Exploring the Effect of Aerosols on the Arabian Peninsula's Changing

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Effect of Aerosols on the Arabian Peninsula's Changing Exploring the Effect of Aerosols on the Arabian Peninsula’s Changing Climate Dr Georgiy Stenchikov EXPLORING THE EFFECT OF AEROSOLS ON THE ARABIAN PENINSULA’S CHANGING CLIMATE Today, the Arabian Peninsula already faces a more daunting array of environmental challenges than most other regions on Earth. Yet as the climate changes, it is now expected to feel these adverse effects even more strongly in the coming decades. Using the latest modelling techniques, combined with ground-based observations, Dr Georgiy Stenchikov at King Abdullah University of Science and Technology in Saudi Arabia aims to make better predictions of how these changes will unfold. His work now provides critical guidance on how governments in the region should prepare for future shifts in climate and air quality. weather events, such as heat waves, sandstorms and flash floods, are now being felt increasingly strongly. As these changes have unfolded, the population of Saudi Arabia alone has exploded from just 4 to 34 million in only half a century. Combined with rapid social and economic development, and urbanisation in the region, these effects are now imposing an unprecedented strain on the region’s water resources, agriculture, air quality, The Arabian Peninsula’s Climate with greenhouse gas emissions, and natural ecosystems. desertification, urbanisation, and The Arabian Peninsula is well known shrinking vegetation cover. This effect A Need for Better Predictions for its harsh natural environments. Not is strongly influenced by an abundance only are large swathes of the region of particulates including sand, dust and To tackle these mounting challenges, covered in inhospitable desert; it is also anthropogenic pollutants suspended in detailed evaluations of changes in the one of the most water-scarce regions on the air – together named ‘aerosols’. Arabian Peninsula’s climate and air Earth, with many communities relying quality have never been more critical. on the desalination of seawater for their Over the past three decades, both Ideally, a robust basis for supporting survival. On top of this, the peninsula’s observations and computer simulations environmental policy in this way climate is highly sensitive to a have shown that the Arabian Peninsula’s would enable regional, national and phenomenon named ‘radiative forcing’. average temperature has increased international policymakers to carry out Radiative forcing describes the change by about 0.5°C per decade exceeding long-term planning and sustainable in Earth’s energy balance (the difference almost twice the trend observed in developments, and to utilise renewable between the sunlight absorbed by the northern hemisphere as a whole. energy more effectively. This would Earth, and the infra-red light radiated This means that effects including require advanced, science-based back into space), which is associated an increasing frequency of extreme decision making from governments as WWW.SCIENTIA.GLOBAL such an event had ever occurred, vast quantities of smoke from urban and forest fires, as well as dust from ground bursts, would have been injected up into the atmosphere, triggering devastating rapid drops in temperature, precipitation, and sunlight. Together known as ‘nuclear winter’, these effects were widely studied through simulations at the time, producing predictions of a brief yet devastating shift in the Earth’s climate. Dr Stenchikov and his colleague Dr Aleksandrov, then at the Computer Center of the USSR Academy of they decide how to mitigate and adapt Forecasting WRF model with chemistry Sciences, conducted the first general to climate change, with judgements and aerosol module (WRF-Chem). The circulation model simulation of climate centred around the outcomes of robust main shortcoming of regional climate perturbations following the hypothetical observations and predictive models. models is that without considering nuclear war based on TTAPS (group how the oceans are influenced by of American Scientists Turco, Toon, Twenty to thirty years ago, there the atmosphere, and vice versa, their Ackerman Polack, and Sagan) scenarios. were significant shortcomings in the individual prediction abilities are techniques used by researchers to limited. Later on, Dr Stenchikov was involved predict these changes, creating critical in research exploring the climate oversights in existing climate predictions To alleviate this issue, Dr Stenchikov effects of volcanic explosions. He for the Arabian Peninsula. ‘Before, we has introduced novel techniques for also studied how particulates spread did not know the optical properties of coupling atmospheric and oceanic through New York and the surrounding aerosols, their microphysical behaviour, simulations together on a regional area following the 2001 attacks on or their emission sources,’ says Dr scale, greatly improving the accuracy the World Trade Centre, conducted Georgiy Stenchikov at King Abdullah of their predictions. He used WRF simulations of the hypothetical nuclear University of Science and Technology as an atmospheric component for conflict between India and Pakistan, in Saudi Arabia. ‘The spatial resolution regional models, and the Regional and investigated the feasibility of Solar of our models was very coarse. In many Ocean Modelling System (ROMS) for Radiation Geoengineering to counteract models, aerosols were not included the oceanic component. In addition, global warming. As Dr Stenchikov in the radiative transfer calculations, he implemented NASA’s satellite describes, nuclear winter studies heavily meaning they couldn’t affect solar and observations in the model, which influenced his subsequent research, as terrestrial radiation.’ Over decades monitor dust aerosols over the Arabian well as that of many other world leaders of research, Dr Stenchikov has used Peninsula and the Red Sea from space. in the wider field of aerosol research. cutting-edge simulations, combined By running this regional coupled with ground-based and satellite ocean-atmosphere modelling system, ‘Problems including the effects of observations, to discover how these Dr Stenchikov and his colleagues volcanic eruptions on climate; dust predictions can be improved. have gained critical insights into how storms; the effect of dust on air quality aerosols have influenced the Red Sea and radiation transfer; and transport Diverse Tools for Regional Climate and the Arabian Peninsula’s climate in of the World Trade Centre fire’s plume Modelling and Monitoring the past, and how they can be expected are all physically related to the effects to transform it in the future. causing nuclear winter,’ he says. Dr Stenchikov and his colleagues have a wide array of techniques at their Aerosol Catastrophes Impacts of Volcanic Eruptions disposal for achieving these research goals, based around cutting-edge When Dr Stenchikov first started out In 1991, the eruption of Mount Pinatubo computer simulations of circulations in his career, our perceived threat of in the Philippines exerted the largest in Earth’s atmosphere and oceans. climate change was dwarfed by the volcanic climate impact in the 20th Alongside high-resolution global very feasible prospect of another global century. The globally averaged volcanic atmospheric simulations, they now catastrophe: an international nuclear cooling exceeded 0.5°C and this was use the regional Weather Research conflict between global superpowers. If twice as strong in the Middle East. WWW.SCIENTIA.GLOBAL deposition rates, mineralogy and size distribution of aerosol samples. Combined with simulations, these empirical studies revealed how aerosols become concentrated over the southern Red Sea producing in this place world’s largest radiative forcing– behaviour consistent with observations from satellites. In turn, Dr Stenchikov’s discoveries have clearly revealed the extent to which natural and anthropogenic aerosols impact regional climate, solar panel efficiency, However, even 25 years afterwards, variability and warming trends. air quality and human health. these effects were still not completely understood. Through his research, Dr Calculating Anthropogenic and Informing Future Decisions Stenchikov improved our understanding Natural Pollutants of the physical mechanisms controlling Climate change, combined with a climate responses to volcanic radiative Together, North Africa and the Arabian rise in air pollution, are now severely forcing. To study the volcanic impact Peninsula are the two largest sources threatening the livelihoods of many on the Middle East climate, Dr of dust in the world. Mixtures of mineral millions of people in the Arabian Stenchikov and his team coupled the dust, sea salt, sulphate, black carbon Peninsula – with potential disasters regional atmospheric model, WRF, and organic matter, when suspended in ranging from rising instances of with the regional ocean model, ROMS, air, can profoundly influence air quality, respiratory diseases and lung cancer, and comprehensively accounted radiative heating, and atmospheric to diminishing water resources for the radiative effects of volcanic circulations in the region. The size for agriculture. ‘The Middle East’s aerosols. Critically, his team found that distribution, and chemical composition climate is at the border of liveability,’ atmospheric circulation had a greater of aerosols are crucially important Dr Stenchikov summarises. ‘Global influence on the climate of the Middle to evaluate these effects. However, warming is faster here than the global East than direct regional cooling from
Recommended publications
  • Confronting the Threat of Nuclear Winter Seth D
    Confronting the Threat of Nuclear Winter Seth D. Baum Global Catastrophic Risk Institute http://sethbaum.com * http://gcrinstitute.org Futures 72: 69-79. This version 14 October 2015. Abstract Large-scale nuclear war sends large quantities of smoke into the stratosphere, causing severe global environmental effects including surface temperature declines and increased ultraviolet radiation. The temperature decline and the full set of environmental effects are known as nuclear winter. This paper surveys the range of actions that can confront the threat of nuclear winter, both now and in the future. Nuclear winter can be confronted by reducing the probability of nuclear war, reducing the environmental severity of nuclear winter, increasing humanity’s resilience to nuclear winter, and through indirect interventions that enhance these other interventions. While some people may be able to help more than others, many people—perhaps everyone across the world—can make a difference. Likewise, the different opportunities available to different people suggests personalized evaluations of nuclear winter, and of catastrophic threats more generally, instead of a one-size-fits-all approach. Keywords: catastrophic threats, global catastrophic risk, nuclear war, nuclear winter, risk reduction 1. Introduction The explosion of nuclear weapons causes enormous fireballs, burning everything in the vicinity. Most of the ensuing smoke rises past the clouds, into the stratosphere, where it spreads around the world and remains for a time on the order of ten to twenty years. A large enough nuclear war would send up so much smoke that the global environment would be fundamentally altered. Surface temperatures and precipitation would decline, while ultraviolet radiation increases.
    [Show full text]
  • A New Effort to Achieve World
    The Risk of Nuclear Winter The Risk of Nuclear Winter By Seth Baum Since the early 1980s, the world has known that a large nuclear war could cause severe global environmental effects, including dramatic cooling of surface temperatures, declines in precipitation, and increased ultraviolet radiation. The term nuclear winter was coined specifically to refer to cooling that result in winter-like temperatures occurring year-round. Regardless of whether such temperatures are reached, there would be severe consequences for humanity. But how severe would those consequences be? And what should the world be doing about it? To the first question, the short answer is nobody knows. The total human impacts of nuclear winter are both uncertain and under-studied. In light of the uncertainty, a risk perspective is warranted that considers the breadth of possible impacts, weighted by their probability. More research on the impacts would be very helpful, but we can meanwhile make some general conclusions. That is enough to start answering the second question, what we should do. In regards to what we should do, nuclear winter has some interesting and important policy implications. Today, nuclear winter is not a hot topic but this was not always the case: it was international headline news in the 1980s. There were conferences, Congressional hearings, voluminous scientific research, television specials, and more. The story is expertly captured by Lawrence Badash in his book A Nuclear Winter’s Tale.1 Much of the 1980s attention to nuclear winter was driven by the enthusiastic efforts of Carl Sagan, then at the height of his popularity.
    [Show full text]
  • Global Catastrophic Risks 2016
    Global Challenges Foundation Global Catastrophic Risks 2016 © Global Challenges Foundation/Global Priorities Project 2016 GLOBAL CATASTROPHIC RISKS 2016 THE GLOBAL CHALLENGES FOUNDATION works to raise awareness of the The views expressed in this report are those of the authors. Their Global Catastrophic Risks. Primarily focused on climate change, other en- statements are not necessarily endorsed by the affiliated organisations. vironmental degradation and politically motivated violence as well as how these threats are linked to poverty and rapid population growth. Against this Authors: background, the Foundation also works to both identify and stimulate the Owen Cotton-Barratt*† development of good proposals for a management model – a global gover- Sebastian Farquhar* nance – able to decrease – and at best eliminate – these risks. John Halstead* Stefan Schubert* THE GLOBAL PRIORITIES PROJECT helps decision-makers effectively prior- Andrew Snyder-Beattie† itise ways to do good. We achieve his both by advising decision-makers on programme evaluation methodology and by encouraging specific policies. We * = The Global Priorities Project are a collaboration between the Centre for Effective Altruism and the Future † = The Future of Humanity Institute, University of Oxford of Humanity Institute, part of the University of Oxford. Graphic design: Accomplice/Elinor Hägg Global Challenges Foundation in association with 4 Global Catastrophic Risks 2016 Global Catastrophic Risks 2016 5 Contents Definition: Global Foreword 8 Introduction 10 Catastrophic Risk Executive summary 12 1. An introduction to global catastrophic risks 20 – risk of events or 2. What are the most important global catastrophic risks? 28 Catastrophic climate change 30 processes that would Nuclear war 36 Natural pandemics 42 Exogenous risks 46 lead to the deaths of Emerging risks 52 Other risks and unknown risks 64 Our assessment of the risks 66 approximately a tenth of 3.
    [Show full text]
  • Assessing Climate Change's Contribution to Global Catastrophic
    Assessing Climate Change’s Contribution to Global Catastrophic Risk Simon Beard,1,2 Lauren Holt,1 Shahar Avin,1 Asaf Tzachor,1 Luke Kemp,1,3 Seán Ó hÉigeartaigh,1,4 Phil Torres, and Haydn Belfield1 5 A growing number of people and organizations have claimed climate change is an imminent threat to human civilization and survival but there is currently no way to verify such claims. This paper considers what is already known about this risk and describes new ways of assessing it. First, it reviews existing assessments of climate change’s contribution to global catastrophic risk and their limitations. It then introduces new conceptual and evaluative tools, being developed by scholars of global catastrophic risk that could help to overcome these limitations. These connect global catastrophic risk to planetary boundary concepts, classify its key features, and place global catastrophes in a broader policy context. While not yet constituting a comprehensive risk assessment; applying these tools can yield new insights and suggest plausible models of how climate change could cause a global catastrophe. Climate Change; Global Catastrophic Risk; Planetary Boundaries; Food Security; Conflict “Understanding the long-term consequences of nuclear war is not a problem amenable to experimental verification – at least not more than once" Carl Sagan (1983) With these words, Carl Sagan opened one of the most influential papers ever written on the possibility of a global catastrophe. “Nuclear war and climatic catastrophe: Some policy implications” set out a clear and credible mechanism by which nuclear war might lead to human extinction or global civilization collapse by triggering a nuclear winter.
    [Show full text]
  • Catastrophism, Natural Disasters, and Cultural Change John Grattan and Robin Torrence
    Theme: Archaeology and the Environment Symposium 017/1 Grattan & Torrence Symposium: Catastrophism, Natural Disasters, and Cultural Change John Grattan and Robin Torrence The aim of this session is to examine both the short and long-term consequences of extreme natural events on patterns of cultural change. Archaeological theory about the pace and character of cultural change generally focuses on processes which are internally generated and which unfold slowly through time. Since environmental determinism has fallen out of favour, theories about social evolution pay very little attention to external, nonhuman factors nor to random factors. Little or no consideration has been given to the effects of one-off natural disasters. In contrast, a number of theoretical perspectives involving catastrophism, chaos, punctuated evolution, etc. provide a range of alternative views that focus on the effects of random events. One of the goals of the symposium is to assess the value of these theories for explaining the impacts of natural disasters on cultural change. Through extended discussions following short presentations of case studies representing a very broad coverage in spatial, chronological and cultural terms, the participants will consider a range of general questions. How and in what ways do natural hazards affect human societies? Have natural disasters played an important role in human evolution? Do natural disasters have only short-term, limited effects or should they play an important role within general theories about cultural change and
    [Show full text]
  • How to Stop a Supervolcano
    HOW TO STOP A SUPERVOLCANO [VIDEO TRANSCRIPT] In 1816, red snow fell in Maryland. And brown snow. And blue snow.1 Which was kind of weird. Even weirder? It was May. Parts of Pennsylvania were covered in half an inch of ice … in July.2 1816 was known as “The Year Without a Summer.” And the phenomenon wasn’t limited to the U.S. In fact, the reason Americans were shivering in the middle of the year … had to do with something that happened half a world away. The darkened, hazy skies produced by “The Year Without a Summer” led to a series of famous paintings by the likes of J.M.W. Turner, Caspar David Friedrich, and John Crome. Modern audiences often believe that the use of lighting in these works is stylized, not realizing that it was a reflection of the actual conditions at the time. Another artistic legacy of the year without a summer: Mary Shelley and her summer vacation companions at Lake Geneva were forced indoors, where they entertained each other by coming up with horror stories. Shelley’s contribution eventually became Frankenstein. The eruption of the volcano at Mount Tambora in Indonesia had released a massive cloud of ash and sulfur dioxide into the stratosphere. As a result, temperatures in the Northern Hemisphere plummeted. Crops failed and livestock died en masse. Between the eruption itself, the ensuing tsunamis, and the resulting starvation, approximately 92,000 people died.3 It is widely regarded as the worst volcanic eruption in recorded history. Here’s the good news: you didn’t have to live through it.
    [Show full text]
  • Assessing the Impact of a Future Volcanic Eruption on Decadal Predictions
    Earth Syst. Dynam., 9, 701–715, 2018 https://doi.org/10.5194/esd-9-701-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Assessing the impact of a future volcanic eruption on decadal predictions Sebastian Illing1, Christopher Kadow1, Holger Pohlmann2, and Claudia Timmreck2 1Freie Universität Berlin, Institute of Meteorology, Berlin, Germany 2Max Planck Institute for Meteorology, Hamburg, Germany Correspondence: Sebastian Illing ([email protected]) Received: 22 January 2018 – Discussion started: 2 February 2018 Accepted: 27 April 2018 – Published: 6 June 2018 Abstract. The likelihood of a large volcanic eruption in the future provides the largest uncertainty concerning the evolution of the climate system on the timescale of a few years, but also an excellent opportunity to learn about the behavior of the climate system, and our models thereof. So the following question emerges: how predictable is the response of the climate system to future eruptions? By this we mean to what extent will the volcanic perturbation affect decadal climate predictions and how does the pre-eruption climate state influence the impact of the volcanic signal on the predictions? To address these questions, we performed decadal forecasts with the MiKlip prediction system, which is based on the MPI-ESM, in the low-resolution configuration for the initialization years 2012 and 2014, which differ in the Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) phase. Each forecast contains an artificial Pinatubo-like eruption starting in June of the first prediction year and consists of 10 ensemble members. For the construction of the aerosol radiative forcing, we used the global aerosol model ECHAM5-HAM in a version adapted for volcanic eruptions.
    [Show full text]
  • Radiative and Climate Impacts of a Large Volcanic Eruption During Stratospheric Sulfur Geoengineering
    Atmos. Chem. Phys., 16, 305–323, 2016 www.atmos-chem-phys.net/16/305/2016/ doi:10.5194/acp-16-305-2016 © Author(s) 2016. CC Attribution 3.0 License. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering A. Laakso1, H. Kokkola1, A.-I. Partanen2,3, U. Niemeier4, C. Timmreck4, K. E. J. Lehtinen1,5, H. Hakkarainen6, and H. Korhonen2 1Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, Kuopio, Finland 2Finnish Meteorological Institute, Climate Research, Helsinki, Finland 3Department of Geography, Planning and Environment, Concordia University, Montréal, Québec, Canada 4Max Planck Institute for Meteorology, Hamburg, Germany 5Department of Applied Physics, University of Eastern Finland, Kuopio campus, Kuopio, Finland 6A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland Correspondence to: A. Laakso (anton.laakso@fmi.fi) Received: 18 June 2015 – Published in Atmos. Chem. Phys. Discuss.: 12 August 2015 Revised: 21 December 2015 – Accepted: 22 December 2015 – Published: 18 January 2016 Abstract. Both explosive volcanic eruptions, which emit sul- ulation, only about one-third of the global ensemble-mean fur dioxide into the stratosphere, and stratospheric geoengi- cooling occurs after the eruption, compared to that occur- neering via sulfur injections can potentially cool the climate ring after an eruption under unperturbed atmospheric con- by increasing the amount of scattering particles in the at- ditions. Furthermore, the global cooling signal is seen only mosphere. Here we employ a global aerosol-climate model for the 12 months after the eruption in the former scenario and an Earth system model to study the radiative and climate compared to over 40 months in the latter.
    [Show full text]
  • A National Pragmatic Safety Limit for Nuclear Weapon Quantities Joshua Pearce, David Denkenberger
    A National Pragmatic Safety Limit for Nuclear Weapon Quantities Joshua Pearce, David Denkenberger To cite this version: Joshua Pearce, David Denkenberger. A National Pragmatic Safety Limit for Nuclear Weapon Quan- tities. Drug Safety, Springer Verlag, 2018, 4 (2), pp.25. 10.3390/safety4020025. hal-02111370 HAL Id: hal-02111370 https://hal.archives-ouvertes.fr/hal-02111370 Submitted on 26 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License safety Article A National Pragmatic Safety Limit for Nuclear Weapon Quantities Joshua M. Pearce 1,2,3,* ID and David C. Denkenberger 4,5 1 Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, FI-00076 Espoo, Finland 2 Department of Materials Science & Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA 3 Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA 4 Tennessee State University, 3500 John A Merritt Boulevard Nashville, Nashville, TN 37209, USA; [email protected] 5 Alliance to Feed the Earth in Disasters (ALLFED), 23532 Calabasas Road, Suite A, Calabasas, CA 91302, USA * Correspondence: [email protected]; Tel.: 906-487-1466 Received: 15 February 2018; Accepted: 6 June 2018; Published: 14 June 2018 Abstract: This study determines the nuclear pragmatic limit where the direct physical negative consequences of nuclear weapons use are counter to national interests, by assuming all unknowns are conservatively optimistic.
    [Show full text]
  • Asia Treads the Nuclear Path, Unaware That Self- Assured Destruction Would Result from Nuclear War
    The Journal of Asian Studies Vol. 76, No. 2 (May) 2017: 437–456. © The Association for Asian Studies, Inc., 2017 doi:10.1017/S0021911817000080 Asia Treads the Nuclear Path, Unaware That Self- Assured Destruction Would Result from Nuclear War OWEN B. TOON, ALAN ROBOCK, MICHAEL MILLS AND LILI XIA F THE NINE COUNTRIES known to have nuclear weapons, six are located in Asia and Oanother, the United States, borders the Pacific Ocean. Russia and China were the first Asian nations with nuclear weapons, followed by Israel, India, Pakistan, and North Korea. Most of the world’s nuclear powers are reducing their arsenals or maintaining them at historic levels, but several of those in Asia—India, Pakistan, and North Korea— continue to pursue relentless and expensive programs of nuclear weapons development and production. Hopefully, the nuclear agreement reached in July 2015 between Iran, the European Union, and the five permanent members of the United Nations Security Council will be a step toward eliminating nuclear weapons throughout Asia and the rest of the world. As we will discuss below, any country possessing a nuclear arsenal is on a path leading toward self-assured destruction, and is a threat to people everywhere on Earth. Nuclear-armed countries are a threat to people everywhere partly because of the destructive power of single weapons—one weapon is enough to destroy a small city— and partly because of the growing ability of nations to launch missiles across the globe. Nuclear powers such as India and North Korea, the latter of which is thought currently to have a very small nuclear capability that is not in the form of useful weapons, are working on the means to deliver weapons globally.
    [Show full text]
  • Hard Facts About Nuclear Winter
    Everyone knew that nuclear war would be hideous, but no one expeaed this. arly in 1979, the Congressional Office of Technol- ogy Assessment (OTA) completed a 151-page re-- port called "The Effects of Nuclear War."The first finding, set off in boldface, was "The effects of a nuclear war that cannot be calculated are at Eleast as important as those for which calculations are at- tempted "That has proved to be an unusually apt caveat. Now, only a few years after the OTA report, and four de-- cades after the invention of nuclear weapons, the scientific and defense communities have suddenly learned of an as- pect of nuclear war, overlooked by OTA and almost every- one else who had studied the subject, that could prove to be more devastating than any of the other effects--includ- ing the blast and radiation. The forgotten factor? Smoke. Government scfendm had been studying the physical effects of nuclear aplo- sions for decades, had produced massive wlumiel ,. of detailed observations, had scrutinized &CCOUDII of lbe blasts at Hiroshima and Nagasaki, the lln!stonDs at 0... den, Hamburg and Tokyo. But no one bad calnaleled tbe! HARD climatological effects of the globe-&paoDJDg paD of smoke that could rise from tbe lbousaodl of files ........... by a nuclear war. Indeed. wltb the ezcepllon of "!0 FACTS glected reports produced for tbe U.S. government In 1960s, the word smoke is baldly meotloaed in lbe ldeodl- ABOUT ic literature. I A paper publlsbed In lbe Swedish 1982 thus came 11 a complete surprise. stunning NUCLEAR and defeDse alike wltb Its slmpJe.
    [Show full text]
  • Volume 1, No. 2, Summer 1990 General Announcements
    Volume 1, No. 2, Summer 1990 General Announcements Two sessions are being planned for the American Philosophical Association Eastern Division meeting in Boston December 27-30. The first is a two hour panel, "Environmental Ethics: Current Trends, Future Prospects," moderated by Andrew Brennan, University of Stirling, Scotland. Panelists include Bryan Norton, Georgia Institute of Technology; Sara Ebenreck, Editor, EARTH ETHICS; Mark Sagoff, University of Maryland and Director of the Center for Philosophy and Public Policy; and Holmes Rolston, Colorado State University. The second APA session will be of submitted papers, titles and presenters to be announced. Eric Katz, Vice-President and Program Chair is in charge. Professor Eric Katz, Department of Humanities, New Jersey Institute of Technology, Newark, NJ 07102. Phone 201/596-3266 or 516/666-1815. Laura Westra, secretary of ISEE and previously at Auburn University, Alabama, has accepted a position in the Department of Philosophy at the University of Windsor. Her new address is Department of Philosophy, University of Windsor, Windsor, Ontario N9B 3P4, Canada. ISEE has hosted its first program, May 26th in Victoria, BC, cosponsored with the Canadian Society for Practical Ethics. The theme was ENVIRONMENTAL STRATEGIES AND VISIONS. The program included Peter Miller giving an overview of the new "World Conservation Strategy for the 1990's" (now in draft), Laura Westra on contrasting Canadian and American visions for the environment, and Karen Warren on a feminist vision for the environment. Professor Andrew Brennan is the contact person in the United Kingdom. Department of Philosophy, University of Stirling, Stirling FK9 4LA, Scotland. Telephone (0786) 73171.
    [Show full text]