Quantum Chromodynamics (QCD) QCD Is the Theory That Describes the Action of the Strong Force
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Charmed Double Bottom Baryon
The charmed double bottom baryon Author: Marcel Roman´ı Rod´es. Facultat de F´ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Dr. Joan Soto i Riera (Dated: January 15, 2018) Abstract: The aim of this project is to calculate the wavefunction and energy of the ground 0 state of the Ωcbb baryon, which is made up of 2 bottom and 1 charm quarks. Such a particle has ++ not been found yet, but recent observation of the doubly charmed baryon Ξcc (ucc) indicates that a baryon with three heavy quarks may be found in the near future. In this work, we will use the fundamental representation of the SU(3) group to compute the interaction between the quarks, then we will follow the Born-Oppenheimer approximation to find the effective potential generated by the motion of the c quark, which will allow us to solve the Schr¨odinger equation for the bb system. The total spatial wavefunction we are looking for results from the product of the wavefunctions of the two components (c and bb). Finally, we will discuss the possible states taking into account the spin and color wavefunctions. I. INTRODUCTION II. THE STRONG INTERACTION The interaction between quarks is explained by Quan- In July 2017, the LHCb experiment at CERN reported tum Chromodynamics (QCD), which is a gauge theory the observation of the Ξ++ baryon [1], indicating that, cc based on the SU(3) symmetry group. At short distances, sooner rather than later, baryons made up of three heavy where the confinement term is negligible, the interaction quarks will be found. -
QCD Theory 6Em2pt Formation of Quark-Gluon Plasma In
QCD theory Formation of quark-gluon plasma in QCD T. Lappi University of Jyvaskyl¨ a,¨ Finland Particle physics day, Helsinki, October 2017 1/16 Outline I Heavy ion collision: big picture I Initial state: small-x gluons I Production of particles in weak coupling: gluon saturation I 2 ways of understanding glue I Counting particles I Measuring gluon field I For practical phenomenology: add geometry 2/16 A heavy ion event at the LHC How does one understand what happened here? 3/16 Concentrate here on the earliest stage Heavy ion collision in spacetime The purpose in heavy ion collisions: to create QCD matter, i.e. system that is large and lives long compared to the microscopic scale 1 1 t L T > 200MeV T T t freezefreezeout out hadronshadron in eq. gas gluonsquark-gluon & quarks in eq. plasma gluonsnonequilibrium & quarks out of eq. quarks, gluons colorstrong fields fields z (beam axis) 4/16 Heavy ion collision in spacetime The purpose in heavy ion collisions: to create QCD matter, i.e. system that is large and lives long compared to the microscopic scale 1 1 t L T > 200MeV T T t freezefreezeout out hadronshadron in eq. gas gluonsquark-gluon & quarks in eq. plasma gluonsnonequilibrium & quarks out of eq. quarks, gluons colorstrong fields fields z (beam axis) Concentrate here on the earliest stage 4/16 Color charge I Charge has cloud of gluons I But now: gluons are source of new gluons: cascade dN !−1−O(αs) d! ∼ Cascade of gluons Electric charge I At rest: Coulomb electric field I Moving at high velocity: Coulomb field is cloud of photons -
The Positons of the Three Quarks Composing the Proton Are Illustrated
The posi1ons of the three quarks composing the proton are illustrated by the colored spheres. The surface plot illustrates the reduc1on of the vacuum ac1on density in a plane passing through the centers of the quarks. The vector field illustrates the gradient of this reduc1on. The posi1ons in space where the vacuum ac1on is maximally expelled from the interior of the proton are also illustrated by the tube-like structures, exposing the presence of flux tubes. a key point of interest is the distance at which the flux-tube formaon occurs. The animaon indicates that the transi1on to flux-tube formaon occurs when the distance of the quarks from the center of the triangle is greater than 0.5 fm. again, the diameter of the flux tubes remains approximately constant as the quarks move to large separaons. • Three quarks indicated by red, green and blue spheres (lower leb) are localized by the gluon field. • a quark-an1quark pair created from the gluon field is illustrated by the green-an1green (magenta) quark pair on the right. These quark pairs give rise to a meson cloud around the proton. hEp://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html Nucl. Phys. A750, 84 (2005) 1000000 QCD mass 100000 Higgs mass 10000 1000 100 Mass (MeV) 10 1 u d s c b t GeV HOW does the rest of the proton mass arise? HOW does the rest of the proton spin (magnetic moment,…), arise? Mass from nothing Dyson-Schwinger and Lattice QCD It is known that the dynamical chiral symmetry breaking; namely, the generation of mass from nothing, does take place in QCD. -
Charmed Baryons at the Physical Point in 2+ 1 Flavor Lattice
UTHEP-655 UTCCS-P-69 Charmed baryons at the physical point in 2+1 flavor lattice QCD Y. Namekawa1, S. Aoki1,2, K. -I. Ishikawa3, N. Ishizuka1,2, K. Kanaya2, Y. Kuramashi1,2,4, M. Okawa3, Y. Taniguchi1,2, A. Ukawa1,2, N. Ukita1 and T. Yoshi´e1,2 (PACS-CS Collaboration) 1 Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan 2 Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan 3 Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan 4 RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan (Dated: August 16, 2018) Abstract We investigate the charmed baryon mass spectrum using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 323 64 lattice. The dynamical up- × down and strange quark masses are tuned to their physical values, reweighted from those employed in the configuration generation. At the physical point, the inverse lattice spacing determined from the Ω baryon mass gives a−1 = 2.194(10) GeV, and thus the spatial extent becomes L = 32a = 2.88(1) fm. Our results for the charmed baryon masses are consistent with experimental values, except for the mass of Ξcc, which has been measured by only one experimental group so far and has not been confirmed yet by others. In addition, we report values of other doubly and triply charmed baryon masses, which have never been measured experimentally. arXiv:1301.4743v2 [hep-lat] 24 Jan 2013 1 I. INTRODUCTION Recently, a lot of new experimental results are reported on charmed baryons [1]. -
Vacuum As a Physical Medium
cu - TP - 626 / EERNIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I.12RI=IR1I;s. QI.; 621426 VACUUM AS A PHYSICAL MEDIUM (RELATIVISTIC HEAVY ION COLLISIONS AND THE BOLTZMANN EQUAT ION) T. D. LEE COLUMBIA UNIvERsI1Y, New Y0RI<, N.Y. 10027 A LECTURE GIVEN AT THE INTERNATIONAL SYMPOSIUM IN HONOUR OF BOLTZMANN'S 1 50TH BIRTHDAY, FEBRUARY 1994. THIS RESEARCH WAS SUPPORTED IN PART BY THE U.S. DEPARTMENT OF ENERGY. OCR Output OCR OutputVACUUM AS A PHYSICAL MEDIUM (Relativistic Heavy Ion Collisions and the Boltzmann Equation) T. D. Lee Columbia University, New York, N.Y. 10027 It is indeed a privilege for me to attend this international symposium in honor of Boltzmann's 150th birthday. ln this lecture, I would like to cover the following topics: 1) Symmetries and Asymmetries: Parity P (right—left symmetry) Charge conjugation C (particle-antiparticle symmetry) Time reversal T Their violations and CPT symmetry. 2) Two Puzzles of Modern Physics: Missing symmetry Vacuum as a physical medium Unseen quarks. 3) Relativistic Heavy Ion Collisions (RHIC): How to excite the vacuum? Phase transition of the vacuum Hanbury-Brown-Twiss experiments. 4) Application of the Relativistic Boltzmann Equations: ARC model and its Lorentz invariance AGS experiments and physics in ultra-heavy nuclear density. OCR Output One of the underlying reasons for viewing the vacuum as a physical medium is the discovery of missing symmetries. I will begin with the nonconservation of parity, or the asymmetry between right and left. ln everyday life, right and left are obviously distinct from each other. Our hearts, for example, are usually not on the right side. The word right also means "correct,' right? The word sinister in its Latin root means "left"; in Italian, "left" is sinistra. -
Arxiv:2011.12166V3 [Hep-Lat] 15 Apr 2021
LLNL-JRNL-816949, RIKEN-iTHEMS-Report-20, JLAB-THY-20-3290 Scale setting the M¨obiusdomain wall fermion on gradient-flowed HISQ action using the omega baryon mass and the gradient-flow scales t0 and w0 Nolan Miller,1 Logan Carpenter,2 Evan Berkowitz,3, 4 Chia Cheng Chang (5¶丞),5, 6, 7 Ben H¨orz,6 Dean Howarth,8, 6 Henry Monge-Camacho,9, 1 Enrico Rinaldi,10, 5 David A. Brantley,8 Christopher K¨orber,7, 6 Chris Bouchard,11 M.A. Clark,12 Arjun Singh Gambhir,13, 6 Christopher J. Monahan,14, 15 Amy Nicholson,1, 6 Pavlos Vranas,8, 6 and Andr´eWalker-Loud6, 8, 7 1Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27516-3255, USA 2Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 3Department of Physics, University of Maryland, College Park, MD 20742, USA 4Institut f¨urKernphysik and Institute for Advanced Simulation, Forschungszentrum J¨ulich,54245 J¨ulichGermany 5Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan 6Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 7Department of Physics, University of California, Berkeley, CA 94720, USA 8Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 9Escuela de F´ısca, Universidad de Costa Rica, 11501 San Jos´e,Costa Rica 10Arithmer Inc., R&D Headquarters, Minato, Tokyo 106-6040, Japan 11School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 12NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA 13Design Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 14Department of Physics, The College of William & Mary, Williamsburg, VA 23187, USA 15Theory Center, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA (Dated: April 16, 2021 - 1:31) We report on a subpercent scale determination using the omega baryon mass and gradient-flow methods. -
Arxiv:1202.1557V1
The Heisenberg-Euler Effective Action: 75 years on ∗ Gerald V. Dunne Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA On this 75th anniversary of the publication of the Heisenberg-Euler paper on the full non- perturbative one-loop effective action for quantum electrodynamics I review their paper and discuss some of the impact it has had on quantum field theory. I. HISTORICAL CONTEXT After the 1928 publication of Dirac’s work on his relativistic theory of the electron [1], Heisenberg immediately appreciated the significance of the new ”hole theory” picture of the quantum vacuum of quantum electrodynamics (QED). Following some confusion, in 1931 Dirac associated the holes with positively charged electrons [2]: A hole, if there were one, would be a new kind of particle, unknown to experimental physics, having the same mass and opposite charge to an electron. With the discovery of the positron in 1932, soon thereafter [but, interestingly, not immediately [3]], Dirac proposed at the 1933 Solvay Conference that the negative energy solutions [holes] should be identified with the positron [4]: Any state of negative energy which is not occupied represents a lack of uniformity and this must be shown by observation as a kind of hole. It is possible to assume that the positrons are these holes. Positron theory and QED was born, and Heisenberg began investigating positron theory in earnest, publishing two fundamental papers in 1934, formalizing the treatment of the quantum fluctuations inherent in this Dirac sea picture of the QED vacuum [5, 6]. It was soon realized that these quantum fluctuations would lead to quantum nonlinearities [6]: Halpern and Debye have already independently drawn attention to the fact that the Dirac theory of the positron leads to the scattering of light by light, even when the energy of the photons is not sufficient to create pairs. -
Simple Model for the QCD Vacuum
A1110? 31045(3 NBSIR 83-2759 Simple Model for the QCD Vacuum U S. DEPARTMENT OF COMMERCE National Bureau of Standards Center for Radiation Research Washington, DC 20234 Centre d'Etudes de Bruyeres-le-Chatel 92542 Montrouge CEDEX, France July 1983 U S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANOAROS - - - i rx. NBSIR 83-2759 SIMPLE MODEL FOR THE QCD VACUUM m3 C 5- Michael Danos U S DEPARTMENT OF COMMERCE National Bureau of Standards Center for Radiation Research Washington, DC 20234 Daniel Gogny and Daniel Irakane Centre d'Etudes de Bruyeres-le-Chatel 92542 Montrouge CEDEX, France July 1983 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director SIMPLE MODEL FOR THE QCD VACUUM Michael Danos, Nastional Bureau of Standards, Washington, D.C. 20234, USA and Daniel Gogny and Daniel Irakane Centre d' Etudes de Bruyeres-le-Chatel , 92542 Montrouge CEDEX, France Abstract B.v treating the high-momentum gluon and the quark sector as an in principle calculable effective Lagrangian we obtain a non-perturbati ve vacuum state for OCD as an infrdred gluon condensate. This vacuum is removed from the perturbative vacuum by an energy gap and supports a Meissner-Ochsenfeld effect. It is unstable below a minimum size and it also suggests the existence of a universal hadroni zation time. This vacuum thus exhibits all the properties required for color confinement. I. Introduction By now it is widely believed that the confinement in QCD, in analogy with superconductivity, results from the existence of a physical vacuum which is removed from the remainder of the spectrum by an energy density gap and which exhibits a Meissner-Ochsenfeld effect. -
Vacuum Energy
Vacuum Energy Mark D. Roberts, 117 Queen’s Road, Wimbledon, London SW19 8NS, Email:[email protected] http://cosmology.mth.uct.ac.za/ roberts ∼ February 1, 2008 Eprint: hep-th/0012062 Comments: A comprehensive review of Vacuum Energy, which is an extended version of a poster presented at L¨uderitz (2000). This is not a review of the cosmolog- ical constant per se, but rather vacuum energy in general, my approach to the cosmological constant is not standard. Lots of very small changes and several additions for the second and third versions: constructive feedback still welcome, but the next version will be sometime in coming due to my sporadiac internet access. First Version 153 pages, 368 references. Second Version 161 pages, 399 references. arXiv:hep-th/0012062v3 22 Jul 2001 Third Version 167 pages, 412 references. The 1999 PACS Physics and Astronomy Classification Scheme: http://publish.aps.org/eprint/gateway/pacslist 11.10.+x, 04.62.+v, 98.80.-k, 03.70.+k; The 2000 Mathematical Classification Scheme: http://www.ams.org/msc 81T20, 83E99, 81Q99, 83F05. 3 KEYPHRASES: Vacuum Energy, Inertial Mass, Principle of Equivalence. 1 Abstract There appears to be three, perhaps related, ways of approaching the nature of vacuum energy. The first is to say that it is just the lowest energy state of a given, usually quantum, system. The second is to equate vacuum energy with the Casimir energy. The third is to note that an energy difference from a complete vacuum might have some long range effect, typically this energy difference is interpreted as the cosmological constant. -
Quantum Optics Properties of QCD Vacuum
EPJ Web of Conferences 164, 07030 (2017) DOI: 10.1051/epjconf/201716407030 ICNFP 2016 EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2016 Quantum Optics Properties of QCD Vacuum V. Kuvshinov1,a, V. Shaparau1,b, E. Bagashov1,c 1Joint Institute for Power and Nuclear Research - Sosny National Academy of Science of Belarus PO box 119, 220109 Minsk, BELARUS Abstract. Theoretical justification of the occurrence of multimode squeezed and entan- gled colour states in QCD is given. We show that gluon entangled states which are closely related with corresponding squeezed states can appear by the four-gluon self-interaction. Correlations for the collinear gluons are revealed two groups of the colour correlations which is significant at consider of the quark-antiquark pair productions. It is shown that the interaction of colour quark with the stochastic vacuum of QCD leads to the loss of information on the initial colour state of the particle, which gives a new perspective regarding the confinement of quarks phenomenon. The effect is demonstrated for a single particle and in the multiparticle case is proposed. Quantum characteristics (purity and von Neumann entropy) are used to analyse the pro- cess of interaction. 1 Introduction + Many experiments at e e−, pp¯, ep colliders are devoted to hadronic jet physics, since detailed studies of jets are important for better understanding and testing both perturbative and non-perturbative QCD and also for finding manifestations of new physics. Although the nature of jets is of a universal + character, e e−- annihilation stands out among hard processes, since jet events admit a straightforward and clear-cut separation in this process. -
Modern Methods of Quantum Chromodynamics
Modern Methods of Quantum Chromodynamics Christian Schwinn Albert-Ludwigs-Universit¨atFreiburg, Physikalisches Institut D-79104 Freiburg, Germany Winter-Semester 2014/15 Draft: March 30, 2015 http://www.tep.physik.uni-freiburg.de/lectures/QCD-WS-14 2 Contents 1 Introduction 9 Hadrons and quarks . .9 QFT and QED . .9 QCD: theory of quarks and gluons . .9 QCD and LHC physics . 10 Multi-parton scattering amplitudes . 10 NLO calculations . 11 Remarks on the lecture . 11 I Parton Model and QCD 13 2 Quarks and colour 15 2.1 Hadrons and quarks . 15 Hadrons and the strong interactions . 15 Quark Model . 15 2.2 Parton Model . 16 Deep inelastic scattering . 16 Parton distribution functions . 18 2.3 Colour degree of freedom . 19 Postulate of colour quantum number . 19 Colour-SU(3).............................. 20 Confinement . 20 Evidence of colour: e+e− ! hadrons . 21 2.4 Towards QCD . 22 3 Basics of QFT and QED 25 3.1 Quantum numbers of relativistic particles . 25 3.1.1 Poincar´egroup . 26 3.1.2 Relativistic one-particle states . 27 3.2 Quantum fields . 32 3.2.1 Scalar fields . 32 3.2.2 Spinor fields . 32 3 4 CONTENTS Dirac spinors . 33 Massless spin one-half particles . 34 Spinor products . 35 Quantization . 35 3.2.3 Massless vector bosons . 35 Polarization vectors and gauge invariance . 36 3.3 QED . 37 3.4 Feynman rules . 39 3.4.1 S-matrix and Cross section . 39 S-matrix . 39 Poincar´einvariance of the S-matrix . 40 T -matrix and scattering amplitude . 41 Unitarity of the S-matrix . 41 Cross section . -
The Center Symmetry and Its Spontaneous Breakdown at High Temperatures
CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server THE CENTER SYMMETRY AND ITS SPONTANEOUS BREAKDOWN AT HIGH TEMPERATURES KIERAN HOLLAND Institute for Theoretical Physics, University of Bern, CH-3012 Bern, Switzerland UWE-JENS WIESE Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA The Euclidean action of non-Abelian gauge theories with adjoint dynamical charges (gluons or gluinos) at non-zero temperature T is invariant against topologically non-trivial gauge transformations in the ZZ(N)c center of the SU(N) gauge group. The Polyakov loop measures the free energy of fundamental static charges (in- finitely heavy test quarks) and is an order parameter for the spontaneous break- down of the center symmetry. In SU(N) Yang-Mills theory the ZZ(N)c symmetry is unbroken in the low-temperature confined phase and spontaneously broken in the high-temperature deconfined phase. In 4-dimensional SU(2) Yang-Mills the- ory the deconfinement phase transition is of second order and is in the universality class of the 3-dimensional Ising model. In the SU(3) theory, on the other hand, the transition is first order and its bulk physics is not universal. When a chemical potential µ is used to generate a non-zero baryon density of test quarks, the first order deconfinement transition line extends into the (µ, T )-plane. It terminates at a critical endpoint which also is in the universality class of the 3-dimensional Ising model. At a first order phase transition the confined and deconfined phases coexist and are separated by confined-deconfined interfaces.