the topology of stalks of sheaves discussed in Section 2.8 features prominently, and in the smooth case we reveal the r^oleof the Whitney Spectral Theorem. What follows is an outline of the paper. Many of the properties of distributions, par- ticularly their smoothness, are prescribed locally. This raises the immediate question as to whether these local constructions give rise to meaningful global objects. The best way to systematically handle such an approach is via the use of sheaves. Thus in Section2 we introduce the elements of sheaf theory that we will require. Many of the elementary con- structions and results concerning distributions are just as easily done with vector bundles, rather than specifically with tangent bundles. For this reason, we devote a significant part of the paper to definitions and results for vector bundles. In Section3 we give the basic definitions and properties of generalised subbundles, i.e., assignments of a subspace of each fibre of a vector bundle. The set of sections of a generalised subbundle is a submodule of the module of sections. This simple observation, appropriately parsed in terms of sheaf theory, gives rise to some interesting algebraic structure for generalised subbundles. In Section4 we present some of this algebraic theory. In Section5 we study the important question of global generators of generalised subbundles. This provides an instance of the importance of sheaf theory in the study of generalised subbundles. Next in the paper we turn particularly to distributions, i.e., generalised subbundles of tangent bundles. Here the additional structure of vector fields having a flow, and all the consequences of this, play a r^ole.
Recommended publications
  • Stability of Tautological Bundles on Symmetric Products of Curves
    STABILITY OF TAUTOLOGICAL BUNDLES ON SYMMETRIC PRODUCTS OF CURVES ANDREAS KRUG Abstract. We prove that, if C is a smooth projective curve over the complex numbers, and E is a stable vector bundle on C whose slope does not lie in the interval [−1, n − 1], then the associated tautological bundle E[n] on the symmetric product C(n) is again stable. Also, if E is semi-stable and its slope does not lie in the interval (−1, n − 1), then E[n] is semi-stable. Introduction Given a smooth projective curve C over the complex numbers, there is an interesting series of related higher-dimensional smooth projective varieties, namely the symmetric products C(n). For every vector bundle E on C of rank r, there is a naturally associated vector bundle E[n] of rank rn on the symmetric product C(n), called tautological or secant bundle. These tautological bundles carry important geometric information. For example, k-very ampleness of line bundles can be expressed in terms of the associated tautological bundles, and these bundles play an important role in the proof of the gonality conjecture of Ein and Lazarsfeld [EL15]. Tautological bundles on symmetric products of curves have been studied since the 1960s [Sch61, Sch64, Mat65], but there are still new results about these bundles discovered nowadays; see, for example, [Wan16, MOP17, BD18]. A natural problem is to decide when a tautological bundle is stable. Here, stability means (n−1) (n) slope stability with respect to the ample class Hn that is represented by C +x ⊂ C for any x ∈ C; see Subsection 1.3 for details.
    [Show full text]
  • Special Sheaves of Algebras
    Special Sheaves of Algebras Daniel Murfet October 5, 2006 Contents 1 Introduction 1 2 Sheaves of Tensor Algebras 1 3 Sheaves of Symmetric Algebras 6 4 Sheaves of Exterior Algebras 9 5 Sheaves of Polynomial Algebras 17 6 Sheaves of Ideal Products 21 1 Introduction In this note “ring” means a not necessarily commutative ring. If A is a commutative ring then an A-algebra is a ring morphism A −→ B whose image is contained in the center of B. We allow noncommutative sheaves of rings, but if we say (X, OX ) is a ringed space then we mean OX is a sheaf of commutative rings. Throughout this note (X, OX ) is a ringed space. Associated to this ringed space are the following categories: Mod(X), GrMod(X), Alg(X), nAlg(X), GrAlg(X), GrnAlg(X) We show that the forgetful functors Alg(X) −→ Mod(X) and nAlg(X) −→ Mod(X) have left adjoints. If A is a nonzero commutative ring, the forgetful functors AAlg −→ AMod and AnAlg −→ AMod have left adjoints given by the symmetric algebra and tensor algebra con- structions respectively. 2 Sheaves of Tensor Algebras Let F be a sheaf of OX -modules, and for an open set U let P (U) be the OX (U)-algebra given by the tensor algebra T (F (U)). That is, ⊗2 P (U) = OX (U) ⊕ F (U) ⊕ F (U) ⊕ · · · For an inclusion V ⊆ U let ρ : OX (U) −→ OX (V ) and η : F (U) −→ F (V ) be the morphisms of abelian groups given by restriction. For n ≥ 2 we define a multilinear map F (U) × · · · × F (U) −→ F (V ) ⊗ · · · ⊗ F (V ) (m1, .
    [Show full text]
  • Characteristic Classes and K-Theory Oscar Randal-Williams
    Characteristic classes and K-theory Oscar Randal-Williams https://www.dpmms.cam.ac.uk/∼or257/teaching/notes/Kthy.pdf 1 Vector bundles 1 1.1 Vector bundles . 1 1.2 Inner products . 5 1.3 Embedding into trivial bundles . 6 1.4 Classification and concordance . 7 1.5 Clutching . 8 2 Characteristic classes 10 2.1 Recollections on Thom and Euler classes . 10 2.2 The projective bundle formula . 12 2.3 Chern classes . 14 2.4 Stiefel–Whitney classes . 16 2.5 Pontrjagin classes . 17 2.6 The splitting principle . 17 2.7 The Euler class revisited . 18 2.8 Examples . 18 2.9 Some tangent bundles . 20 2.10 Nonimmersions . 21 3 K-theory 23 3.1 The functor K ................................. 23 3.2 The fundamental product theorem . 26 3.3 Bott periodicity and the cohomological structure of K-theory . 28 3.4 The Mayer–Vietoris sequence . 36 3.5 The Fundamental Product Theorem for K−1 . 36 3.6 K-theory and degree . 38 4 Further structure of K-theory 39 4.1 The yoga of symmetric polynomials . 39 4.2 The Chern character . 41 n 4.3 K-theory of CP and the projective bundle formula . 44 4.4 K-theory Chern classes and exterior powers . 46 4.5 The K-theory Thom isomorphism, Euler class, and Gysin sequence . 47 n 4.6 K-theory of RP ................................ 49 4.7 Adams operations . 51 4.8 The Hopf invariant . 53 4.9 Correction classes . 55 4.10 Gysin maps and topological Grothendieck–Riemann–Roch . 58 Last updated May 22, 2018.
    [Show full text]
  • On Positivity and Base Loci of Vector Bundles
    ON POSITIVITY AND BASE LOCI OF VECTOR BUNDLES THOMAS BAUER, SÁNDOR J KOVÁCS, ALEX KÜRONYA, ERNESTO CARLO MISTRETTA, TOMASZ SZEMBERG, STEFANO URBINATI 1. INTRODUCTION The aim of this note is to shed some light on the relationships among some notions of posi- tivity for vector bundles that arose in recent decades. Positivity properties of line bundles have long played a major role in projective geometry; they have once again become a center of attention recently, mainly in relation with advances in birational geometry, especially in the framework of the Minimal Model Program. Positivity of line bundles has often been studied in conjunction with numerical invariants and various kinds of asymptotic base loci (see for example [ELMNP06] and [BDPP13]). At the same time, many positivity notions have been introduced for vector bundles of higher rank, generalizing some of the properties that hold for line bundles. While the situation in rank one is well-understood, at least as far as the interdepencies between the various positivity concepts is concerned, we are quite far from an analogous state of affairs for vector bundles in general. In an attempt to generalize bigness for the higher rank case, some positivity properties have been put forward by Viehweg (in the study of fibrations in curves, [Vie83]), and Miyaoka (in the context of surfaces, [Miy83]), and are known to be different from the generalization given by using the tautological line bundle on the projectivization of the considered vector bundle (cf. [Laz04]). The differences between the various definitions of bigness are already present in the works of Lang concerning the Green-Griffiths conjecture (see [Lan86]).
    [Show full text]
  • SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
    SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter.
    [Show full text]
  • Manifolds of Low Dimension with Trivial Canonical Bundle in Grassmannians Vladimiro Benedetti
    Manifolds of low dimension with trivial canonical bundle in Grassmannians Vladimiro Benedetti To cite this version: Vladimiro Benedetti. Manifolds of low dimension with trivial canonical bundle in Grassmannians. Mathematische Zeitschrift, Springer, 2018. hal-01362172v3 HAL Id: hal-01362172 https://hal.archives-ouvertes.fr/hal-01362172v3 Submitted on 26 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Manifolds of low dimension with trivial canonical bundle in Grassmannians Vladimiro Benedetti∗ May 27, 2017 Abstract We study fourfolds with trivial canonical bundle which are zero loci of sections of homogeneous, completely reducible bundles over ordinary and classical complex Grassmannians. We prove that the only hyper-K¨ahler fourfolds among them are the example of Beauville and Donagi, and the example of Debarre and Voisin. In doing so, we give a complete classifi- cation of those varieties. We include also the analogous classification for surfaces and threefolds. Contents 1 Introduction 1 2 Preliminaries 3 3 FourfoldsinordinaryGrassmannians 5 4 Fourfolds in classical Grassmannians 13 5 Thecasesofdimensionstwoandthree 23 A Euler characteristic 25 B Tables 30 1 Introduction In Complex Geometry there are interesting connections between special vari- eties and homogeneous spaces.
    [Show full text]
  • Differentials
    Section 2.8 - Differentials Daniel Murfet October 5, 2006 In this section we will define the sheaf of relative differential forms of one scheme over another. In the case of a nonsingular variety over C, which is like a complex manifold, the sheaf of differential forms is essentially the same as the dual of the tangent bundle in differential geometry. However, in abstract algebraic geometry, we will define the sheaf of differentials first, by a purely algebraic method, and then define the tangent bundle as its dual. Hence we will begin this section with a review of the module of differentials of one ring over another. As applications of the sheaf of differentials, we will give a characterisation of nonsingular varieties among schemes of finite type over a field. We will also use the sheaf of differentials on a nonsingular variety to define its tangent sheaf, its canonical sheaf, and its geometric genus. This latter is an important numerical invariant of a variety. Contents 1 K¨ahler Differentials 1 2 Sheaves of Differentials 2 3 Nonsingular Varieties 13 4 Rational Maps 16 5 Applications 19 6 Some Local Algebra 22 1 K¨ahlerDifferentials See (MAT2,Section 2) for the definition and basic properties of K¨ahler differentials. Definition 1. Let B be a local ring with maximal ideal m.A field of representatives for B is a subfield L of A which is mapped onto A/m by the canonical mapping A −→ A/m. Since L is a field, the restriction gives an isomorphism of fields L =∼ A/m. Proposition 1.
    [Show full text]
  • The Chern Characteristic Classes
    The Chern characteristic classes Y. X. Zhao I. FUNDAMENTAL BUNDLE OF QUANTUM MECHANICS Consider a nD Hilbert space H. Qauntum states are normalized vectors in H up to phase factors. Therefore, more exactly a quantum state j i should be described by the density matrix, the projector to the 1D subspace generated by j i, P = j ih j: (I.1) n−1 All quantum states P comprise the projective space P H of H, and pH ≈ CP . If we exclude zero point from H, there is a natural projection from H − f0g to P H, π : H − f0g ! P H: (I.2) On the other hand, there is a tautological line bundle T (P H) over over P H, where over the point P the fiber T is the complex line generated by j i. Therefore, there is the pullback line bundle π∗L(P H) over H − f0g and the line bundle morphism, π~ π∗T (P H) T (P H) π H − f0g P H . Then, a bundle of Hilbert spaces E over a base space B, which may be a parameter space, such as momentum space, of a quantum system, or a phase space. We can repeat the above construction for a single Hilbert space to the vector bundle E with zero section 0B excluded. We obtain the projective bundle PEconsisting of points (P x ; x) (I.3) where j xi 2 Hx; x 2 B: (I.4) 2 Obviously, PE is a bundle over B, p : PE ! B; (I.5) n−1 where each fiber (PE)x ≈ CP .
    [Show full text]
  • Lie Algebroid Cohomology As a Derived Functor
    LIE ALGEBROID COHOMOLOGY AS A DERIVED FUNCTOR Ugo Bruzzo Area di Matematica, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy; Department of Mathematics, University of Pennsylvania, 209 S 33rd st., Philadelphia, PA 19104-6315, USA; Istituto Nazionale di Fisica Nucleare, Sezione di Trieste Abstract. We show that the hypercohomology of the Chevalley-Eilenberg- de Rham complex of a Lie algebroid L over a scheme with coefficients in an L -module can be expressed as a derived functor. We use this fact to study a Hochschild-Serre type spectral sequence attached to an extension of Lie alge- broids. Contents 1. Introduction 2 2. Generalities on Lie algebroids 3 3. Cohomology as derived functor 7 4. A Hochshild-Serre spectral sequence 11 References 16 arXiv:1606.02487v4 [math.RA] 14 Apr 2017 Date: Revised 14 April 2017 2000 Mathematics Subject Classification: 14F40, 18G40, 32L10, 55N35, 55T05 Keywords: Lie algebroid cohomology, derived functors, spectral sequences Research partly supported by indam-gnsaga. u.b. is a member of the vbac group. 1 2 1. Introduction As it is well known, the cohomology groups of a Lie algebra g over a ring A with coeffi- cients in a g-module M can be computed directly from the Chevalley-Eilenberg complex, or as the derived functors of the invariant submodule functor, i.e., the functor which with ever g-module M associates the submodule of M M g = {m ∈ M | ρ(g)(m)=0}, where ρ: g → End A(M) is a representation of g (see e.g. [16]). In this paper we show an analogous result for the hypercohomology of the Chevalley-Eilenberg-de Rham complex of a Lie algebroid L over a scheme X, with coefficients in a representation M of L (the notion of hypercohomology is recalled in Section 2).
    [Show full text]
  • 4 Sheaves of Modules, Vector Bundles, and (Quasi-)Coherent Sheaves
    4 Sheaves of modules, vector bundles, and (quasi-)coherent sheaves “If you believe a ring can be understood geometrically as functions its spec- trum, then modules help you by providing more functions with which to measure and characterize its spectrum.” – Andrew Critch, from MathOver- flow.net So far we discussed general properties of sheaves, in particular, of rings. Similar as in the module theory in abstract algebra, the notion of sheaves of modules allows us to increase our understanding of a given ringed space (or a scheme), and to provide further techniques to play with functions, or function-like objects. There are particularly important notions, namely, quasi-coherent and coherent sheaves. They are analogous notions of the usual modules (respectively, finitely generated modules) over a given ring. They also generalize the notion of vector bundles. Definition 38. Let (X, ) be a ringed space. A sheaf of -modules, or simply an OX OX -module, is a sheaf on X such that OX F (i) the group (U) is an (U)-module for each open set U X; F OX ✓ (ii) the restriction map (U) (V ) is compatible with the module structure via the F !F ring homomorphism (U) (V ). OX !OX A morphism of -modules is a morphism of sheaves such that the map (U) F!G OX F ! (U) is an (U)-module homomorphism for every open U X. G OX ✓ Example 39. Let (X, ) be a ringed space, , be -modules, and let ' : OX F G OX F!G be a morphism. Then ker ', im ', coker ' are again -modules. If is an - OX F 0 ✓F OX submodule, then the quotient sheaf / is an -module.
    [Show full text]
  • On Sheaf Theory
    Lectures on Sheaf Theory by C.H. Dowker Tata Institute of Fundamental Research Bombay 1957 Lectures on Sheaf Theory by C.H. Dowker Notes by S.V. Adavi and N. Ramabhadran Tata Institute of Fundamental Research Bombay 1956 Contents 1 Lecture 1 1 2 Lecture 2 5 3 Lecture 3 9 4 Lecture 4 15 5 Lecture 5 21 6 Lecture 6 27 7 Lecture 7 31 8 Lecture 8 35 9 Lecture 9 41 10 Lecture 10 47 11 Lecture 11 55 12 Lecture 12 59 13 Lecture 13 65 14 Lecture 14 73 iii iv Contents 15 Lecture 15 81 16 Lecture 16 87 17 Lecture 17 93 18 Lecture 18 101 19 Lecture 19 107 20 Lecture 20 113 21 Lecture 21 123 22 Lecture 22 129 23 Lecture 23 135 24 Lecture 24 139 25 Lecture 25 143 26 Lecture 26 147 27 Lecture 27 155 28 Lecture 28 161 29 Lecture 29 167 30 Lecture 30 171 31 Lecture 31 177 32 Lecture 32 183 33 Lecture 33 189 Lecture 1 Sheaves. 1 onto Definition. A sheaf S = (S, τ, X) of abelian groups is a map π : S −−−→ X, where S and X are topological spaces, such that 1. π is a local homeomorphism, 2. for each x ∈ X, π−1(x) is an abelian group, 3. addition is continuous. That π is a local homeomorphism means that for each point p ∈ S , there is an open set G with p ∈ G such that π|G maps G homeomorphi- cally onto some open set π(G).
    [Show full text]
  • WITT GROUPS of GRASSMANN VARIETIES Contents Introduction 1
    WITT GROUPS OF GRASSMANN VARIETIES PAUL BALMER AND BAPTISTE CALMES` Abstract. We compute the total Witt groups of (split) Grassmann varieties, over any regular base X. The answer is a free module over the total Witt ring of X. We provide an explicit basis for this free module, which is indexed by a special class of Young diagrams, that we call even Young diagrams. Contents Introduction 1 1. Combinatorics of Grassmann and flag varieties 4 2. Even Young diagrams 7 3. Generators of the total Witt group 12 4. Cellular decomposition 15 5. Push-forward, pull-back and connecting homomorphism 19 6. Main result 21 Appendix A. Total Witt group 27 References 27 Introduction At first glance, it might be surprising for the non-specialist that more than thirty years after the definition of the Witt group of a scheme, by Knebusch [13], the Witt group of such a classical variety as a Grassmannian has not been computed yet. This is especially striking since analogous results for ordinary cohomologies, for K-theory and for Chow groups have been settled a long time ago. The goal of this article is to explain how Witt groups differ from these sister theories and to prove the following: Main Theorem (See Thm. 6.1). Let X be a regular noetherian and separated 1 scheme over Z[ 2 ], of finite Krull dimension. Let 0 <d<n be integers and let GrX (d, n) be the Grassmannian of d-dimensional subbundles of the trivial n- n dimensional vector bundle V = OX over X. (More generally, we treat any vector bundle V admitting a complete flag of subbundles.) Then the total Witt group of GrX (d, n) is a free graded module over the total Witt group of X with an explicit basis indexed by so-called “even” Young diagrams.
    [Show full text]