Quarks Gluons and the Origin of Mass

Total Page:16

File Type:pdf, Size:1020Kb

Quarks Gluons and the Origin of Mass Quarks Gluons and the Origin of Mass Mumbai U. September 19, 2017 Outline • Historical Introduction • The Modern Proton • Future Directions → imaging at the femtoscale • Conclusion and Outlook Modern Technology We live in a world that would have been unimaginable 100 years ago (R. Yoshida) But 100 years ago… William Henry Bragg (ca. 1915) We learned to map atoms inside matter using x-ray crystallography. This is where it all began. The deep knowledge of atomic structures and electromagnetism is the basis of today’s technology. Atomic- or nanotechnology. (R. Yoshida) Limits of Nanotechnology: Atoms Microelectronics improve with reduction of the “feature size” We are now down to 10 nanometers. (about 100 atoms wide). Progress becomes more and more difficult. 2015 International Technology Roadmap for Semiconductors Can we go smaller? (R. Yoshida) 1911 – Rutherford Atom • Revolutionized our view of the atom • The power of charged particle scattering 1920’s – Otto Stern "for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton". → proton is not a point particle 1950’s – Robert Hofstadter "for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons" The Quark Model – M. Gell-Mann • Finite size of nucleon • Patterns of known baryons and mesons "for his contributions and discoveries concerning the classification of elementary particles and their interactions" 1960’s - Discovery of Quarks The Nobel Prize in Physics 1990 was awarded jointly to Jerome I. Friedman, Henry W. Kendall and Richard E. Taylor "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics". Quantum Chromodynamics (QCD) • 1960’s – SLAC electron scattering results show small point-like constituents in the proton (Rutherford redux!) • 1970’s – theoretical development of QCD, analogous to QED Modern View of the Proton • Extended object (1 fm ~ 10-13cm) • Quarks (charged) & gluons (neutral) • Quark-antiquark pairs (from gluons) • Spin, orbital angular momentum Sum of quark masses « proton mass (~2%) QCD and the Origin of Mass 99% of the proton’s mass/energy is due to the self-generating gluon field – Higgs mechanism has almost no role. The similarity of mass between the C.D. Roberts, Prog. Part. Nucl. Phys. 61 (2008) 50-65 proton and neutron arises from the fact that the gluon dynamics are the same – Quarks contribute almost nothing. Lattice and model calculations now explicitly display dynamical breaking of chiral symmetry Advances in Femto-science Theory Accelerator Technologies Detector Technologies Computing Steady advances in all of these areas mean that (R. Yoshida) Nuclear Femtography The science of mapping the position and motion of quarks and gluons in the nucleus. .. is just beginning (R. Yoshida) Probing the Femto-world Can’t use any ordinary probes: Atoms that make up ordinary instruments are a million billion times too big! (R. Yoshida) Advancing Accelerator Technology: From SLAC to CEBAF SLAC (1960’s) Water-cooled Cu Original design for “continuous wave” (CW) beam CEBAF (1980’s) LHe cooled superconducting Nb Jefferson Lab Accelerator Complex Cryomodules in the accelerator tunnel Superconducting radiofrequency (SRF) cavities Hall D Machine Control Center Hall C An aerial view of the recirculating linear accelerator and 4 experimental halls. Jefferson Lab 12 GeV Upgrade Total Project Cost = $338M Estimate to Complete < $1M • Double maximum Accelerator energy to 12 GeV • Ten new high gradient cryomodules • Double Helium refrigerator plant capacity • Civil construction and upgraded utilities • Add 10th arc of magnets for 5.5 pass machine • Add 4th experimental Hall D • New experimental equipment in Halls B, C, D Jefferson Lab @ 12 GeV Science Questions excited gluon field • What is the role of gluonic excitations in the spectroscopy of light mesons? • Where is the missing spin in the nucleon? Role of orbital angular momentum? • Can we reveal a novel landscape of nucleon substructure through 3D imaging at the femtometer scale? • Can we discover evidence for physics beyond the standard model of particle physics? Gluonic Excitations and the Mechanism for Confinement Excited Glue Hall D@JLab States with Exotic Quantum Numbers Searching for the rules that govern hadron construction M. R. Sheperd, J. J. Dudek, R. E. Mitchell Quantum Numbers of Hybrid Mesons Excited Quarks Hybrid Meson Gluon Field S 0 PC 1 PC 1 L 0 J J J PC 0 1 1 like , K Exotic S 1 0 1 2 L 0 J PC J PC 1 0 1 2 like , Gluonic excitation (and parallel quark spins) lead to exotic JPC The Incomplete Nucleon: Spin Puzzle 1 1 = DS + L + J 2 2 q g [X. Ji, 1997] • DIS → DS 0.25 • RHIC + DIS → DG~0.2 • → Lq “Nuclear Femtography” 5D • Transverse Momentum Dist. (TMD) – Confined motion in a nucleon (semi-inclusive DIS) 3D • Generalized Parton Dist. (GPD) – Spatial imaging (exclusive DIS) • Requires – High luminosity – Polarized beams and targets – Sophisticated detector systems Major new capability with JLab @ 12 GeV Extraction of GPD’s Cleanest process: Deeply Virtual Compton Scattering hard vertices s s Ds A = s s = 2s ξ=xB/(2-xB) t Polarized beam, unpolarized target: ~ DsLU~ sinf{F1H+ ξ(F1+F2)H+kF2E}df H(x,t) Unpolarized beam, longitudinal target: ~ ~ DsUL~ sinf{F1H+ξ(F1+F2)(H+ξ/(1+ξ)E)}df H(x,t) Unpolarized beam, transverse target: E(x,t) DsUT~ sinf{k(F2H – F1E)}df SIDIS Electroproduction of Pions • Separate Sivers and Collins effects • Previous data from HERMES,COMPASS • New landscape of TMD distributions • Access to orbital angular target angle momentum hadron angle • Sivers angle, effect in distribution function: (fh-fs) • Collins angle, effect in fragmentation function: (fh+fs) Nuclear Science Long-Range Planning • Every 5-7 years the US Nuclear Science community produces a Long- Range Planning (LRP) Document 2015 We recommend a high-energy high- luminosity polarized Electron Ion Collider as the highest priority for new facility construction following the completion of FRIB. 27 Why Electron-Ion Collider? Higher the collision energy, smaller the probe. CEBAF 12 GeV Probe about 40th of the proton diameter Electron-Ion Collider: Probe about 500th of the proton diameter Improving Resolution Current situation CEBAF 12 GeV Electron-Ion Collider Resolution is a few Resolution is 10’s times smaller than Resolution is 100’s target of times smaller than of times smaller than the target the target High Brightness Machine 100 times brighter HERA: last electron-proton collider The New Landscape Enabled by EIC • High Luminosity 1034 cm-2s-1 • Low x regime x 0.0001 1E+38 1E+37 1 1E+36 • High Polarization - 1E+35 sec. 70% 2 - 1E+34 JLab EIC 1E+33 12 1E+32 COMPASS Discovery 1E+31 HERA (no p pol.) 1E+30 EMC HERMES Luminosity cm. Luminosity 0.0001 0.001 0.01 0.1 1 Potential! x US-Based EIC Proposals Brookhaven Lab Long Island, NY Jefferson Lab Newport News, VA EIC at Jefferson Lab JLab EIC Figure 8 Concept • High Polarization • High Luminosity • Low technical risk • Flexible timeframe for construction consistent w/running 12 GeV CEBAF • Cost effective operations Fulfills White Paper Requirements • Collaboration with SLAC, LBNL, ANL, BNL • Site evaluation (Virginia funds) 1035 LHC • User group organizing (charter, meetings) ( 34 • NAS study underway 10 • DOE-NP accelerator R&D program (FY17-18) 1033 EIC Users Group and International Interest Formed 2016, currently: 705 members 162 institutions, 29 countries Outlook • The last century has seen revolutionary progress in mankind’s ability to - image the structure of matter - manipulate the parts to develop technology • We are on the threshold of, for the first time, realizing the ability to image matter on the femtometer scale! - JLab12 (now) - EIC (future) • Could this ultimately lead to an era of “femtotechnology”? Only time will tell…. (Thanks to R. Yoshida).
Recommended publications
  • QCD Theory 6Em2pt Formation of Quark-Gluon Plasma In
    QCD theory Formation of quark-gluon plasma in QCD T. Lappi University of Jyvaskyl¨ a,¨ Finland Particle physics day, Helsinki, October 2017 1/16 Outline I Heavy ion collision: big picture I Initial state: small-x gluons I Production of particles in weak coupling: gluon saturation I 2 ways of understanding glue I Counting particles I Measuring gluon field I For practical phenomenology: add geometry 2/16 A heavy ion event at the LHC How does one understand what happened here? 3/16 Concentrate here on the earliest stage Heavy ion collision in spacetime The purpose in heavy ion collisions: to create QCD matter, i.e. system that is large and lives long compared to the microscopic scale 1 1 t L T > 200MeV T T t freezefreezeout out hadronshadron in eq. gas gluonsquark-gluon & quarks in eq. plasma gluonsnonequilibrium & quarks out of eq. quarks, gluons colorstrong fields fields z (beam axis) 4/16 Heavy ion collision in spacetime The purpose in heavy ion collisions: to create QCD matter, i.e. system that is large and lives long compared to the microscopic scale 1 1 t L T > 200MeV T T t freezefreezeout out hadronshadron in eq. gas gluonsquark-gluon & quarks in eq. plasma gluonsnonequilibrium & quarks out of eq. quarks, gluons colorstrong fields fields z (beam axis) Concentrate here on the earliest stage 4/16 Color charge I Charge has cloud of gluons I But now: gluons are source of new gluons: cascade dN !−1−O(αs) d! ∼ Cascade of gluons Electric charge I At rest: Coulomb electric field I Moving at high velocity: Coulomb field is cloud of photons
    [Show full text]
  • The Positons of the Three Quarks Composing the Proton Are Illustrated
    The posi1ons of the three quarks composing the proton are illustrated by the colored spheres. The surface plot illustrates the reduc1on of the vacuum ac1on density in a plane passing through the centers of the quarks. The vector field illustrates the gradient of this reduc1on. The posi1ons in space where the vacuum ac1on is maximally expelled from the interior of the proton are also illustrated by the tube-like structures, exposing the presence of flux tubes. a key point of interest is the distance at which the flux-tube formaon occurs. The animaon indicates that the transi1on to flux-tube formaon occurs when the distance of the quarks from the center of the triangle is greater than 0.5 fm. again, the diameter of the flux tubes remains approximately constant as the quarks move to large separaons. • Three quarks indicated by red, green and blue spheres (lower leb) are localized by the gluon field. • a quark-an1quark pair created from the gluon field is illustrated by the green-an1green (magenta) quark pair on the right. These quark pairs give rise to a meson cloud around the proton. hEp://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html Nucl. Phys. A750, 84 (2005) 1000000 QCD mass 100000 Higgs mass 10000 1000 100 Mass (MeV) 10 1 u d s c b t GeV HOW does the rest of the proton mass arise? HOW does the rest of the proton spin (magnetic moment,…), arise? Mass from nothing Dyson-Schwinger and Lattice QCD It is known that the dynamical chiral symmetry breaking; namely, the generation of mass from nothing, does take place in QCD.
    [Show full text]
  • Big Historical Foundations for Deep Future Speculations: Cosmic Evolution, Atechnogenesis, and Technocultural Civilization
    Found Sci DOI 10.1007/s10699-015-9434-y Big Historical Foundations for Deep Future Speculations: Cosmic Evolution, Atechnogenesis, and Technocultural Civilization Cadell Last1 Ó Springer Science+Business Media Dordrecht 2015 Abstract Big historians are attempting to construct a general holistic narrative of human origins enabling an approach to studying the emergence of complexity, the relation between evolutionary processes, and the modern context of human experience and actions. In this paper I attempt to explore the past and future of cosmic evolution within a big historical foundation characterized by physical, biological, and cultural eras of change. From this analysis I offer a model of the human future that includes an addition and/or reinterpretation of technological singularity theory with a new theory of biocultural evo- lution focused on the potential birth of technological life: the theory of atechnogenesis. Furthermore, I explore the potential deep futures of technological life and extrapolate towards two hypothetical versions of an ‘Omega Civilization’: expansion and compression. Keywords Big history Á Anthropology Á Futures Á Evolution Á Singularity Á Philosophy 1 Introduction My focus is to explore the ‘deep future’ of ‘big history’ in-as-far as it can be explored given a lack of empirical data, inability to test future predictions, and an incomplete knowledge of local and global physical, biological, and cultural processes currently in operation. We can gain a new understanding of possible future trends and processes by analyzing the emerging science of cosmic evolution within the narrative architecture of big history. Although modern phenomena like technological complexification and sociopo- litical convergence receive considerable attention, few researchers approach these issues from the vantage point of 13.8 billion years of interconnected evolution.
    [Show full text]
  • Nanosystems, Edge Computing, and the Next Generation Computing Systems
    sensors Review Nanosystems, Edge Computing, and the Next Generation Computing Systems Ali Passian * and Neena Imam Computing & Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; [email protected] * Correspondence: [email protected] Received: 30 July 2019; Accepted: 16 September 2019; Published: 19 September 2019 Abstract: It is widely recognized that nanoscience and nanotechnology and their subfields, such as nanophotonics, nanoelectronics, and nanomechanics, have had a tremendous impact on recent advances in sensing, imaging, and communication, with notable developments, including novel transistors and processor architectures. For example, in addition to being supremely fast, optical and photonic components and devices are capable of operating across multiple orders of magnitude length, power, and spectral scales, encompassing the range from macroscopic device sizes and kW energies to atomic domains and single-photon energies. The extreme versatility of the associated electromagnetic phenomena and applications, both classical and quantum, are therefore highly appealing to the rapidly evolving computing and communication realms, where innovations in both hardware and software are necessary to meet the growing speed and memory requirements. Development of all-optical components, photonic chips, interconnects, and processors will bring the speed of light, photon coherence properties, field confinement and enhancement, information-carrying capacity, and the broad spectrum of light into the high-performance computing, the internet of things, and industries related to cloud, fog, and recently edge computing. Conversely, owing to their extraordinary properties, 0D, 1D, and 2D materials are being explored as a physical basis for the next generation of logic components and processors. Carbon nanotubes, for example, have been recently used to create a new processor beyond proof of principle.
    [Show full text]
  • Modern Methods of Quantum Chromodynamics
    Modern Methods of Quantum Chromodynamics Christian Schwinn Albert-Ludwigs-Universit¨atFreiburg, Physikalisches Institut D-79104 Freiburg, Germany Winter-Semester 2014/15 Draft: March 30, 2015 http://www.tep.physik.uni-freiburg.de/lectures/QCD-WS-14 2 Contents 1 Introduction 9 Hadrons and quarks . .9 QFT and QED . .9 QCD: theory of quarks and gluons . .9 QCD and LHC physics . 10 Multi-parton scattering amplitudes . 10 NLO calculations . 11 Remarks on the lecture . 11 I Parton Model and QCD 13 2 Quarks and colour 15 2.1 Hadrons and quarks . 15 Hadrons and the strong interactions . 15 Quark Model . 15 2.2 Parton Model . 16 Deep inelastic scattering . 16 Parton distribution functions . 18 2.3 Colour degree of freedom . 19 Postulate of colour quantum number . 19 Colour-SU(3).............................. 20 Confinement . 20 Evidence of colour: e+e− ! hadrons . 21 2.4 Towards QCD . 22 3 Basics of QFT and QED 25 3.1 Quantum numbers of relativistic particles . 25 3.1.1 Poincar´egroup . 26 3.1.2 Relativistic one-particle states . 27 3.2 Quantum fields . 32 3.2.1 Scalar fields . 32 3.2.2 Spinor fields . 32 3 4 CONTENTS Dirac spinors . 33 Massless spin one-half particles . 34 Spinor products . 35 Quantization . 35 3.2.3 Massless vector bosons . 35 Polarization vectors and gauge invariance . 36 3.3 QED . 37 3.4 Feynman rules . 39 3.4.1 S-matrix and Cross section . 39 S-matrix . 39 Poincar´einvariance of the S-matrix . 40 T -matrix and scattering amplitude . 41 Unitarity of the S-matrix . 41 Cross section .
    [Show full text]
  • The Center Symmetry and Its Spontaneous Breakdown at High Temperatures
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server THE CENTER SYMMETRY AND ITS SPONTANEOUS BREAKDOWN AT HIGH TEMPERATURES KIERAN HOLLAND Institute for Theoretical Physics, University of Bern, CH-3012 Bern, Switzerland UWE-JENS WIESE Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA The Euclidean action of non-Abelian gauge theories with adjoint dynamical charges (gluons or gluinos) at non-zero temperature T is invariant against topologically non-trivial gauge transformations in the ZZ(N)c center of the SU(N) gauge group. The Polyakov loop measures the free energy of fundamental static charges (in- finitely heavy test quarks) and is an order parameter for the spontaneous break- down of the center symmetry. In SU(N) Yang-Mills theory the ZZ(N)c symmetry is unbroken in the low-temperature confined phase and spontaneously broken in the high-temperature deconfined phase. In 4-dimensional SU(2) Yang-Mills the- ory the deconfinement phase transition is of second order and is in the universality class of the 3-dimensional Ising model. In the SU(3) theory, on the other hand, the transition is first order and its bulk physics is not universal. When a chemical potential µ is used to generate a non-zero baryon density of test quarks, the first order deconfinement transition line extends into the (µ, T )-plane. It terminates at a critical endpoint which also is in the universality class of the 3-dimensional Ising model. At a first order phase transition the confined and deconfined phases coexist and are separated by confined-deconfined interfaces.
    [Show full text]
  • The Nanobank Database Is Available at for Free Use for Research Purposes
    Forthcoming: Annals of Economics and Statistics (Annales d’Economie et Statistique), Issue 115/116, in press 2014 NBER WORKING PAPER SERIES COMMUNITYWIDE DATABASE DESIGNS FOR TRACKING INNOVATION IMPACT: COMETS, STARS AND NANOBANK Lynne G. Zucker Michael R. Darby Jason Fong Working Paper No. 17404 http://www.nber.org/papers/w17404 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2011 Revised March 2014 The construction of Nanobank was supported under major grants from the National Science Foundation (SES- 0304727 and SES-0531146) and the University of California’s Industry-University Cooperative Research Program (PP9902, P00-04, P01-02, and P03-01). Additional support was received from the California NanoSystems Institute, Sun Microsystems, Inc., UCLA’s International Institute, and from the UCLA Anderson School’s Center for International Business Education and Research (CIBER) and the Harold Price Center for Entrepreneurial Studies. The COMETS database (also known as the Science and Technology Agents of Revolution or STARS database) is being constructed for public research use under major grants from the Ewing Marion Kauffman Foundation (2008- 0028 and 2008-0031) and the Science of Science and Innovation Policy (SciSIP) Program at the National Science Foundation (grants SES-0830983 and SES-1158907) with support from other agencies. Our colleague Jonathan Furner of the UCLA Department of Information Studies played a leading role in developing the methodology for selecting records for Nanobank. We are indebted to our scientific and policy advisors Roy Doumani, James R. Heath, Evelyn Hu, Carlo Montemagno, Roger Noll, and Fraser Stoddart, and to our research team, especially Amarita Natt, Hsing-Hau Chen, Robert Liu, Hongyan Ma, Emre Uyar, and Stephanie Hwang Der.
    [Show full text]
  • The Confinement Problem in Lattice Gauge Theory
    The Confinement Problem in Lattice Gauge Theory J. Greensite 1,2 1Physics and Astronomy Department San Francisco State University San Francisco, CA 94132 USA 2Theory Group, Lawrence Berkeley National Laboratory Berkeley, CA 94720 USA February 1, 2008 Abstract I review investigations of the quark confinement mechanism that have been carried out in the framework of SU(N) lattice gauge theory. The special role of ZN center symmetry is emphasized. 1 Introduction When the quark model of hadrons was first introduced by Gell-Mann and Zweig in 1964, an obvious question was “where are the quarks?”. At the time, one could respond that the arXiv:hep-lat/0301023v2 5 Mar 2003 quark model was simply a useful scheme for classifying hadrons, and the notion of quarks as actual particles need not be taken seriously. But the absence of isolated quark states became a much more urgent issue with the successes of the quark-parton model, and the introduction, in 1972, of quantum chromodynamics as a fundamental theory of hadronic physics [1]. It was then necessary to suppose that, somehow or other, the dynamics of the gluon sector of QCD contrives to eliminate free quark states from the spectrum. Today almost no one seriously doubts that quantum chromodynamics confines quarks. Following many theoretical suggestions in the late 1970’s about how quark confinement might come about, it was finally the computer simulations of QCD, initiated by Creutz [2] in 1980, that persuaded most skeptics. Quark confinement is now an old and familiar idea, routinely incorporated into the standard model and all its proposed extensions, and the focus of particle phenomenology shifted long ago to other issues.
    [Show full text]
  • Ultrafastlight-2020 Book of Abstracts
    Book of Abstracts IV International Conference on Ultrafast Optical Science UltrafastLight-2020 September 28 – October 2, 2020 Lebedev Physical Institute, Moscow IV International Conference on Ultrafast Optical Science (UltrafastLight-2020), is the broad-scope, annual international symposium dedicated to the most im- portant aspects of ultrafast phenomena in different fields of natural sciences and engineering. The Conference topics: 1. Extreme light 2. Ultrafast phenomena in condensed matter and ionized gases 3. Ultrafast laser nanofabrication and nanophotonics 4. Femtosecond non-linear optics. Filamentation. High field THz generation. 5. Femtosecond radiation in spectroscopy and optical frequency metrology. 6. Physics and technology of ultrafast lasers and ultrashort laser pulses. Website: www.ultrafastlight.ru E-mail: [email protected] [email protected] Chair - Nikolay Kolachevsky (Lebedev Physical Institute), Vice-chair - Andrey Ionin (Lebedev Physical Institute), Vice-chair - Sergey Kudryashov (ITMO University / LPI) 1 2 Contents 3 4 Section 1: Extreme light Section Chair: Andrei Savel’ev , e-mail: [email protected] (Lomonosov Moscow State University, Russia) Program committee: Valery Bychenkov (LPI RAS, Moscow, Russia) Igor Kostuykov (IAP RAS, Nizhny Novgorod, Russi) Scope Laser plasma sources of ionizing radiation Nuclear photonics Extreme fields physics Ultra high intensity facilities 5 Oral Investigation of pre-pulse influence on high-Z plasma formation in experiments with high intense up to 1022 W/cm2 femtosecond laser pulses by means of X-ray spectroscopy M. A. Alkhimova1, A. Ya. Faenov1,2, T. A. Pikuz1,2, I. Yu. Skobelev1,3, 4 4 4 S. A. Pikuz1,3, A. S. Pirozhkov , M. Nishiuchi , N. P. Dover , H. Sakaki4, A. Sagisaka4, Ko.
    [Show full text]
  • Enhanced Oil Recovery for Emergent Energy Demand: Challenges and Prospects for a Nanotechnology Paradigm Shift
    International Nano Letters https://doi.org/10.1007/s40089-018-0248-0 REVIEW Enhanced oil recovery for emergent energy demand: challenges and prospects for a nanotechnology paradigm shift Richard O. Afolabi1 Received: 3 May 2018 / Accepted: 6 September 2018 © The Author(s) 2018 Abstract Renewable and non-renewable energy sources remain the two fronts for meeting global emergent energy demand. Renew- able energy sources such as crude oil, in meeting energy needs, is a function of new hydrocarbon discoveries and improv- ing the recovery of existing oil felds. However, new crude oil discoveries are made at a decreasing rate; likewise, existing felds are at a declining phase with conventional recovery techniques not being able to produce as much as two-thirds of the oil in place. In complementing existing oil recovery techniques, research into the use of nanotechnology has emerged as a potential alternative for tertiary oil recovery scheme. Despite the promising results, there has not been any reported large- scale feld application of nanotechnology in the oil and gas industry except for some small-scale feld trials. In this paper, a detailed review of developments on nano-enhanced oil recovery (Nano-EOR) and its attendant challenges are presented. Furthermore, key recommendations were given for future research on Nano-EOR. While the adoption of new technologies has its associated risks, the future prospects of Nano-EOR remains very high. Keywords Nanotechnology · Enhanced oil recovery · Energy demand · Paradigm shift Introduction production, reserves growth, and feld reactivation or aban- donment [1, 2, 15, 16]. Recent research trend has shifted in Demand for energy has increased over the years with global various disciplines from the “Macro-domain” to the “Micro- industrialization and population growth [47].
    [Show full text]
  • Stability and Possible Production of the Super-Strong AB-Matter
    1 Stability and Possible Production of the Super-Strong AB-matter Alexander Bolonkin City University of New York, 1310 Avenue R, #6-F, Brooklyn,11229, USA [email protected] Abstract - In works [1-3] author offered and considered possible super strong nuclear matter. In given work he continues to study the problem of a stability and production this matter. He shows the special artificial forms of nuclear AB-matter which make its stability and give the fantastic properties. For example, by the offered AB-needle you can pierce any body without any damage, support motionless satellite, reach the other planet, and research Earth‘s interior. These forms of nuclear matter are not in nature now, and nanotubes are also not in nature. The AB-matter is also not natural now, but researching and investigating their possibility, properties, stability and production are necessary for creating them. Keywords- Femtotechnology; FemtoTech; AB-matter; AB-needle; Stability AB-matter; Production of AB-matter; 1. INTRODUCTION A. Brief History Physicist Richard Feynman offered his idea to design artificial matter from atoms and molecules at an American Physical Society meeting at Caltech on December 29, 1959. If he was not well-known physicist, the audience laughed at him and drove away from the podium. All scientists accepted his proposal as joke. Typical question are: How can you see the molecule? How can you catch the molecule? How can you connect one molecule to other? How many hundreds of years you will create one milligram of matter? And hundreds of same questions having no answers may be asked.
    [Show full text]
  • Nanotechnology (1+0)
    College of Agricultural Technology Theni Dr.M.Manimaran Ph.D Soil Science NST 301 Fundamentals & Applications of Nanotechnology (1+0) Syllabus Unit 1: Basics of Nano science (4 lectures) - Introduction to nano science and technology, history, definition, classification of nanomaterials based on origin, dimension - Unique properties of nanomaterials - mechanical, magnetic, thermal, optical and electrical properties Unit 2: Synthesis of Nanomaterials (3 Lectures): Physical, Chemical and Biological synthesis of nano-materials Unit 3: Properties and Characterization of Nanomaterials (4 Lectures): Size (particle size analyzer), morphological (scanning electron microscope and transmission electron microscope), optical (UV-VIS and FT-IR) and structural (XRD) properties of nano-materials Unit 4: Application of Nanotechnology (3 Lectures) Biosensor (principle, component, types, applications) agriculture (nano-fertilizers, herbicides, nano-seed science, nano- pesticides) and food Systems (encapsulation of functional foods, nano-packaging) Unit V - Application of Nanotechnology (2 Lectures) Energy, Environment, Health and Nanotoxicology Reference Books Subramanian, K.S. et al. (2018) Fundamentals and Applications of Nanotechnology, Daya Publishers, New Delhi K.S. Subramanian, K. Gunasekaran, N. Natarajan, C.R. Chinnamuthu, A. Lakshmanan and S.K. Rajkishore. 2014. Nanotechnology in Agriculture. ISBN: 978-93-83305-20-9. New India Publishing Agency, New Delhi. Pp 1-440. T. Pradeep, 2007. NANO: The Essentials: Understanding Nanoscience and Nanotechnology. ISBN: 9780071548298. Tata McGraw-Hill Publishing Company Limited, New Delhi. Pp 1-371. M.A. Shah, T. Ahmad, 2010. Principles of Nanoscience and Nanotechnology. ISBN: 978-81-8487-072-5. Narosa Publishing House Pvt. Ltd., New Delhi Pp. 1-220. Mentor of Nanotechnology When I see children run around and cycle with the artificial limbs with lightweight prosthetics, it is sheer bliss Dr.
    [Show full text]