Determination of Mars Crater Geometric Data: Insights from High-Resolution Digital Elevation Models

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Mars Crater Geometric Data: Insights from High-Resolution Digital Elevation Models Meteoritics & Planetary Science 53, Nr 4, 726–740 (2018) doi: 10.1111/maps.12895 Determination of Mars crater geometric data: Insights from high-resolution digital elevation models Peter J. MOUGINIS-MARK1* , Joseph BOYCE1, Virgil L. SHARPTON2, and Harold GARBEIL1 1Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96822, USA 2Lunar and Planetary Institute, Houston, Texas 77058, USA *Corresponding author. E-mail: [email protected] (Received 27 October 2016; revision accepted 10 April 2017) Abstract–We review the methods and data sets used to determine morphometric parameters related to the depth (e.g., rim height and cavity depth) and diameter of Martian craters over the past ~45 yr, and discuss the limitations of shadow length measurements, photoclinometry, Earth-based radar, and laser altimetry. We demonstrate that substantial errors are introduced into crater depth and diameter measurements that are inherent in the use of 128th-degree gridded Mars Orbiter Laser Altimeter (MOLA) topography. We also show that even the use of the raw MOLA Precision Engineering Data Record (PEDR) data can introduce errors in the measurement of craters a few kilometers in diameter. These errors are related to the longitudinal spacing of the MOLA profiles, the along-track spacing of the individual laser shots, and the MOLA spot size. Stereophotogrammetry provides an intrinsically more accurate method for measuring depth and diameter of craters on Mars when applied to high-resolution image pairs. Here, we use 20 stereo Context Camera (CTX) image pairs to create digital elevation models (DEMs) for 25 craters in the diameter range 1.5–25.6 km and cover the latitude range of 25° Sto42° N. These DEMs have a spatial scale of ~24 m per pixel. Six additional craters, 1.5–3.1 km in diameter, were studied using publically available DEMs produced from High-Resolution Imaging Science Experiment (HiRISE) image pairs. Depth/diameter and rim height were determined for each crater, as well as the azimuthal variation of crater rim height in 1-degree increments. These data indicate that morphologically fresh Martian craters at these diameters are significantly deeper for a given size than previously reported using Viking and MOLA data, most likely due to the improvement in spatial resolution provided by the CTX and HiRISE data. INTRODUCTION projectiles in the crater excavation and modification stages (Pike 1980). For individual planets, variations For more than half a century, the analysis of in target material strength may either produce impact craters on planetary surfaces has utilized the unusually shallow (Pike 1977a, 1977b) or deep craters measurement of the crater’s depth–diameter ratio (Barlow 1993; Boyce et al. 2006) as well as indicate (hereafter “depth/diameter”) as one of the key the potential role of volatiles (Cintala and Mouginis- parameters to advance understanding of the impact Mark 1980; Mouginis-Mark and Hayashi 1993) or process. For example, depth/diameter values have other subsurface properties (Stewart and Valiant been used to assess the degradation state of lunar and 2006). Martian craters (Leighton 1966; Pike 1971; Cintala The confident measurement of crater rim height et al. 1976). Comparison of depth/diameter across has importance for several planetary problems. For planets of different masses reveals the effects of example, McGetchin et al. (1973) and Settle and Head gravity and the modal impact velocities of the (1977) investigated radial variations in lunar crater © The Meteoritical Society, 2017. 726 Mars crater depth/diameter 727 ejecta topography to determine where ejecta from the APPROACHES TO CONSTRAINING DEPTH/ crater cavity might be deposited. However, these DIAMETER investigators did not consider the azimuthal variations of the rim crest or the ejecta deposit, so that only What do we mean, exactly, by crater diameter, symmetric processes were modeled. The azimuthal crater depth, and rim height? Robbins et al. (2017) variability in rim crest height was first studied for provide a detailed discussion of crater depth. Total lunar craters by Pike (1977b) and documented with depth (dt) is defined here as distance from the highest high-resolution topography only recently (Lalor and point on the rim crest to the lowest point on the crater Sharpton 2014; Sharpton 2014). Rim crest variability floor (Fig. 1), and has historically been the easiest within individual Martian craters has been crater parameter to measure by the methods described documented by Mouginis-Mark and Garbeil (2007) below. However, all craters exhibit irregularities in their and developed further by Mouginis-Mark and Boyce planforms to varying degrees due to local target (2012). property variability and/or nonnormal impact The determination of crater rim height also has trajectories. Apparent depth (da) is the depth as relevance to broader aspects of the geology of Mars. measured from a reconstructed surface that Drawing upon techniques developed for the analysis of approximates the pre-existing surface upon which the the rim height of lunar craters (De Hon 1979), De Hon crater first formed. Likewise, rim height (h) is the (1982) studied partially buried craters in the Eastern distance from the pre-existing surface to the maximum Tharsis region and inferred that the ridged plain elevation along the rim crest. materials which embay the exterior of the crater range Some of the earliest estimates of crater total depth from a 0 km thickness at their eastern limit to over (dt = da + h) on Mars were derived from data collected 1.5 km thickness westward of the Tharsis dome. by the Ultraviolet Spectrometer (UVS) flown on However, De Hon (1982) assumed that Mars craters Mariner 9, which entered orbit in November 1971 had a rim height–diameter ratio similar to fresh craters (Barth et al. 1974). The UVS technique used the on Mercury (Cintala 1979) and, because he could not absorption of the atmosphere to infer the thickness of measure the height of exposed rim crests, he only used the atmosphere at this point on Mars and, hence, the craters that are nearly completely buried. Of course, low depth of the crater floor compared to the surrounding points on the rim would be the first to be buried, so area. Using UVS measurements, dt/D values for craters that these lava thickness measurements may be in the diameter range 12–100 km were estimated, underestimates. If there is a wide variation in rim height including 38 craters which were deemed fresh or slightly around the crater, the depth–diameter estimate is an degraded (Burt et al. 1976). The deepest of these craters average for that crater size. were estimated to have depth/diameter values that were To investigate the problems inherent in crater similar to fresh craters on Mercury, which were depth/diameter, we first review the data sets and determined from shadow length measurements on approaches that have been used in the past, and Mariner 10 images (Gault et al. 1975). describe some of their potential limitations, focusing Measurements of Mars crater depths were also specifically on elevation data collected from the Mars made using Earth-based radar altimetry collected during Orbiter Laser Altimeter (MOLA) experiment. We then the 1971–1982 oppositions (Downs et al. 1975; Roth explore the value of utilizing high-resolution digital et al. 1989). The radar-ranging technique produced a elevation models (DEMs) to aid in the more accurate few (1–4) profiles around the circumference of the determination of depth/diameter and other geometric planet during each opposition. Each profile enabled a parameters of Martian impact craters. Finally, we single elevation estimate (relative to the center of Mars) present results for 31 fresh craters on Mars in the to be made at a spatial scale of ~10 km east–west and diameter range 1.5–25.6 km to suggest an approach ~80 km north–south. However, the radar ground-tracks for future depth/diameter investigations. Here, “fresh were limited to the latitude range 23° N–22° S, so high- craters” include those which possess rays or pitted latitude and polar craters were excluded from this material on the crater floor (Boyce et al. 2012; investigation. The dt/D values of 152 degraded complex Tornabene et al. 2012), but due to the limited number craters (some as small as D = 25 km) were estimated of CTX stereopairs, may also include slightly using this radar technique. A sample of 37 of the degraded craters (i.e., those which have lost their freshest craters (D = 25–475 km), which were still ejecta rays). This definition is different from the one classified as “highly degraded,” had dt/D < 0.015 (Roth of Boyce and Garbeil (2007), who further defined a et al. 1989). Measured crater depths rarely exceeded group of “pristine craters” on the basis of their very 2.5 km and depths of craters where D > 125 km showed large depth/diameter values. no obvious relationship with diameter. 728 P. J. Mouginis-Mark et al. Fig. 1. Cross section of a typical impact crater on Mars defining the attributes discussed in this analysis. A third method employed in the 1980s to measure of spacecraft altitudes and viewing geometries, very few dt on Mars was the use of “shape-from-shading” images formed stereopairs from which the topography techniques, which exploited the photometric properties could be determined, although certain large landforms, of a surface with a uniform albedo using a technique such as Olympus Mons, were imaged in stereo (Wu called photoclinometry (Pike and Davis 1984; et al. 1984). Jankowski and Squyres 1992; Barlow 1995). Jankowski Knowledge of the geometry of craters on Mars was and Squyres (1992) applied this technique to calibrated dramatically improved with the advent of the global panchromatic Viking Orbiter images to derive MOLA data set (Smith et al.
Recommended publications
  • Railway Employee Records for Colorado Volume Iii
    RAILWAY EMPLOYEE RECORDS FOR COLORADO VOLUME III By Gerald E. Sherard (2005) When Denver’s Union Station opened in 1881, it saw 88 trains a day during its gold-rush peak. When passenger trains were a popular way to travel, Union Station regularly saw sixty to eighty daily arrivals and departures and as many as a million passengers a year. Many freight trains also passed through the area. In the early 1900s, there were 2.25 million railroad workers in America. After World War II the popularity and frequency of train travel began to wane. The first railroad line to be completed in Colorado was in 1871 and was the Denver and Rio Grande Railroad line between Denver and Colorado Springs. A question we often hear is: “My father used to work for the railroad. How can I get information on Him?” Most railroad historical societies have no records on employees. Most employment records are owned today by the surviving railroad companies and the Railroad Retirement Board. For example, most such records for the Union Pacific Railroad are in storage in Hutchinson, Kansas salt mines, off limits to all but the lawyers. The Union Pacific currently declines to help with former employee genealogy requests. However, if you are looking for railroad employee records for early Colorado railroads, you may have some success. The Colorado Railroad Museum Library currently has 11,368 employee personnel records. These Colorado employee records are primarily for the following railroads which are not longer operating. Atchison, Topeka & Santa Fe Railroad (AT&SF) Atchison, Topeka and Santa Fe Railroad employee records of employment are recorded in a bound ledger book (record number 736) and box numbers 766 and 1287 for the years 1883 through 1939 for the joint line from Denver to Pueblo.
    [Show full text]
  • Annual Report COOPERATIVE INSTITUTE for RESEARCH in ENVIRONMENTAL SCIENCES
    2015 Annual Report COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES 2015 annual report University of Colorado Boulder UCB 216 Boulder, CO 80309-0216 COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES University of Colorado Boulder 216 UCB Boulder, CO 80309-0216 303-492-1143 [email protected] http://cires.colorado.edu CIRES Director Waleed Abdalati Annual Report Staff Katy Human, Director of Communications, Editor Susan Lynds and Karin Vergoth, Editing Robin L. Strelow, Designer Agreement No. NA12OAR4320137 Cover photo: Mt. Cook in the Southern Alps, West Coast of New Zealand’s South Island Birgit Hassler, CIRES/NOAA table of contents Executive summary & research highlights 2 project reports 82 From the Director 2 Air Quality in a Changing Climate 83 CIRES: Science in Service to Society 3 Climate Forcing, Feedbacks, and Analysis 86 This is CIRES 6 Earth System Dynamics, Variability, and Change 94 Organization 7 Management and Exploitation of Geophysical Data 105 Council of Fellows 8 Regional Sciences and Applications 115 Governance 9 Scientific Outreach and Education 117 Finance 10 Space Weather Understanding and Prediction 120 Active NOAA Awards 11 Stratospheric Processes and Trends 124 Systems and Prediction Models Development 129 People & Programs 14 CIRES Starts with People 14 Appendices 136 Fellows 15 Table of Contents 136 CIRES Centers 50 Publications by the Numbers 136 Center for Limnology 50 Publications 137 Center for Science and Technology
    [Show full text]
  • Interpretations of Gravity Anomalies at Olympus Mons, Mars: Intrusions, Impact Basins, and Troughs
    Lunar and Planetary Science XXXIII (2002) 2024.pdf INTERPRETATIONS OF GRAVITY ANOMALIES AT OLYMPUS MONS, MARS: INTRUSIONS, IMPACT BASINS, AND TROUGHS. P. J. McGovern, Lunar and Planetary Institute, Houston TX 77058-1113, USA, ([email protected]). Summary. New high-resolution gravity and topography We model the response of the lithosphere to topographic loads data from the Mars Global Surveyor (MGS) mission allow a re- via a thin spherical-shell flexure formulation [9, 12], obtain- ¡g examination of compensation and subsurface structure models ing a model Bouguer gravity anomaly ( bÑ ). The resid- ¡g ¡g ¡g bÓ bÑ in the vicinity of Olympus Mons. ual Bouguer anomaly bÖ (equal to - ) can be Introduction. Olympus Mons is a shield volcano of enor- mapped to topographic relief on a subsurface density interface, using a downward-continuation filter [11]. To account for the mous height (> 20 km) and lateral extent (600-800 km), lo- cated northwest of the Tharsis rise. A scarp with height up presence of a buried basin, we expand the topography of a hole Ö h h ¼ ¼ to 10 km defines the base of the edifice. Lobes of material with radius and depth into spherical harmonics iÐÑ up h with blocky to lineated morphology surround the edifice [1-2]. to degree and order 60. We treat iÐÑ as the initial surface re- Such deposits, known as the Olympus Mons aureole deposits lief, which is compensated by initial relief on the crust mantle =´ µh c Ñ c (hereinafter abbreviated as OMAD), are of greatest extent to boundary of magnitude iÐÑ . These interfaces the north and west of the edifice.
    [Show full text]
  • Imagining Outer Space Also by Alexander C
    Imagining Outer Space Also by Alexander C. T. Geppert FLEETING CITIES Imperial Expositions in Fin-de-Siècle Europe Co-Edited EUROPEAN EGO-HISTORIES Historiography and the Self, 1970–2000 ORTE DES OKKULTEN ESPOSIZIONI IN EUROPA TRA OTTO E NOVECENTO Spazi, organizzazione, rappresentazioni ORTSGESPRÄCHE Raum und Kommunikation im 19. und 20. Jahrhundert NEW DANGEROUS LIAISONS Discourses on Europe and Love in the Twentieth Century WUNDER Poetik und Politik des Staunens im 20. Jahrhundert Imagining Outer Space European Astroculture in the Twentieth Century Edited by Alexander C. T. Geppert Emmy Noether Research Group Director Freie Universität Berlin Editorial matter, selection and introduction © Alexander C. T. Geppert 2012 Chapter 6 (by Michael J. Neufeld) © the Smithsonian Institution 2012 All remaining chapters © their respective authors 2012 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2012 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • 11 Fall Unamagazine
    FALL 2011 • VOLUME 19 • No. 3 FOR ALUMNI AND FRIENDS OF THE UNIVERSITY OF NORTH ALABAMA Cover Story 10 ..... Thanks a Million, Harvey Robbins Features 3 ..... The Transition 14 ..... From Zero to Infinity 16 ..... Something Special 20 ..... The Sounds of the Pride 28 ..... Southern Laughs 30 ..... Academic Affairs Awards 33 ..... Excellence in Teaching Award 34 ..... China 38 ..... Words on the Breeze Departments 2 ..... President’s Message 6 ..... Around the Campus 45 ..... Class Notes 47 ..... In Memory FALL 2011 • VOLUME 19 • No. 3 for alumni and friends of the University of North Alabama president’s message ADMINISTRATION William G. Cale, Jr. President William G. Cale, Jr. The annual everyone to attend one of these. You may Vice President for Academic Affairs/Provost Handy festival contact Dr. Alan Medders (Vice President John Thornell is drawing large for Advancement, [email protected]) Vice President for Business and Financial Affairs crowds to the many or Mr. Mark Linder (Director of Athletics, Steve Smith venues where music [email protected]) for information or to Vice President for Student Affairs is being played. At arrange a meeting for your group. David Shields this time of year Sometimes we measure success by Vice President for University Advancement William G. Cale, Jr. it is impossible the things we can see, like a new building. Alan Medders to go anywhere More often, though, success happens one Vice Provost for International Affairs in town and not hear music. The festival student at a time as we provide more and Chunsheng Zhang is also a reminder that we are less than better educational opportunities.
    [Show full text]
  • The Tarzan Series of Edgar Rice Burroughs
    I The Tarzan Series of Edgar Rice Burroughs: Lost Races and Racism in American Popular Culture James R. Nesteby Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree in Doctor of Philosophy August 1978 Approved: © 1978 JAMES RONALD NESTEBY ALL RIGHTS RESERVED ¡ ¡ in Abstract The Tarzan series of Edgar Rice Burroughs (1875-1950), beginning with the All-Story serialization in 1912 of Tarzan of the Apes (1914 book), reveals deepseated racism in the popular imagination of early twentieth-century American culture. The fictional fantasies of lost races like that ruled by La of Opar (or Atlantis) are interwoven with the realities of racism, particularly toward Afro-Americans and black Africans. In analyzing popular culture, Stith Thompson's Motif-Index of Folk-Literature (1932) and John G. Cawelti's Adventure, Mystery, and Romance (1976) are utilized for their indexing and formula concepts. The groundwork for examining explanations of American culture which occur in Burroughs' science fantasies about Tarzan is provided by Ray R. Browne, publisher of The Journal of Popular Culture and The Journal of American Culture, and by Gene Wise, author of American Historical Explanations (1973). The lost race tradition and its relationship to racism in American popular fiction is explored through the inner earth motif popularized by John Cleves Symmes' Symzonla: A Voyage of Discovery (1820) and Edgar Allan Poe's The narrative of A. Gordon Pym (1838); Burroughs frequently uses the motif in his perennially popular romances of adventure which have made Tarzan of the Apes (Lord Greystoke) an ubiquitous feature of American culture.
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • Conference on Autonomous and Robotic Construction of Infrastructure June 2-3 Ames, IA Iowa State University of Science and Technology
    Conference on Autonomous and Robotic Construction of Infrastructure June 2-3 Ames, IA Iowa State University of Science and Technology Proceedings of the 2015 Conference on Autonomous and Robotic Construction of Infrastructure Edited by David J. White, Ahmad Alhasan, and Pavana Vennapusa About CEER Notice The mission of the Center for Earthworks Engineering 7KHFRQWHQWVRIWKLVUHSRUWUHÀHFWWKHYLHZVRIWKH Research (CEER) at Iowa State University is to be the authors, who are responsible for the facts and the nation’s premier institution for developing fundamental accuracy of the information presented herein. The knowledge of earth mechanics, and creating inno- RSLQLRQV¿QGLQJVDQGFRQFOXVLRQVH[SUHVVHGLQWKLV vative technologies, sensors, and systems to enable publication are those of the authors and not necessar- rapid, high quality, environmentally friendly, and eco- ily those of the sponsors. nomical construction of roadways, aviation runways, railroad embankments, dams, structural foundations, This document is disseminated under the sponsorship IRUWL¿FDWLRQVFRQVWUXFWHGIURPHDUWKPDWHULDOVDQG of the U.S. DOT UTC program in the interest of infor- related geotechnical applications. mation exchange. The U.S. Government assumes no liability for the use of the information contained in this About MTC document. This report does not constitute a standard, The Midwest Transportation Center (MTC) is a region- VSHFL¿FDWLRQRUUHJXODWLRQ al University Transportation Center (UTC) sponsored E\WKH86'HSDUWPHQWRI7UDQVSRUWDWLRQ2I¿FHRI The U.S. Government does not endorse products the Assistant Secretary for Research and Technology or manufacturers. If trademarks or manufacturers’ (USDOT/OST-R). The mission of the UTC program names appear in this report, it is only because they is to advance U.S. technology and expertise in the are considered essential to the objective of the docu- many disciplines comprising transportation through ment.
    [Show full text]
  • Arxiv:2012.11628V3 [Astro-Ph.EP] 26 Jan 2021
    manuscript submitted to JGR: Planets The Fundamental Connections Between the Solar System and Exoplanetary Science Stephen R. Kane1, Giada N. Arney2, Paul K. Byrne3, Paul A. Dalba1∗, Steven J. Desch4, Jonti Horner5, Noam R. Izenberg6, Kathleen E. Mandt6, Victoria S. Meadows7, Lynnae C. Quick8 1Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA 2Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 3Planetary Research Group, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA 4School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA 5Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD 4350, Australia 6Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 7Department of Astronomy, University of Washington, Seattle, WA 98195, USA 8Planetary Geology, Geophysics and Geochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Key Points: • Exoplanetary science is rapidly expanding towards characterization of atmospheres and interiors. • Planetary science has similarly undergone rapid expansion of understanding plan- etary processes and evolution. • Effective studies of exoplanets require models and in-situ data derived from plan- etary science observations and exploration. arXiv:2012.11628v4 [astro-ph.EP] 8 Aug 2021 ∗NSF Astronomy and Astrophysics Postdoctoral Fellow Corresponding author: Stephen R. Kane, [email protected] {1{ manuscript submitted to JGR: Planets Abstract Over the past several decades, thousands of planets have been discovered outside of our Solar System. These planets exhibit enormous diversity, and their large numbers provide a statistical opportunity to place our Solar System within the broader context of planetary structure, atmospheres, architectures, formation, and evolution.
    [Show full text]
  • Martian Subsurface Properties and Crater Formation Processes Inferred from Fresh Impact Crater Geometries
    Martian Subsurface Properties and Crater Formation Processes Inferred From Fresh Impact Crater Geometries The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Stewart, Sarah T., and Gregory J. Valiant. 2006. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Meteoritics and Planetary Sciences 41: 1509-1537. Published Version http://meteoritics.org/ Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4727301 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Meteoritics & Planetary Science 41, Nr 10, 1509–1537 (2006) Abstract available online at http://meteoritics.org Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries Sarah T. STEWART* and Gregory J. VALIANT Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA *Corresponding author. E-mail: [email protected] (Received 22 October 2005; revision accepted 30 June 2006) Abstract–The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements.
    [Show full text]