The Arterial Supply of the Eye of the Yak (Bos Grunniens)

Total Page:16

File Type:pdf, Size:1020Kb

The Arterial Supply of the Eye of the Yak (Bos Grunniens) 中国科技论文在线 Research in Veterinary Science 84 (2008) 174–177 http://www.paper.edu.cn The arterial supply of the eye of the yak (Bos Grunniens) Bao-Ping Shao a, Yan-Ping Ding a, Shi-Yaun Yu b, Jian-Lin Wang a,* a MOE Key Laboratory of Arid and Grassland Ecology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China b School of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China Accepted 24 April 2007 Abstract The heads and necks of 10 yaks were dissected to study the arterial supply to the eye of the yak in the Qinghai-Tibetan Plateau. The supply came from the internal ophthalmic, external eight ophthalmic, superficial temporal and malar arteries. The internal ophthalmic was one of sources of the posterior long ciliary artery. The external ophthalmic artery gave rise to branches to supply the dorsal oblique muscle and otherwise, and to take part in the formation of the ophthalmic rete mirabile. The ophthalmic rete mirabile gave off many branches to supply the rectus muscles of the eye and otherwise. The malar artery was one of the branches derived from the infraorbital artery, and its branches supplied the inferior, superior and third eyelids and otherwise. The superficial temporal artery detached off some branches to supply the lateral angle of the eye and otherwise, and anastomosed with the lacrimal artery of the ophthalmic rete mirabile. Ó 2007 Published by Elsevier Ltd. Keywords: Yak; Eye; Arterial supply; Qinghai-Tibetan Plateau; Ophthalmic rete mirabile 1. Introduction mal, it is necessary to define the arterial supply to its eyes. Hideki et al. (2003) studied the blood supply to the retina The yak (Bos grunniens) is an important domestic ani- and the lens in the gerbil of both sexes from infancy to mal in some of the higher altitude areas of the world. It maturity. Wang (2002) studied the arterial supply to the was firstly domesticated about 4000 years ago in China eye of the Bactrian camel. Kanan (1972) observed the dis- where there are now more than 13 million yaks, making tribution of the external and internal ophthalmic arteries in up >90% of the world yak population. In the Qinghai- dromedary camel. Smuts and Bezuidenhout (1987) Tibetan Plateau, which is located about 3000–4700 m described some arteries that supply the eye of the drome- above sea level, the yaks provide a critical source of animal dary camel. Godinho and Getty (1975) described some products such as meat, milk and hides, etc. arteries that supply to the eye of the oxen. It is important to know the details of the arterial supply No reports describing the arterial supply to the eye in the of the eye of the yak to explore the morphological charac- yak have been published. The aim of the present study was teristics of the plateau animal. The eye is the visual organ to describe the origin, course and branches of the arteries of the vertebrate, the visual system is the most important that supply to the eye in the yak and to provide a morpho- sensory path, and approximately 80% of the outer informa- logical basis for further research on the adaptability of the tion enters brain through visual system. The yak can exist plateau animal, the comparative anatomy of the vertebrate in the Qinghai-Tibetan Plateau there is higher altitude and and the related clinical surgery of this domestic animal. less oxygen, the arterial supply of the eye plays an impor- tant role. So in studying the adaptability of the plateau ani- 2. Materials and methods Abbreviation: A, arteria. Ten heads (cut above the second cervical vertebra) from * Corresponding author. Tel./fax: +86 931 8914075. adult yaks were collected from the Second Yak Slaughter- E-mail address: [email protected] (J.-L. Wang). house, Datong, Qinghai, China, after the animals had been 0034-5288/$ - see front matter Ó 2007 Published by Elsevier Ltd. doi:10.1016/j.rvsc.2007.04.019 转载 中国科技论文在线 http://www.paper.edu.cn B.-P. Shao et al. / Research in Veterinary Science 84 (2008) 174–177 175 killed by exsanguination for food. The specimens were fixed within 24 h of death by infusing them with 10% for- malin through the common carotid artery. After the spec- imens had been fixed for five to seven days, the specimens were then colored by injecting a solution of the red oils in ether (15:1) into the common carotid artery. All the animals were adults, but the sex and weight were not recorded. After again the specimens had been stored for one week, both sides of each specimen were carefully dissected to observe the origin, course, situations arrange- ments and branches of the arteries supply to the eye, fol- lowing the procedures described by Xie (1987), Li (1995) and Godinho and Getty (1975). 3. Results The arterial supply of the eye of the yak came from the Fig. 2. Arterial blood supply to the right eye of the yak; lateral view. A. Supraorbital canal; B. Ethmoidal foramen and C. Optic nerve: (1) Carotid internal ophthalmic, external ophthalmic, superficial tem- artery; (3) External ophthalmic artery; (4) Ophthalmic rete mirabile; (5) poral and malar arteries. Supraorbital artery; (6) External ethmoidal artery; (7) Maxillary artery; (16) Posterior short ciliary artery; (17) Buccal artery; (18) Lacrimal artery. 3.1. Internal ophthalmic artery The internal ophthalmic artery (Fig. 1) arose as a branch of the rete chiasmaticum. The artery left the rostral epidu- ral rete mirabile near the optic foramen and accompanied the optic nerve ventrally in the orbital fossa, where it joined with the branches of the external ophthalmic artery. The communicating branch was as a source of the posterior long ciliary artery (A. ciliaris longus posterioris lateralis). 3.2. External ophthalmic artery (A. ophthalmica externa) The external ophthalmic artery (Figs. 1–3) arose from the dorsal wall of the maxillary artery following the origin Fig. 3. The deep arterial blood supply to the right eye of the yak; lateral of the buccal artery, at the level of the foramen orbitoro- view: (1) Carotid artery; (2) Superficial temporal artery; (3) External tundun (Fig. 1). It crossed the maxillary nerve laterally ophthalmic artery; (4) Ophthalmic rete mirabile; (5) Supraorbital artery; (6) External ethmoidal artery; (7) Maxillary artery; (8) Descending palatine artery; (9) Infraorbital artery; (10) Malar artery; (11) Third palpebral artery; (12) External ophthalmic artery; (13) Medial posterior long ciliary artery; (14) Medial superior palpebral artery; (15) Medial inferior palpebral artery; (28) Lateral inferior palpebral artery; (29) Lacrimal branch; (30) Lateral superior palpebral artery. and entered the apex of the periorbita, where it gave off three branches, one entered the orbit with the ophthalmic nerve to form the ophthalmic rete mirabile, and the others took part in the formation of the rostral epidural rete (Figs. 1 and 2). From the ophthalmic rete mirabile arose to a common trunk for the supraorbital and external ethmoidal arteries (Figs. 1–3). After traversed the supraorbital canal, the supraorbital artery (A. supraorbitalis) do not gave off any branches in the orbit, and supplied the mucous mem- Fig. 1. Arterial blood supply to the right eye of the yak: medial view. D. brane of the frontal sinus and the musculature and skin lied Orbito-round foramen: (1) Carotid artery; (3) External ophthalmic artery; on the surface of the frontal bone directly (Figs. 1 and 2). (4) Ophthalmic rete mirabile; (5) Supraorbital artery; (7) Maxillary artery; (16) Posterior short ciliary artery; (18) Lacrimal artery; (19) Medial The external ethmoidal artery (A. ethmoidalis externa) was posterior long ciliary artery; (20) Central retinal artery; (21) Lateral the continuation of the external ophthalmic, which left the posterior long ciliary artery; (31) Internal ophthalmic artery. orbit through the ethmoidal foramen and entered the 中国科技论文在线 http://www.paper.edu.cn 176 B.-P. Shao et al. / Research in Veterinary Science 84 (2008) 174–177 cranial cavity. It supplied the ethmoidal bone, the caudal along the medial side of the optic nerve entered the eyeball nasal septum and the dorsal nasal conha. The external eth- from the posterior half of the eyeball and successively moidal artery gave off a branch from its origin, which ran extended in the sclera and the epichoroid space towards dorsally and cranially entered the periorbit to supply the the limbus of cornea. There were three posterior short cil- ventral rectus muscle. At the medial surface of the sheath iary arteries (Fig. 1), which supplied the choroid. The cen- of the eye, one branch went rostrally and laterally along tral retinal artery (A. retina centralis)(Fig. 1) originated the medial border of the dorsal oblique muscle entered from the ophthalmic rete mirabile with the lateral posterior the conjunctival coat of the superior eyelid to supply the long ciliary artery or with the medial posterior long ciliary medial rectus and dorsal oblique muscles, the conjunctival artery, ventral to the optic nerve, and entered the optic surface of the superior eyelid and the fat body of the orbit. nerve to extend toward the cribriform area in the center of the nerve to supply the choroid. 3.3. Ophthalmic rete mirabile (rete mirabile ophthalmicum) 3.4. The malar artery (A. malaris) The ophthalmic rete mirabile was formed by the branches of the external ophthalmic artery (Figs. 1–3). A The malar artery (Fig. 1) was large and arose by a com- small part of the ophthalmic rete mirabile lay laterally to mon trunk with the infraorbital artery (A. infraorbitalis)in the original 85 art of the dorsal and lateral rectus muscles, the rostral part of the pterygopalatine fossa near the max- while the main part lay between the retractor oculi muscle illary foramen (Fig.
Recommended publications
  • Branches of the Maxillary Artery of the Dromedary, Camelus Dromedarius
    Table 3.5: Branches of the Maxillary Artery of the Dromedary, Camelus dromedarius Artery Origin Course Distribution Departs from common trunk with the deep temporal vessels, close to mandibular foramen; traverses mandibular canal, supplying Mandibular dentition; lower lip; Inferior Alveolar Maxillary Artery mandibular dentition. Terminates as mental anastomoses freely with ventral ramus artery after exiting at mental foramen, of the facial artery. whereupon supplies skin, mucosa, and muscle of the lower lip. Single deep temporal vessel is first major dorsal branch of the MA; ascends deep to the coronoid Deep Temporal Maxillary Artery Temporalis muscle process and fans out on the deep surface of the temporalis muscle. Lower lateral branch of deep temporal artery; passes through the mandibular incisure and Masseteric Deep Temporal Artery Masseter muscle curves rostrally to pierce the internal surface of the masseter muscle. Proximal to the foramen orbitorotundum and optic foramen, numerous rami anastomotica connect the maxillary artery to the carotid rete. Carotid rete, ophthalmic rete, external Ramus anastomoticus Maxillary Artery The network in the dromedary is extensive, ophthalmic artery; intracranial cavity forming a plexus between the carotid and ophthalmic retia, and giving rise to the external ophthalmic artery. Condenses from a dense retial mat (composed of maxillary rami, the extradural/extracranial portion of the carotid rete, and the ophthalmic Extraocular muscles, periorbita, External Ophthalmic MA/CR/OR rete). Perfuses the majority of the periorbita, lacrimal gland including branches to the extraocular muscles and the lacrimal gland Lateral branch of the MA, begins opposite the rami anastomotica; traverses parenchyma orbital Supplies the buccal fat pad, Buccal MA fossa, between malar and anterior border of buccinator; contributes ventral coronoid process.
    [Show full text]
  • Case Report a Case of Incomplete Central Retinal Artery Occlusion Associated with Short Posterior Ciliary Artery Occlusion
    Hindawi Publishing Corporation Case Reports in Ophthalmological Medicine Volume 2013, Article ID 105653, 4 pages http://dx.doi.org/10.1155/2013/105653 Case Report A Case of Incomplete Central Retinal Artery Occlusion Associated with Short Posterior Ciliary Artery Occlusion Shinji Makino, Mikiko Takezawa, and Yukihiro Sato Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Tochigi, Shimotsuke 329-0498, Japan Correspondence should be addressed to Shinji Makino; [email protected] Received 12 December 2012; Accepted 1 January 2013 Academic Editors: S. Machida, M. B. Parodi, and P. Venkatesh Copyright © 2013 Shinji Makino et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To our knowledge, incomplete central retinal artery occlusion associated with short posterior ciliary artery occlusion is extremely rare. Herein, we describe a case of a 62-year-old man who was referred to our hospital with of transient blindness in his right eye. At initial examination, the patient’s best-corrected visual acuity was 18/20 in the right eye. Fundus examination showed multiple so exudates around the optic disc and mild macular retinal edema in his right eye; however, a cherry red spot on the macula was not detected. Fluorescein angiography revealed delayed dye in�ow into the nasal choroidal hemisphere that is supplied by the short posterior ciliary artery. e following day, the patient’s visual acuity improved to 20/20. So exudates around the optic disc increased during observation and gradually disappeared.
    [Show full text]
  • Neurovascular Anatomy (1): Anterior Circulation Anatomy
    Neurovascular Anatomy (1): Anterior Circulation Anatomy Natthapon Rattanathamsakul, MD. December 14th, 2017 Contents: Neurovascular Anatomy Arterial supply of the brain . Anterior circulation . Posterior circulation Arterial supply of the spinal cord Venous system of the brain Neurovascular Anatomy (1): Anatomy of the Anterior Circulation Carotid artery system Ophthalmic artery Arterial circle of Willis Arterial territories of the cerebrum Cerebral Vasculature • Anterior circulation: Internal carotid artery • Posterior circulation: Vertebrobasilar system • All originates at the arch of aorta Flemming KD, Jones LK. Mayo Clinic neurology board review: Basic science and psychiatry for initial certification. 2015 Common Carotid Artery • Carotid bifurcation at the level of C3-4 vertebra or superior border of thyroid cartilage External carotid artery Supply the head & neck, except for the brain the eyes Internal carotid artery • Supply the brain the eyes • Enter the skull via the carotid canal Netter FH. Atlas of human anatomy, 6th ed. 2014 Angiographic Correlation Uflacker R. Atlas of vascular anatomy: an angiographic approach, 2007 External Carotid Artery External carotid artery • Superior thyroid artery • Lingual artery • Facial artery • Ascending pharyngeal artery • Posterior auricular artery • Occipital artery • Maxillary artery • Superficial temporal artery • Middle meningeal artery – epidural hemorrhage Netter FH. Atlas of human anatomy, 6th ed. 2014 Middle meningeal artery Epidural hematoma http://www.jrlawfirm.com/library/subdural-epidural-hematoma
    [Show full text]
  • Clinical Importance of the Middle Meningeal Artery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository FOLIA MEDICA CRACOVIENSIA 41 Vol. LIII, 1, 2013: 41–46 PL ISSN 0015-5616 Przemysław Chmielewski1, Janusz skrzat1, Jerzy waloCha1 CLINICAL IMPORTANCE OF THE MIDDLE MENINGEAL ARTERY Abstract: Middle meningeal artery (MMA)is an important branch which supplies among others cranial dura mater. It directly attaches to the cranial bones (is incorporated into periosteal layer of dura mater), favors common injuries in course of head trauma. This review describes available data on the MMA considering its varability, or treats specific diseases or injuries where the course of MMA may have clinical impact. Key words: Middle meningeal artery (MMA), aneurysm of the middle meningeal artery, epidural he- matoma, anatomical variation of MMA. TOPOGRAPHY OF THE MIDDLE MENINGEAL ARTERY AND ITS BRANCHES Middle meningeal artery (MMA) [1] is most commonly the strongest branch of maxillary artery (from external carotid artery) [2]. It supplies blood to cranial dura mater, and through the numerous perforating branches it nourishes also periosteum of the inner aspect of cranial bones. It enters the middle cranial fossa through the foramen spinosum, and courses between the dura mater and the inner aspect of the vault of the skull. Next it divides into two terminal branches — frontal (anterior) which supplies blood to bones forming anterior cranial fossa and the anterior part of the middle cranial fossa; parietal branch (posterior), which runs more horizontally toward the back and supplies posterior part of the middle cranial fossa and supratentorial part of the posterior cranial fossa.
    [Show full text]
  • The Ophthalmic Artery Ii
    Brit. J. Ophthal. (1962) 46, 165. THE OPHTHALMIC ARTERY II. INTRA-ORBITAL COURSE* BY SOHAN SINGH HAYREHt AND RAMJI DASS Government Medical College, Patiala, India Material THIS study was carried out in 61 human orbits obtained from 38 dissection- room cadavers. In 23 cadavers both the orbits were examined, and in the remaining fifteen only one side was studied. With the exception of three cadavers of children aged 4, 11, and 12 years, the specimens were from old persons. Method Neoprene latex was injected in situ, either through the internal carotid artery or through the most proximal part of the ophthalmic artery, after opening the skull and removing the brain. The artery was first irrigated with water. After injection the part was covered with cotton wool soaked in 10 per cent. formalin for from 24 to 48 hours to coagulate the latex. The roof of the orbit was then opened and the ophthalmic artery was carefully studied within the orbit. Observations COURSE For descriptive purposes the intra-orbital course of the ophthalmic artery has been divided into three parts (Singh and Dass, 1960). (1) The first part extends from the point of entrance of the ophthalmic artery into the orbit to the point where the artery bends to become the second part. This part usually runs along the infero-lateral aspect of the optic nerve. (2) The second part crosses over or under the optic nerve running in a medial direction from the infero-lateral to the supero-medial aspect of the nerve. (3) The thirdpart extends from the point at which the second part bends at the supero-medial aspect of the optic nerve to its termination.
    [Show full text]
  • Agonist Response of Human Isolated Posterior Ciliary Artery
    Investigative Ophthalmology & Visual Science, Vol. 33, No. 1, January 1992 Copyright © Association for Research in Vision and Ophthalmology Agonist Response of Human Isolated Posterior Ciliary Artery Doo-Yi Yu, Valerie A. Alder, Er-Ning Su, Edward M. Mele, Stephen J. Cringle, and William H. Morgan The isometric responses of isolated human posterior ciliary artery to adrenergic agonists, histamine (HIS), and 5-hydroxytryptamine (5-HT) were studied in passively stretched ring segments mounted in a myograph bath. Cumulative dose response curves were measured for nine agonists: HIS, 5-HT, dopamine (DOPA), epinephrine (A), norepinephrine (NA), tyramine (TYR), phenylephrine (PHE), isoproterenol (ISOP), and xylazine (XYL), and the log(molar concentration) at which one half of the maximum active tension was developed (EQo) was estimated. The ring segments were unresponsive to DOPA and XYL; HIS and ISOP produced biphasic responses with a mild relaxation for low concentra- tions and small contractions for high concentrations of the agonist. The remaining agonists caused contractile responses of magnitude listed in the rank order following compared with the maximum active tension in response to 0.124 M K+-Krebs: Kmax > A > 5-HT = PHE > NA > TYR It was concluded that functional HIS, a,-adrenergic, and 5-HT receptors were present on human posterior ciliary artery but that there are no a2-adrenergic receptors. Invest Ophthalmol Vis Sci 33:48-54,1992 The regulation of ocular blood flow to ensure that may affect many aspects of ocular function involving all regions receive an adequate supply despite continu- the outer retina and the optic nerve head, the iris, and ously changing local tissue demands is a complex and the ciliary body.
    [Show full text]
  • Stapedial Artery: from Embryology to Different Possible Adult Configurations
    Published September 3, 2020 as 10.3174/ajnr.A6738 REVIEW ARTICLE Stapedial Artery: From Embryology to Different Possible Adult Configurations S. Bonasia, S. Smajda, G. Ciccio, and T. Robert ABSTRACT SUMMARY: The stapedial artery is an embryonic artery that represents the precursor of some orbital, dural, and maxillary branches. Although its embryologic development and transformations are very complex, it is mandatory to understand the numerous ana- tomic variations of the middle meningeal artery. Thus, in the first part of this review, we describe in detail the hyostapedial system development with its variants, referring also to some critical points of ICA, ophthalmic artery, trigeminal artery, and inferolateral trunk embryology. This basis will allow the understanding of the anatomic variants of the middle meningeal artery, which we address in the second part of the review. ABBREVIATIONS: MMA ¼ middle meningeal artery; OA ¼ ophthalmic artery; SA ¼ stapedial artery he stapedial artery (SA) is an embryologic artery that allows obturator of the stapes in a human cadaver, with some similarities Tthe development of orbital and dural arteries, and also of the with a vessel found in hibernating animals. In the first half of the maxillary branches. Its complex embryologic development explains 20th century, the phenomenal publication by Padget,31 based on numerous anatomic variations of the middle meningeal artery the dissections of 22 human embryos of the Carnegie collection, (MMA) and orbital arteries. Few anatomists1-7 have dissected a provided a great deal of information about the embryologic de- human middle ear that bore a persistent SA and described the ori- velopment of the craniofacial arteries and, in particular, of the gin and course of this artery.
    [Show full text]
  • Anatomy of the Ophthalmic Artery: Embryological Consideration
    REVIEW ARTICLE doi: 10.2176/nmc.ra.2015-0324 Neurol Med Chir (Tokyo) 56, 585–591, 2016 Online June 8, 2016 Anatomy of the Ophthalmic Artery: Embryological Consideration Naoki TOMA1 1Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan Abstract There are considerable variations in the anatomy of the human ophthalmic artery (OphA), such as anom- alous origins of the OphA and anastomoses between the OphA and the adjacent arteries. These anatomi- cal variations seem to attribute to complex embryology of the OphA. In human embryos and fetuses, primitive dorsal and ventral ophthalmic arteries (PDOphA and PVOphA) form the ocular branches, and the supraorbital division of the stapedial artery forms the orbital branches of the OphA, and then numerous anastomoses between the internal carotid artery (ICA) and the external carotid artery (ECA) systems emerge in connection with the OphA. These developmental processes can produce anatomical variations of the OphA, and we should notice these variations for neurosurgical and neurointerventional procedures. Key words: ophthalmic artery, anatomy, embryology, stapedial artery, primitive maxillary artery Introduction is to elucidate the anatomical variation of the OphA from the embryological viewpoint. The ophthalmic artery (OphA) consists of ocular and orbital branches. The ocular branches contribute to Embryology and Anatomy the blood supply of the optic apparatus, namely, the of the OphA optic nerve and the retina, and the orbital branches supply the optic adnexae, such
    [Show full text]
  • The Effects of Strabismus Surgery on Anterior Segment Circulation
    Eye (1989) 3, 318-326 The Effects of Strabismus Surgery on Anterior Segment Circulation J. M. OLVER and J. P. LEE London Summary Anterior segment circulation was assessed in 35 adults one day after squint surgery by clinical observation and low-dose fluorescein iris angiography. Seventeen patients had primary vertical rectus muscle surgery and all showed angiographic evidence of ischaemia. No ischaemia was found in the 15 patients who had secondary vertical rectus muscle surgery, or any horizontal rectus muscle surgery. The staged group had intermediate findings between the above two. Age, dysthyroid eye disease and type of conjunctival incision did not correlate with fluorescein iris angiographic sector-filling delay on the first post-operative day. The time taken for the sector with delay to fill becomes less during the first two post-operative weeks. Redistribution of iris filling persists, however. This data suggest that the safe interval before further muscle surgery can be done is shorter than has previously been assumed. Since the anterior ciliary arteries do not reform into canals the probable mechanism of redistribution of blood flow is from the long posterior ciliary arteries and increased capacity of the collateral circulation. The number of muscles which may be may result in reduced vision and symptoms of operated upon in adults with strabismus is glare due to iris atrophy and corectopia. The limited by the risk of ischaemia. This may risk however is sufficiently significant to result from simultaneous surgery on three rec­ restrict surgery to moving only two rectus tus muscles in healthy adult patients1,2.3.4 or muscles at any one operation.
    [Show full text]
  • Embryology of the Ophthalmic Artery
    Editorial Commentary Interventional Neuroradiology 0(00) 1–2 ! The Author(s) 2019 Embryology of the ophthalmic artery Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1591019919845511 journals.sagepub.com/home/ine Masaki Komiyama Alternative routes of intra-arterial chemotherapy for misunderstood as dorsal ophthalmic artery).6 The retinoblastoma are based on the embryological and, superficial recurrent ophthalmic artery may run thus, anatomical variations of the ophthalmic artery. through the lateral portion of the SOF, similar to the Although the embryology of the ophthalmic artery is sphenoidal artery or through the lacrimal foramen briefly discussed in this excellent clinical paper,1 I (Hyrtl canal) similar to the lacrimal artery (meningo- would like to comment on this. lacrimal artery) connecting the anterior branch of the The structure of the eye is well conserved among middle meningeal artery to the orbital artery. vertebrates.2 This implies that the vascular structure The embryological origin of the ILT remains specu- of the eye should also be well conserved among verte- lative. It could be the remnant of the primitive maxil- brates, especially among mammals. The basic vascular lary artery of Sabin,7 but this primitive artery dwindles supply of the eye is composed of two sources: one for much earlier than the primitive ventral and dorsal oph- the bulbar structure (retina and choroid structures) and thalmic arteries.5 Thus, the anastomotic branches of the one for the non-bulbar structure (glandular and mus- ILT are mostly composed of the stapedial artery in cular structures),3,4 For an understanding of the origin.3 The primitive maxillary artery is better called embryological origins of these vessels, the bony canal, the primitive pre-mandibular artery in consideration of foramen, and fissure convey many messages to us.
    [Show full text]
  • Anatomy of the Periorbital Region Review Article Anatomia Da Região Periorbital
    RevSurgicalV5N3Inglês_RevistaSurgical&CosmeticDermatol 21/01/14 17:54 Página 245 245 Anatomy of the periorbital region Review article Anatomia da região periorbital Authors: Eliandre Costa Palermo1 ABSTRACT A careful study of the anatomy of the orbit is very important for dermatologists, even for those who do not perform major surgical procedures. This is due to the high complexity of the structures involved in the dermatological procedures performed in this region. A 1 Dermatologist Physician, Lato sensu post- detailed knowledge of facial anatomy is what differentiates a qualified professional— graduate diploma in Dermatologic Surgery from the Faculdade de Medician whether in performing minimally invasive procedures (such as botulinum toxin and der- do ABC - Santo André (SP), Brazil mal fillings) or in conducting excisions of skin lesions—thereby avoiding complications and ensuring the best results, both aesthetically and correctively. The present review article focuses on the anatomy of the orbit and palpebral region and on the important structures related to the execution of dermatological procedures. Keywords: eyelids; anatomy; skin. RESU MO Um estudo cuidadoso da anatomia da órbita é muito importante para os dermatologistas, mesmo para os que não realizam grandes procedimentos cirúrgicos, devido à elevada complexidade de estruturas envolvidas nos procedimentos dermatológicos realizados nesta região. O conhecimento detalhado da anatomia facial é o que diferencia o profissional qualificado, seja na realização de procedimentos mini- mamente invasivos, como toxina botulínica e preenchimentos, seja nas exéreses de lesões dermatoló- Correspondence: Dr. Eliandre Costa Palermo gicas, evitando complicações e assegurando os melhores resultados, tanto estéticos quanto corretivos. Av. São Gualter, 615 Trataremos neste artigo da revisão da anatomia da região órbito-palpebral e das estruturas importan- Cep: 05455 000 Alto de Pinheiros—São tes correlacionadas à realização dos procedimentos dermatológicos.
    [Show full text]
  • The Horizontal Raphe of the Human Retina and Its Watershed Zones
    vision Review The Horizontal Raphe of the Human Retina and its Watershed Zones Christian Albrecht May * and Paul Rutkowski Department of Anatomy, Medical Faculty Carl Gustav Carus, TU Dresden, 74, 01307 Dresden, Germany; [email protected] * Correspondence: [email protected] Received: 24 September 2019; Accepted: 6 November 2019; Published: 8 November 2019 Abstract: The horizontal raphe (HR) as a demarcation line dividing the retina and choroid into separate vascular hemispheres is well established, but its development has never been discussed in the context of new findings of the last decades. Although factors for axon guidance are established (e.g., slit-robo pathway, ephrin-protein-receptor pathway) they do not explain HR formation. Early morphological organization, too, fails to establish a HR. The development of the HR is most likely induced by the long posterior ciliary arteries which form a horizontal line prior to retinal organization. The maintenance might then be supported by several biochemical factors. The circulation separate superior and inferior vascular hemispheres communicates across the HR only through their anastomosing capillary beds resulting in watershed zones on either side of the HR. Visual field changes along the HR could clearly be demonstrated in vascular occlusive diseases affecting the optic nerve head, the retina or the choroid. The watershed zone of the HR is ideally protective for central visual acuity in vascular occlusive diseases but can lead to distinct pathological features. Keywords: anatomy; choroid; development; human; retina; vasculature 1. Introduction The horizontal raphe (HR) was first described in the early 1800s as a horizontal demarcation line that extends from the macula to the temporal Ora dividing the temporal retinal nerve fiber layer into a superior and inferior half [1].
    [Show full text]