An Anatomical Study of Developmental Changes in Maturing Root Tissues of Pomegranate (Punica Granatum L.) and Formation of a Unique Type of Periderm

Total Page:16

File Type:pdf, Size:1020Kb

An Anatomical Study of Developmental Changes in Maturing Root Tissues of Pomegranate (Punica Granatum L.) and Formation of a Unique Type of Periderm www.plantroot.org 33 Original research article An anatomical study of developmental changes in maturing root tissues of pomegranate (Punica granatum L.) and formation of a unique type of periderm Astha Tuladhar and Naosuke Nii Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan Corresponding author: N. Nii, E-mail: [email protected], Phone: +81-52-838-2435 Received on March 24, 2014; Accepted on July 10, 2014 Abstract: Roots of pomegranate (Punica underway to acknowledge changes in such granatum L.), belonging to Punicaceae, were biopolymer accumulation in the outermost tissue investigated anatomically to record changes in in abiotic stress conditions. tissue development from growth to maturity. When roots start secondary growth, a protective Keywords: lignin, suberin, rhizodermis, exodermis, tissue called polyderm composed of alternating thick-walled cells, polyderm, Punicaceae suberized and non-suberized cell layers, develop beyond the endodermis in certain families of Introduction plants including Myrtaceae. Punicaceae family is not known to develop a polyderm. However, new Pomegranate (Punica granatum L.) belongs to layers formed beyond the endodermis during Punicaceae family of plants. It is an oldest known secondary growth and biopolymer deposition edible fruit tree species originating from central Asia was observed in their cell walls. The present which is now produced worldwide for its highly study aims to gather more knowledge on this recognized medicinal, nutritional and ornamental tissue discovered in pomegranate roots and properties (Teixeira da Silva et al. 2013). Its adaptive cross check whether it is a polyderm or a unique characteristics reflect in its geographically wide type of periderm. distribution. Roots are directly affected by different Root specimens were sectioned freehand or soil environments. Maintaining a healthy root system with an ultramicrotome after embedding in is crucial for a steady yearly production, especially in Technovit 7100 resin. After staining with the case of deciduous fruit trees such as pomegran- berberine hemisulfate-aniline blue-safranin O, ates that relies on starch deposited in roots over the root sections were observed under winter. Unfortunately, there is very limited data on fluorescent or optical microscopes. pomegranate roots. A study on pomegranate root Unlike the polyderm in Myrtaceae roots, in distribution was reported recently by Hiwale et al. pomegranate roots, ligno-suberic material (2011) but an anatomical study like the present study accumulated in every cell layer beyond the is still rare. One reason could be because pomegran- endodermis. The alternating suberized and ates are known to have toxic bark and roots (Tripathi non-suberized layers that define the polyderm and Singh 2000). were absent. Lignin accumulation in the cell wall In this study, pomegranate roots were investigated was pronounced in every cell layer of this anatomically to gain basic knowledge of root tissue outermost tissue and suberin-like development from growth to maturity. Recording autofluorescence was also observed in the same changes that occur during root growth may further layer. We considered this to be a unique feature clarify tissue function and point out interesting typical in pomegranate periderm. characteristics unique to pomegranate roots. In the It is possible that accumulating both lignin and past, we have reported similar works in grapevine suberin in the same cell layer instead of roots (Song et al. 2011b) with special focus on the alternative layers is more efficient because Casparian strip. In the present study, our focus is metabolic energy is not spent in forming a mainly on biopolymer accumulation during periderm separate cell layer. Further experiments are formation. _____________________________________________________________________________________________________________________________________________________________________________ Tuladhar A, Nii N 2014 An anatomical study of developmental changes in maturing root tissues of pomegranate (Punica granatum L.) and formation of a unique type of periderm. Plant Root 8: 33-41. doi:10.3117/plantroot.8.33 Copyrights 2014, Plant Root (JSRR), www.plantroot.org www.plantroot.org 34 Early observations on polyderm were reported by In this preliminary study, pomegranate roots Luhan (1955) in Unserer Alpenpflanzen and by grown in normal condition were continuously Nelson and Wilhelm (1957) and Mann (1930) in sectioned from the root tip to basal area to examine strawberry roots. Esau (1970) described polyderm as 1) the accumulation of lingo-suberic material in root a protective tissue composed of alternating suberized tissues such as rhizodermis/epidermis (ep), exo- and non-suberized cell layers. According to Esau dermis (ex), cortex (co), and endodermis (en) and 2) (1970) polyderm is found in only a few plant families the periderm formation process during secondary such as Myrtaceae, Hypericaceae, Onagraceae and growth. The results obtained from this observation Rosaceae families but Punicaceae was not mentioned. are intended to be used for further stress-response Recently, we studied the roots of feijoa (Feijoa related experiments. Compared to the polyderm sellowiana) belonging to Myrtaceae and reconfirmed found in Myrtaceae, in pomegranate roots, the the features of the polyderm development (Nii et al. alternating layers of suberized and non-suberized 2012). Based on our observations, polyderm in feijoa layers described as polyderm did not occur. Instead a roots formed due to the division of a single-layered cell layers with heavy lignin-like accumulation was pericycle into three layers at a time. Lignin accumu- observed in the outermost cell layers. In the recent lated in the outermost layer, immediately beyond the years, root biology is steadily gaining attention. In endodermis, and we called that layer thick-walled such a context, the present study about biopolymer cell layer (twc). Suberin accumulated in the middle accumulation in protective root tissues of woody layer forming the Casparian strip, so we called that roots during its maturing phases is highly appropriate layer endodermis-like cell layer (el). The innermost to broaden our knowledge about its function which layer retained the pericyclic characters, and it divided still needs much clarification. further to form a new set of three layers. During this observation, our attention was drawn to the accumu- Materials and Methods lation pattern of lingo-suberic materials. At the polyderm, biopolymers mainly lignin and suberin Approximately ten-year-old pomegranate trees (cv. accumulated on opposite sides of the cell wall in two ‘Wonderful’) which were propagated from cuttings separate cell layers. Lignin-like deposit was “closed” and grown under normal conditions in a greenhouse at centripetally resembling the letter “w” at the Meijo University were used for the present investiga- thick-walled cells whereas suberin-like deposit was tion. The pomegranate cuttings were grown in plastic “open” centripetally resembling the letter “m” at the pots (13 cm wide and 11 cm deep) filled with sandy endodermis-like cells and this accumulating pattern soil and watered when the upper surface of the soil was commonly detected in roots of five Myrtaceae became dry. The growth of pomegranate trees was species (unpublished data). dwarfed like bonsai by using small-sized plastic pots. For woody roots, accumulation of biopolymers Roots were collected from twenty different trees for such as lignin and suberin is of particular importance observation. To collect roots, plants were removed because it is known to protect plants from fungal from the pots and only roots with new white root tips diseases and insect attacks (Moerschbacher et al. were collected from the root tip to basal area. 1900, Nelson and Wilhelm 1957, Williamson 1984). Hand-sections of roots were prepared by using a The accumulation of biopolymers such as lignin and new stainless steel razor blade. Serial transverse suberin is a species-specific genetic feature and sections, commencing at approximately 5 mm from seems to be useful as a barometer to distinguish the root tip toward the basal portion of the root, were species. For example, phi-thickening is a kind of cut at 10 mm intervals to examine changes in struc- lignin accumulation found in Rosaceae species such tural development as roots matured. as apples (Mackenzie 1979) and loquats (Nii et al. Root specimens were examined under fluorescent 2004, Pan et al. 2006). In addition, our data shows microscopy (excitation wavelength 365 nm) with or that unfavorable growth conditions like flooding or without staining. Several different staining solutions, drought affects the accumulation of these biopoly- including berberine hemisulfate-aniline blue-safranin mers. Our studies revealed that under drought O were used (Brundrett et al. 1988). Lux et al. (2005) conditions, phi-thickenings developed markedly in reported a novel method for simultaneously clearing cortex cells of loquat trees (Nii et al. 2004, Pan et al. and staining tissues in which the fluorochrome 0.1% 2006). Similarly, in cortex of red bayberry roots, berberine hemisulfate was dissolved in a clearing crescent-shaped lignin accumulation increased under mixture consisting of pure lactic acid saturated with drought stress (Song et al. 2011a). Thus we felt the chloral hydrate. We used this method and incubated need to trace the biopolymer accumulation in root the root sections in 0.1% berberine hemisulfate
Recommended publications
  • Bark Anatomy and Cell Size Variation in Quercus Faginea
    Turkish Journal of Botany Turk J Bot (2013) 37: 561-570 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1201-54 Bark anatomy and cell size variation in Quercus faginea 1,2, 2 2 2 Teresa QUILHÓ *, Vicelina SOUSA , Fatima TAVARES , Helena PEREIRA 1 Centre of Forests and Forest Products, Tropical Research Institute, Tapada da Ajuda, 1347-017 Lisbon, Portugal 2 Centre of Forestry Research, School of Agronomy, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal Received: 30.01.2012 Accepted: 27.09.2012 Published Online: 15.05.2013 Printed: 30.05.2013 Abstract: The bark structure of Quercus faginea Lam. in trees 30–60 years old grown in Portugal is described. The rhytidome consists of 3–5 sequential periderms alternating with secondary phloem. The phellem is composed of 2–5 layers of cells with thin suberised walls and narrow (1–3 seriate) tangential band of lignified thick-walled cells. The phelloderm is thin (2–3 seriate). Secondary phloem is formed by a few tangential bands of fibres alternating with bands of sieve elements and axial parenchyma. Formation of conspicuous sclereids and the dilatation growth (proliferation and enlargement of parenchyma cells) affect the bark structure. Fused phloem rays give rise to broad rays. Crystals and druses were mostly seen in dilated axial parenchyma cells. Bark thickness, sieve tube element length, and secondary phloem fibre wall thickness decreased with tree height. The sieve tube width did not follow any regular trend. In general, the fibre length had a small increase toward breast height, followed by a decrease towards the top.
    [Show full text]
  • Tree Identification: from Bark and Leaves Or Needles
    Tree Identification: from bark and leaves or needles A walk in the woods can be a lot of fun, especially if you bring your kids. How do you get them to come along with you? Tell them this. “Look at the bark on the trees. Can you can find any that look like burnt potato chips, warts, cat scratches, camouflage pants or rippling muscles?” Believe it or not, these are descriptions of different kinds of tree bark. Tree ID from bark:______________________________________________________ Black cherry: The bark looks like burnt potato chips. Hackberry: The bark is bumpy and warty. Ironwood: The bark has long thin strips. With a little imagination, an ironwood can look like it is used as a scratching post by cats. They can also be easily spotted in winter because their light brown dead leaves hang on well past the first snow. Sycamore: A tree with bark that looks like camouflaged pants. The largest tree in Illinois is a sycamore, a majestic 115-foot tree near Springfield. Musclewood: a tree with smooth gray bark covering a trunk with ridges that look like they are rippling muscles. Shagbark hickory: Long strips of shaggy bark peeling at both ends. Cottonwood: Has heavy ridges that make it look like Paul Bunyan’s corduroy pants. Bur oak: Thick and gnarly bark has deep craggy furrows. The corky bark allows it to easily withstand hot forest fires. Tree ID from leaves or needles:________________________________________ Willow Oak: Has elongated leaves similar to those of a willow tree. Red pine: Red has 3 letters; a red pine has groupings of 2-3 prickly needles.
    [Show full text]
  • The Bark: = Periderm
    The Bark: = Periderm The bark is everything outside the vascular cambium. As you can see, there is a lot going on in the bark. The Bark: periderm: phellogen (cork cambium): The phellogen is the region of cell division that forms the periderm tissues. Phellogen development influences bark appearance. The Bark: periderm: phellem (cork): Phellem replaces the epidermis as the tree increases in girth. Photosynthesis can take place in some trees both through the phellem and in fissures. The Bark: periderm: phelloderm: Phelloderm is active parenchyma tissue. Parenchyma cells can be used for storage, photosynthesis, defense, and even cell division! The Bark: phloem: Phloem tissue makes up the inner bark. However, it is vascular tissue formed from the vascular cambium. The Bark: phloem: sieve tube elements: Sieve tube elements actively transport photosynthates down the stem. Conifers have sieve cells instead. The cambium: The cambium is the primary meristem producing radial growth. It forms the phloem & xylem. The Xylem (wood): The xylem includes everything inside the vascular cambium. The Xylem: a growth increment (ring): The rings seen in many trees represent one growth increment. Growth rings provide the texture seen in wood. The Xylem: vessel elements: Hardwood species have vessel elements in addition to trachieds. Notice their location in the growth rings of this tree The Xylem: fibers: Fibers are cells with heavily lignified walls making them stiff. Many fibers in sapwood are alive at maturity and can be used for storage. The Xylem: axial parenchyma: Axial parenchyma is living tissue! Remember that parenchyma cells can be used for storage and cell division.
    [Show full text]
  • Getting Chemicals Into Trees Without Spraying
    Urban Forestry NR/FF/020 (pr) Getting Chemicals Into Trees Without Spraying Michael Kuhns, Forestry Extension Specialist This fact sheet provides an overview of injection, or phellogen that makes cork to thicken the outer bark, implantation, and other ways to get chemicals, mainly phloem that conducts food through the tree from where pesticides, into trees. Many techniques and systems it is stored or made to where it is being used (all of these exist and some are very good, some are good in some tissues together make up the bark), vascular cambium situations, and some are ineffective or bad for trees. that divides rapidly to make new phloem and xylem cells, This fact sheet addresses all of these. and xylem or wood. Xylem includes an outer layer called the sapwood that conducts mostly water and minerals from the roots to the canopy, and an inner layer called the Chemicals are applied to trees for many reasons. heartwood that is aged sapwood that has died and has lost Insecticides repel or kill damaging insects, fungicides its ability to conduct water but still adds strength. treat or prevent fungal diseases, nutrients and plant growth regulators affect growth, and herbicides kill trees or prevent sprouting after tree removal. Spraying is the most typical way to apply these chemicals. It is fast, uses readily available equipment, and is understood. The Phellem (Cork Phellogen down side of spraying is that much of the chemical being or Outer Bark) Phloem applied is wasted, either to drift, run off, or because it can not be applied precisely to where it is needed in the tree.
    [Show full text]
  • Tree Anatomy Stems and Branches
    Tree Anatomy Series WSFNR14-13 Nov. 2014 COMPONENTSCOMPONENTS OFOF PERIDERMPERIDERM by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Around tree roots, stems and branches is a complex tissue. This exterior tissue is the environmental face of a tree open to all sorts of site vulgarities. This most exterior of tissue provides trees with a measure of protection from a dry, oxidative, heat and cold extreme, sunlight drenched, injury ridden site. The exterior of a tree is both an ecological super highway and battle ground – comfort and terror. This exterior is unique in its attributes, development, and regeneration. Generically, this tissue surrounding a tree stem, branch and root is loosely called bark. The tissues of a tree, outside or more exterior to the xylem-containing core, are varied and complexly interwoven in a relatively small space. People tend to see and appreciate the volume and physical structure of tree wood and dismiss the remainder of stem, branch and root. In reality, tree life is focused within these more exterior thin tissue sets. Outside of the cambium are tissues which include transport cells, structural support cells, generation cells, and cells positioned to help, protect, and sustain other cells. All of this life is smeared over the circumference of a predominately dead physical structure. Outer Skin Periderm (jargon and antiquated term = bark) is the most external of tree tissues providing protection, water conservation, insulation, and environmental sensing. Periderm is a protective tissue generated over and beyond live conducting and non-conducting cells of the food transport system (phloem).
    [Show full text]
  • Why Do Animals Eat the Bark and Wood of Trees and Shrubs? William R
    FNR-203 Purdue University & Natural Re ry sou Forestry and Natural Resources st rc re e o s F Why Do Animals Eat the Bark and Wood of Trees and Shrubs? William R. Chaney, Professor of Tree Physiology Department of Forestry and Natural Resources Purdue University, West Lafayette, IN 47907 PURDUE UNIVERSITY Animals gnawing the bark and wood of trees anatomy, movement and storage of food in trees, and shrubs is not a malicious act or evidence of a and the variations in digestive systems among neurotic condition. Instead, it is the normal means animals. by which some animals acquire a nutritious food source. The ability to consume this seemingly Constituents of Plant Cell Walls unpalatable food supply and derive nourishment Unlike animals, plants have cells with rigid from it requires specialized feeding habits and cell walls composed of cellulose, hemicellulose, digestive systems. and lignins. Pectins help hold the individual cells together in tissues. All of these substances are potential sources of food for animals. Cellulose The most consummate wood feeders are the A principal component of cell walls is billions of termites throughout the world that cellulose, which consists of 5,000 to 10,000 literally devour thousands of tons of woody glucose molecules joined by a so-called beta debris every year in forests as well as lumber linkage to form straight chain polymers of pure in buildings. Many of our most serious and sugar. The long chains of cellulose are combined damaging insect pests are the bark beetles and first into microfibrils and then further into wood borers that feed on the parts of trees for macrofibrils to create a mesh-like matrix of cell which they are named.
    [Show full text]
  • Xylem Resin in the Resistance of the Pinaceae to Bark Beetles
    XYLEM RESIN IN THE RESISTANCE OF THE PINACEAE TO BARK BEETLES Richard H. Smith Xylem resin-a supersaturation of resin acids in terpenes- appears to play a paradoxical role in the relation of the Pinaceae to tree-killing bark beetles. It has been suggested as the agent responsible for the susceptibility of this coniferous family to beetle attacks. And, at the same time, it has been linked with the ability of the Pinaceae to resist bark beetles. The hosts of tree- killing bark beetles are nearly all Pinaceae-Pinus (pine), Abies (fir), Pseudotsuga (Douglas-fir), Picea (spruce), Tsuga (hemlock), and Larix (larch). Significantly, among conifers, xylem resin is most common and abundant in these Pinaceae. Bark beetles are found on other families of conifers, but they are usually con- sidered of minor importance. Much experimental work has been done since the early reports of an apparent association of resin with resistance. Nearly all studies have dealt with attacking adult beetles; virtually no re- search has been directed at effects of resin on immature forms. Most work has been with Pinus and Dep'roctonus, with lesser attention to spruce, fir, Douglas-fir, and the other genera of bark beetles. PACIFIC This report summarizes the early findings, updates them with results of more recent reports and, in some cases, reinterprets SOUTHWEST these previous reports. This review deals only with bark beetles that attack living trees and with xylem resin, although in a few Forest and Ranee instances, it concerns resin-related chemicals as well. This review follows the approach of Painter (1951), who pro- Experiment station posed that plant resistance to insects depends on one or more FOREST SERVICE U.
    [Show full text]
  • Regulation of a Plant Aquaporin by a Casparian Strip Membrane Domain Protein-Like
    Regulation of a plant aquaporin by a Casparian strip membrane domain protein-like Chloé Champeyroux, Jorge Bellati, Marie Barberon, Valerie Rofidal, Christophe Maurel, Veronique Santoni To cite this version: Chloé Champeyroux, Jorge Bellati, Marie Barberon, Valerie Rofidal, Christophe Maurel, et al.. Reg- ulation of a plant aquaporin by a Casparian strip membrane domain protein-like. Plant, Cell and Environment, Wiley, 2019, 42 (6), pp.1788-1801. 10.1111/pce.13537. hal-02054482 HAL Id: hal-02054482 https://hal.archives-ouvertes.fr/hal-02054482 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Santoni Veronique (Orcid ID: 0000-0002-1437-0921) Amtmann Anna (Orcid ID: 0000-0001-8533-121X) Title Regulation of a plant aquaporin by a Casparian strip membrane domain protein-like Running title Plant aquaporin regulation Authors Chloé Champeyroux1, Jorge Bellati1, Marie Barberon2, Valérie Rofidal1, Christophe Maurel1, Véronique Santoni1,3 Institute Version postprint 1BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France 2 Department of Botany and Plant Biology, Quai Ernest-Ansermet 30 Sciences III CH-1211 Genève 4 Switzerland 3Corresponding author Véronique Santoni BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, F-34060 Montpellier cedex 2, France.
    [Show full text]
  • The Anatomy As a Tool for the Identification of the Bark of Pterocarpus Angolensis and Terminalia Sericea1 a Anatomia Como Ferra
    The anatomy as a tool for the identification of the bark of Pterocarpus angolensis and Terminalia sericea1 Teresa Quilhó 2* Fernanda Bessa2 Ana Isabel Ribeiro-Barros3 Natasha Ribeiro4 1Selected from the IV Brazilian Congress of Wood Science and Technology 2 Universidade de Lisboa, Instituto Superior de Agronomia, Centro de Estudos Florestais, Tapada da Ajuda, 1349-017 Lisboa, Portugal 3 Universidade de Lisboa, Instituto Superior de Agronomia, Centro de Investigação em Agronomia, Alimentos, Ambiente e Paisagem, Tapada da Ajuda, 1349-017 Lisboa, Portugal 4 Universidade Eduardo Mondlane, Faculdade de Agronomia e Engenharia Florestal, Av. Julius Nyerere, Campus 3453, Maputo, Moçambique Original Article ABSTRACT: Pterocarpus angolensis and Terminalia sericea are two African species with medicinal potential. Despite the importance of their bark as a *Corresponding author: powerful astringent to treat various diseases it is poor described. In order to [email protected] provide referential information for correct identification and standardization of the Keywords: plant material, bark samples from each two species were collected and analyzed Secondary phloem under light and electron microscopy. Some important anatomical features to identification were: the sclerenchyma tissue mostly in form of fibre-sclereids and Anatomical structure the large secretory cells arranged in conspicuous rows or tangential bands in the Species distinction conducting phloem in P. angolensis; the crystalliferous cells arranged in very regular tangential rows (druses) and the occurrence of large crystal cells near or Medicinal plants. including the tangential fibre bundles in T. sericea bark. The results obtained show Palavras-chave: that the anatomy of the bark can be used as an important subsidy in identification Floema secundário and standardization of the studied species contributing the scientific knowledge for more effective forms of scrutiny in preventing commercial adulteration of Estrutura anatômica species.
    [Show full text]
  • Dicot/Monocot Root Anatomy the Figure Shown Below Is a Cross Section of the Herbaceous Dicot Root Ranunculus. the Vascular Tissu
    Dicot/Monocot Root Anatomy The figure shown below is a cross section of the herbaceous dicot root Ranunculus. The vascular tissue is in the very center of the root. The ground tissue surrounding the vascular cylinder is the cortex. An epidermis surrounds the entire root. The central region of vascular tissue is termed the vascular cylinder. Note that the innermost layer of the cortex is stained red. This layer is the endodermis. The endodermis was derived from the ground meristem and is properly part of the cortex. All the tissues inside the endodermis were derived from procambium. Xylem fills the very middle of the vascular cylinder and its boundary is marked by ridges and valleys. The valleys are filled with phloem, and there are as many strands of phloem as there are ridges of the xylem. Note that each phloem strand has one enormous sieve tube member. Outside of this cylinder of xylem and phloem, located immediately below the endodermis, is a region of cells called the pericycle. These cells give rise to lateral roots and are also important in secondary growth. Label the tissue layers in the following figure of the cross section of a mature Ranunculus root below. 1 The figure shown below is that of the monocot Zea mays (corn). Note the differences between this and the dicot root shown above. 2 Note the sclerenchymized endodermis and epidermis. In some monocot roots the hypodermis (exodermis) is also heavily sclerenchymized. There are numerous xylem points rather than the 3-5 (occasionally up to 7) generally found in the dicot root.
    [Show full text]
  • Eudicots Monocots Stems Embryos Roots Leaf Venation Pollen Flowers
    Monocots Eudicots Embryos One cotyledon Two cotyledons Leaf venation Veins Veins usually parallel usually netlike Stems Vascular tissue Vascular tissue scattered usually arranged in ring Roots Root system usually Taproot (main root) fibrous (no main root) usually present Pollen Pollen grain with Pollen grain with one opening three openings Flowers Floral organs usually Floral organs usually in in multiples of three multiples of four or five © 2014 Pearson Education, Inc. 1 Reproductive shoot (flower) Apical bud Node Internode Apical bud Shoot Vegetative shoot system Blade Leaf Petiole Axillary bud Stem Taproot Lateral Root (branch) system roots © 2014 Pearson Education, Inc. 2 © 2014 Pearson Education, Inc. 3 Storage roots Pneumatophores “Strangling” aerial roots © 2014 Pearson Education, Inc. 4 Stolon Rhizome Root Rhizomes Stolons Tubers © 2014 Pearson Education, Inc. 5 Spines Tendrils Storage leaves Stem Reproductive leaves Storage leaves © 2014 Pearson Education, Inc. 6 Dermal tissue Ground tissue Vascular tissue © 2014 Pearson Education, Inc. 7 Parenchyma cells with chloroplasts (in Elodea leaf) 60 µm (LM) © 2014 Pearson Education, Inc. 8 Collenchyma cells (in Helianthus stem) (LM) 5 µm © 2014 Pearson Education, Inc. 9 5 µm Sclereid cells (in pear) (LM) 25 µm Cell wall Fiber cells (cross section from ash tree) (LM) © 2014 Pearson Education, Inc. 10 Vessel Tracheids 100 µm Pits Tracheids and vessels (colorized SEM) Perforation plate Vessel element Vessel elements, with perforated end walls Tracheids © 2014 Pearson Education, Inc. 11 Sieve-tube elements: 3 µm longitudinal view (LM) Sieve plate Sieve-tube element (left) and companion cell: Companion cross section (TEM) cells Sieve-tube elements Plasmodesma Sieve plate 30 µm Nucleus of companion cell 15 µm Sieve-tube elements: longitudinal view Sieve plate with pores (LM) © 2014 Pearson Education, Inc.
    [Show full text]
  • Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family1[C][W]
    Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family1[C][W] Daniele Roppolo *, Brigitte Boeckmann, Alexandre Pfister, Emmanuel Boutet, Maria C. Rubio, Valérie Dénervaud-Tendon, Joop E.M. Vermeer, Jacqueline Gheyselinck, Ioannis Xenarios, and Niko Geldner Department of Plant Molecular Biology, University of Lausanne, Quartier Sorge, Lausanne 1015, Switzerland (D.R., A.P., M.C.R., V.D.-T., J.E.M.V., N.G.); Swiss Institute of Bioinformatics, Centre Médical Universitaire, 1211 Geneva 4, Switzerland (B.B., E.B., I.X.); Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, 50080 Zaragoza, Spain (M.C.R.); Vital-IT Group and University of Lausanne, Quartier Sorge, Bâtiment Génopode, Lausanne 1015, Switzerland (I.X.); and Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland (D.R., J.G.) CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP- like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted.
    [Show full text]