Viability Criteria and Status Assessment of Oregon Coastal Coho

Total Page:16

File Type:pdf, Size:1020Kb

Viability Criteria and Status Assessment of Oregon Coastal Coho Coho Assessment Part 2: Viability Criteria Final Report May 6, 2005 Oregon Coastal Coho Assessment Part 2: Viability Criteria and Status Assessment of Oregon Coastal Coho State of Oregon1 May 6, 2005 1 For reference purposes, primary authors are Mark Chilcote, Tom Nickelson and Kelly Moore, Oregon Department of Fish and Wildlife, Salem, Oregon. Coho Assessment Part 2: Viability Criteria Final Report May 6, 2005 Table of Contents I. INTRODUCTION.....................................................................................................................................................3 II. POPULATION AND ESU STRUCTURE ........................................................................................................3 III. POPULATION ATTRIBUTES OF FISH PERFORMANCE...................................................................6 IV. CONSIDERATIONS FOR CRITERIA DEVELOPMENT .......................................................................6 ESU STATUS AND FOCUS OF CRITERIA................................................................................................................... 6 CRITERIA DEVELOPMENT OBJECTIVES.................................................................................................................... 7 FISH PERFORMANCE BASED ...................................................................................................................................... 7 EFFECTS OF MARINE SURVIVAL ............................................................................................................................... 8 DENSITY DEPENDENT RECRUITMENT – RESILIENCE AT LOW SPAWNER ABUNDANCE .................................... 9 COHO UNDER STRESS – MARINE SURVIVAL CONDITIONS OF THE 1990S......................................................... 13 V. DESCRIPTION OF POPULATION SPAWNER ABUNDANCE DATA..............................................13 VI. MODELING POPULATION RECRUITMENT.........................................................................................14 BACKGROUND............................................................................................................................................................ 14 RECRUITMENT MODEL – DENSITY DEPENDENT POPULATION GROWTH RATE.............................................. 15 ALTERNATE RECRUITMENT MODEL – DENSITY INDEPENDENT GROWTH RATE............................................. 19 VII. POPULATION CRITERIA DESCRIPTION AND RATIONALE......................................................20 CRITERIA 1 – SPAWNER ABUNDANCE .................................................................................................................... 20 CRITERIA 2 – PRODUCTIVITY.................................................................................................................................. 22 CRITERION 3 – LONG-TERM PERSISTENCE ............................................................................................................ 26 CRITERION 4 – WITHIN POPULATION DISTRIBUTION........................................................................................... 29 CRITERION 5 – WITHIN POPULATION DIVERSITY................................................................................................. 36 SUMMARY OF POPULATION CRITERIA AND EVALUATION THRESHOLDS.......................................................... 40 VIII. INTEGRATION OF POPULATION CRITERIA FOR ESU EVALUATION...............................41 IX. APPLICATION OF CRITERIA - OREGON COASTAL COHO .........................................................42 POPULATION RESULTS.............................................................................................................................................. 42 X. ADDITIONAL CONSIDERATIONS..............................................................................................................44 KEY ASSUMPTIONS AND ANALYTICAL PROTOCOL FOR POPULATION CRITERIA............................................. 45 DATA QUALITY AND MEASUREMENT ERROR....................................................................................................... 47 ASSUMED FUTURE CONDITIONS AND IMPACT ON ASSESSMENT FINDINGS...................................................... 54 FUTURE DETECTION OF ADVERSE CHANGES IN ESU STATUS........................................................................... 58 XI. SYNTHESIS AND SUMMARY OF EVALUATION RESULTS ...........................................................59 XII. REFERENCES ....................................................................................................................................................62 APPENDIX 1 ................................................................................................................................................................68 APPENDIX 2 ................................................................................................................................................................69 2 Coho Assessment Part 2: Viability Criteria Final Report May 6, 2005 I. Introduction Populations of coho salmon (Oncorhynchus kisutch) that occur in coastal watersheds between Cape Blanco and the mouth of the Columbia River are being evaluated by NOAA Fisheries for listing under the federal Endangered Species Act (ESA). These populations are designated as a single Evolutionary Significant Unit (ESU) (Weitkamp et al. 1995). Oregon, in partnership with NOAA Fisheries, initiated a collaborative project to address the conservation of coastal coho. Assessing the status of coastal coho relative to viability criteria is a vital step in this process, and the focus of Part 2 of this report. Where possible and when available, technical products for the viability assessment were used from the Oregon Coastal Coho Technical Recovery Team (TRT), which is in the process of developing technical products for a recovery plan. Other technical products were developed internally by Oregon. There are five primary components of the viability analysis, which also serve as the primary organizational structure of this report: 1. Determination of the ESU, strata and population structure; 2. Description of attributes used to define viability and assess fish status; 3. Development of specific criteria for each attribute used to define population viability; 4. Development of specific criteria for strata and ESU viability based on roll-up of population criteria; and, 5. Assessment of current status of coastal coho relative to population, strata and ESU viability criteria based on the key attributes described in 2. II. Population and ESU Structure The conceptual foundation for the biological criteria drew heavily from conservation principles for salmon and steelhead presented by McElhany et al. (2000) in their publication entitled Viable Salmonid Populations (VSP). This approach is based on the idea that the overall conservation condition of an ESU can be stated in terms of the distribution and frequency of viable populations within the ESU. Essentially, the viability of individual populations becomes the basic unit of salmon conservation. Therefore, to initiate this type of assessment it is necessary to first breakup the ESU into individual populations. For this assessment, population definitions and associated geographical boundaries were the same as those developed by the Oregon Working Group of the Coastal Coho Technical Recovery Team (OTRT). The OTRT’s rationale for population boundary delineation is described by Lawson et al. (2004). However, the list of populations has been recently modified by the OTRT primarily to incorporate new information about the Umpqua basin. These recent modifications are included in the Oregon Plan assessment and are reflected in the list of populations provided in Table 1. 3 Coho Assessment Part 2: Viability Criteria Final Report May 6, 2005 Table 1. List of populations and associated strata for that constitute the Oregon coastal coho ESU. Functionally Potentially Geographic Independent Independent al Strata Populations Populations Dependent Populations North Coast Nehalem Necanicum Arch Cape Netarts Short Sand Nestucca Ecola Rover Spring Tillamook Neskowin Sand Watseco Mid-Coast Alsea Beaver Berry Cummins Johnson (Siletz) Siletz Salmon Big Depoe Bay Schoolhouse (Alsea) Siuslaw Big Devils Lake Spencer (Siuslaw) Yaquina Big Fogarty Tenmile (Yaquina) Creek Bob Moolack Thiel Cape Rock Vingie China Rocky Wade Coal Yachats Lakes Siltcoos Sutton Tahkenitch Tenmile Umpqua Lower Middle Umpqua Umpqua South Umpqua North Umpqua Mid-South Coquille Coos Johnson Coast (Coquille) Floras Threemile Sixes Twomile In the most recent iteration, the OTRT has identified 57 populations of Oregon coastal coho. Thirty-six of these populations are classified as dependent, meaning they likely have been too small to persist for long periods (i.e., 100 years) without substantial reproductive support provided by strays from larger and more stable adjacent populations (Lawson et al. 2004). As such, these dependent populations were not used for development of viable criteria and the population and ESU assessment. The remaining 21 populations are larger and, at least historically, were more likely to persist over the long-term. These larger populations are referred to as independent populations and their location within the ESU illustrated in Figure 1. However, within this classification a further distinction is made between a “functionally independent” population and a “potentially independent” population. A “functionally
Recommended publications
  • Ecoevoapps: Interactive Apps for Teaching Theoretical Models In
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449026; this version posted June 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Last rendered: 18 Jun 2021 2 Running head: EcoEvoApps 3 EcoEvoApps: Interactive Apps for Teaching Theoretical 4 Models in Ecology and Evolutionary Biology 5 Preprint for bioRxiv 6 Keywords: active learning, pedagogy, mathematical modeling, R package, shiny apps 7 Word count: 4959 words in the Main Body; 148 words in the Abstract 8 Supplementary materials: Supplemental PDF with 7 components (S1-S7) 1∗ 1∗ 2∗ 1 9 Authors: Rosa M. McGuire , Kenji T. Hayashi , Xinyi Yan , Madeline C. Cowen , Marcel C. 1 3 3,4 10 Vaz , Lauren L. Sullivan , Gaurav S. Kandlikar 1 11 Department of Ecology and Evolutionary Biology, University of California, Los Angeles 2 12 Department of Integrative Biology, University of Texas at Austin 3 13 Division of Biological Sciences, University of Missouri, Columbia 4 14 Division of Plant Sciences, University of Missouri, Columbia ∗ 15 These authors contributed equally to the writing of the manuscript, and author order was 16 decided with a random number generator. 17 Authors for correspondence: 18 Rosa M. McGuire: [email protected] 19 Kenji T. Hayashi: [email protected] 20 Xinyi Yan: [email protected] 21 Gaurav S. Kandlikar: [email protected] 22 Coauthor contact information: 23 Madeline C. Cowen: [email protected] 24 Marcel C.
    [Show full text]
  • Fisheries Managementmanagement
    ISSN 1020-5292 FAO TECHNICAL GUIDELINES FOR RESPONSIBLE FISHERIES 4 Suppl. 2 Add.1 FISHERIESFISHERIES MANAGEMENTMANAGEMENT These guidelines were produced as an addition to the FAO Technical Guidelines for 2. The ecosystem approach to fisheries Responsible Fisheries No. 4, Suppl. 2 entitled Fisheries management. The ecosystem approach to fisheries (EAF). Applying EAF in management requires the application of 2.1 Best practices in ecosystem modelling scientific methods and tools that go beyond the single-species approaches that have been the main sources of scientific advice. These guidelines have been developed to forfor informinginforming anan ecosystemecosystem approachapproach toto fisheriesfisheries assist users in the construction and application of ecosystem models for informing an EAF. It addresses all steps of the modelling process, encompassing scoping and specifying the model, implementation, evaluation and advice on how to present and use the outputs. The overall goal of the guidelines is to assist in ensuring that the best possible information and advice is generated from ecosystem models and used wisely in management. ISBN 978-92-5-105995-1 ISSN 1020-5292 9 7 8 9 2 5 1 0 5 9 9 5 1 TC/M/I0151E/1/05.08/1630 Cover illustration: Designed by Elda Longo. FAO TECHNICAL GUIDELINES FOR RESPONSIBLE FISHERIES 4 Suppl. 2 Add 1 FISHERIES MANAGEMENT 2.2. TheThe ecosystemecosystem approachapproach toto fisheriesfisheries 2.12.1 BestBest practicespractices inin ecosystemecosystem modellingmodelling forfor informinginforming anan ecosystemecosystem approachapproach toto fisheriesfisheries FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2008 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Life History Strategies, Population Regulation, and Implications for Fisheries Management1
    872 PERSPECTIVE / PERSPECTIVE Life history strategies, population regulation, and implications for fisheries management1 Kirk O. Winemiller Abstract: Life history theories attempt to explain the evolution of organism traits as adaptations to environmental vari- ation. A model involving three primary life history strategies (endpoints on a triangular surface) describes general pat- terns of variation more comprehensively than schemes that examine single traits or merely contrast fast versus slow life histories. It provides a general means to predict a priori the types of populations with high or low demographic resil- ience, production potential, and conformity to density-dependent regulation. Periodic (long-lived, high fecundity, high recruitment variation) and opportunistic (small, short-lived, high reproductive effort, high demographic resilience) strat- egies should conform poorly to models that assume density-dependent recruitment. Periodic-type species reveal greatest recruitment variation and compensatory reserve, but with poor conformity to stock–recruitment models. Equilibrium- type populations (low fecundity, large egg size, parental care) should conform better to assumptions of density- dependent recruitment, but have lower demographic resilience. The model’s predictions are explored relative to sustain- able harvest, endangered species conservation, supplemental stocking, and transferability of ecological indices. When detailed information is lacking, species ordination according to the triangular model provides qualitative
    [Show full text]
  • Optimal Control of a Fishery Utilizing Compensation and Critical Depensation Models
    Appl. Math. Inf. Sci. 14, No. 3, 467-479 (2020) 467 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.18576/amis/140314 Optimal Control of a Fishery Utilizing Compensation and Critical Depensation Models Mahmud Ibrahim Department of Mathematics, University of Cape Coast, Cape Coast, Ghana Received: 12 Dec. 2019, Revised: 2 Jan. 2020, Accepted: 15 Feb. 2020 Published online: 1 May 2020 Abstract: This study proposes optimal control problems with two different biological dynamics: a compensation model and a critical depensation model. The static equilibrium reference points of the models are defined and discussed. Also, bifurcation analyses on the models show the existence of transcritical and saddle-node bifurcations for the compensation and critical depensation models respectively. Pontyagin’s maximum principle is employed to determine the necessary conditions of the model. In addition, sufficiency conditions that guarantee the existence and uniqueness of the optimality system are defined. The characterization of the optimal control gives rise to both the boundary and interior solutions, with the former indicating that the resource should be harvested if and only if the value of the net revenue per unit harvest (due to the application of up to the maximum fishing effort) is at least the value of the shadow price of fish stock. Numerical simulations with empirical data on the sardinella are carried out to validate the theoretical results. Keywords: Optimal control, Compensation, Critical depensation, Bifurcation, Shadow price, Ghana sardinella fishery 1 Introduction harvesting of either species. The study showed that, with harvesting effort serving as a control, the system could be steered towards a desirable state, and so breaking its Fish stocks across the world are increasingly under cyclic behavior.
    [Show full text]
  • Depensation: Evidence, Models and Implications
    Paper 29 Disc FISH and FISHERIES, 2001, 2, 33±58 Depensation: evidence, models and implications Martin Liermann1 & Ray Hilborn2 1Quantitative Ecology and Resource Management, University of Washington, Seattle, WA 98115, USA; 2School of Fisheries Box 355020, University of Washington, Seattle, WA 98195, USA Abstract Correspondence: We review the evidence supporting depensation, describe models of two depensatory Martin Liermann, National Marine mechanisms and how they can be included in population dynamics models and Fisheries Service, discuss the implications of depensation. The evidence for depensation can be grouped North-west Fisheries into four mechanisms: reduced probability of fertilisation, impaired group dynamics, Science Center, 2725 Ahed conditioning of the environment and predator saturation. Examples of these Montlake Blvd. E., Bhed mechanisms come from a broad range of species including fishes, arthropods, birds, Seattle, WA 98112± Ched 2013, USA mammals and plants. Despite the large number of studies supporting depensatory Dhed Tel: +206 860 6781 mechanisms, there is very little evidence of depensation that is strong enough to be Fax: +206 860 3335 Ref marker important in a population's dynamics. However, because factors such as E-mail: martin. Fig marker demographic and environmental variability make depensatory population dynamics [email protected] Table marker difficult to detect, this lack of evidence should not be interpreted as evidence that Ref end depensatory dynamics are rare and unimportant. The majority of depensatory models Ref start Received 22 Sep 2000 are based on reduced probability of fertilisation and predator saturation. We review Accepted 29Nov 2000 the models of these mechanisms and different ways they can be incorporated in population dynamics models.
    [Show full text]
  • CHAPTER 5 Ecopath with Ecosim: Linking Fisheries and Ecology
    CHAPTER 5 Ecopath with Ecosim: linking fi sheries and ecology V. Christensen Fisheries Centre, University of British Columbia, Canada. 1 Why ecosystem modeling in fi sheries? Fifty years ago, fi sheries science emerged as a quantitative discipline with the publication of Ray Beverton and Sidney Holt’s [1] seminal volume On the Dynamics of Exploited Fish Populations. This book provided the foundation for how to manage fi sheries and was based on detailed, mathe- matical analyses of the dynamics of individual fi sh populations, of how they grow and how they are affected by fi shing. Fisheries science has developed and matured since then, and remarkably much of what has been achieved are modifi cations and further developments of what Beverton and Holt introduced. Given then that fi sheries science has developed to become one of the most data-rich, quantita- tive fi elds in ecology [2], how well has it fared? We often see fi sheries issues in the headlines and usually in a negative context and there are indeed many threats to the sustainability of ocean resources [3]. Many, judging not the least from newspaper headlines, consider fi sheries manage- ment a usual suspect in connection with fi sheries collapses. This may lead one to suspect that there is a problem with the science, but I hold this to be an erroneous conclusion. It should be stressed that the main problem is not to be found in the computational aspects of the science, but rather in how management advice actually is implemented in praxis [4]. The major force in fi sh- eries throughout the world is excessive fi shing capacity; the days with unexploited resources and untapped oceans are over [5], and the fi shing industry is now relying heavily on subsidies to keep the machinery going [6].
    [Show full text]
  • Fisheries Restoration Potential for a Large Lake Ecosystem: Using Ecosystem Models to Examine Dynamic Relationships Between Walleye, Cormorant, and Perch
    Copyright © 2015 by the author(s). Published here under license by the Resilience Alliance. McGregor, A. M., C. L. Davis, C. J. Walters, and L. Foote. 2015. Fisheries restoration potential for a large lake ecosystem: using ecosystem models to examine dynamic relationships between walleye, cormorant, and perch. Ecology and Society 20(2): 29. http://dx. doi.org/10.5751/ES-07350-200229 Research Fisheries restoration potential for a large lake ecosystem: using ecosystem models to examine dynamic relationships between walleye, cormorant, and perch Andrea M. McGregor 1,2, Christopher L. Davis 3, Carl J. Walters 4 and Lee Foote 1 ABSTRACT. Increased population sizes of Double-crested Cormorants (Phalacrocorax auritus) and small-bodied (<15 cm total length) yellow perch (Perca flavescens) have occurred at Lac la Biche, Alberta, Canada, since fisheries collapsed the walleye (Sander vitreus) population. A walleye restoration program was introduced in 2005, but uncertainty around the ecosystem’s response to management made it difficult to evaluate program success. This study used 40 variations of Ecopath with Ecosim models representing ecosystem conditions over 200 years to test the potential for multiple attractors, i.e., possible ecosytem states, in a large lake ecosystem. Results suggest that alternate stable states, defined by walleye-dominated and cormorant-dominated equilibriums, existed in historical models (1800, 1900), whereas contemporary models (1965, 2005) had a single cormorant-dominated attractor. Alternate stable states were triggered by smaller perturbations in 1900 than in 1800, and model responses were more intense in 1900, suggesting a decline in system resilience between model periods. Total prey biomass consumed by walleye was up to four times greater than the biomass consumed by cormorants in historical models, but dropped to 10% of cormorant consumption in 2005 models.
    [Show full text]
  • A Guide to Fisheries Stock Assessment from Data to Recommendations
    A Guide to Fisheries Stock Assessment From Data to Recommendations Andrew B. Cooper Department of Natural Resources University of New Hampshire Fish are born, they grow, they reproduce and they die – whether from natural causes or from fishing. That’s it. Modelers just use complicated (or not so complicated) math to iron out the details. A Guide to Fisheries Stock Assessment From Data to Recommendations Andrew B. Cooper Department of Natural Resources University of New Hampshire Edited and designed by Kirsten Weir This publication was supported by the National Sea Grant NH Sea Grant College Program College Program of the US Department of Commerce’s Kingman Farm, University of New Hampshire National Oceanic and Atmospheric Administration under Durham, NH 03824 NOAA grant #NA16RG1035. The views expressed herein do 603.749.1565 not necessarily reflect the views of any of those organizations. www.seagrant.unh.edu Acknowledgements Funding for this publication was provided by New Hampshire Sea Grant (NHSG) and the Northeast Consortium (NEC). Thanks go to Ann Bucklin, Brian Doyle and Jonathan Pennock of NHSG and to Troy Hartley of NEC for guidance, support and patience and to Kirsten Weir of NHSG for edit- ing, graphics and layout. Thanks for reviews, comments and suggestions go to Kenneth Beal, retired assistant director of state, federal & constituent programs, National Marine Fisheries Service; Steve Cadrin, director of the NOAA/UMass Cooperative Marine Education and Research Program; David Goethel, commercial fisherman, Hampton, NH; Vincenzo Russo, commercial fisherman, Gloucester, MA; Domenic Sanfilippo, commercial fisherman, Gloucester, MA; Andy Rosenberg, UNH professor of natural resources; Lorelei Stevens, associate editor of Commercial Fisheries News; and Steve Adams, Rollie Barnaby, Pingguo He, Ken LaValley and Mark Wiley, all of NHSG.
    [Show full text]
  • Stock and Recruitment: Generalizations About Maximum Reproductive Rate, Density Dependence, and Variability Using Meta-Analytic Approaches
    ICES Journal of Marine Science, 58: 937–951. 2001 doi:10.1006/jmsc.2001.1109, available online at http://www.idealibrary.com on Stock and recruitment: generalizations about maximum reproductive rate, density dependence, and variability using meta-analytic approaches Ransom A. Myers Myers, R. A. 2001. Stock and recruitment: generalizations about maximum reproduc- tive rate, density dependence, and variability using meta-analytic approaches. – ICES Journal of Marine Science, 58: 937-951. I describe the development and application of meta-analytic techniques to understand population dynamics. These methods have been applied to a compilation of over 700 populations of fish, which includes multivariate time-series of egg production, popu- lation size, natural mortality, and anthropogenic mortality. The key requirements of this approach are to make all units comparable and to make all model parameters random variables that describe the variation among populations. Parameters are then estimated using hierarchical Bayesian or classical mixed models. This approach allows patterns to be determined that are not detected otherwise. For example, the maximum annual reproductive rate is relatively constant for all species examined: between 1 and 7 replacement spawners are produced per spawner per year at low population size. Using these approaches, I also show a 20-fold variation in carrying capacity per unit area for cod, and a decrease in carrying capacity with temperature. Recruitment variability generally increases at low population sizes, for species with higher fecun- dity, for populations at the edge of their range, and in regions with less oceanographic stability. The spatial scale of recruitment correlations for marine species is approxi- mately 500 km, compared with less than 50 km for freshwater species; anadromous species fall between these two scales.
    [Show full text]
  • A Theoretical and Experimental Study of Allee Effects
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2003 A theoretical and experimental study of Allee effects Joanna Gascoigne College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Ecology and Evolutionary Biology Commons, Fresh Water Studies Commons, and the Oceanography Commons Recommended Citation Gascoigne, Joanna, "A theoretical and experimental study of Allee effects" (2003). Dissertations, Theses, and Masters Projects. Paper 1539616659. https://dx.doi.org/doi:10.25773/v5-qwvk-b742 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. A THEORETICAL AND EXPERIMENTAL STUDY OF ALLEE EFFECTS A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Joanna Gascoigne 2003 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Joanna/Gascoigne Approved August 2003 Romuald N. Lipcius"Ph.D. Committee Chairman/Advisor L Rogar Mann, Ph.D. Mark R. Patterson, Ph.D. 1 Shandelle M. Henson, Ph.D Andrews University Berrien Springs, MI Callum Roberts, Ph.D. University of York, UK Craig Dahlgren, Ph.D.
    [Show full text]
  • Depensatory Recruitment and the Collapse of Fisheries
    NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N7753 IWO SCR DOC.93/69 SCIENTIFIC COUNCIL MEETING - JUNE 1993 Depensatory Recruitment and the Collapse of Fisheries by Ransom A. Myers, Nicholas J. Barrowman and J. A. Hutchings Northwest Atlantic Fisheries Centre, Science Branch P. O. Box 5667, St. John's, Newfoundland, A1C 5X1, Canada Many of the world's fisheries resources are heavily exploited and a number of stocks have experienced severe declines in abundance'''. An important question remains whether reducing fishing mortality will enable a stock to recover. Theoretical studies show that depensatory models of population dynamics, where per capita reproductive success In terms of recruitment declines at low population levels, can have multiple equilibria''"" that permit sudden changes in population abundance to occur (e.g., the collapse of a fishery). If depensation exists, possibly the result of predator saturation or increased difficulty in obtaining mates', reduced fishing may be insufficient to elicit stock recovery. We analyzed data for 106 fish populations to test statistically for depensation in the relationships between spawning stock abundance and recruitment; only two showed significant depensation. Power analyses strengthened our conclusions that most exploited populations do no exhibit depensatory stock-recruitment dynamics and that stocks collapse because of environmental change or over-exploitation. We predict that the effects of overfishing are, in general, reversible. We fitted models with and without depensation, using maximum likelihood estimation, and compared their goodness of fit. The models used the Beverton-Holt stock and recruitment function". modified to include depensatory recruitment', given by as h R I +(S 51K) where R is recruitment of new fish to the population.
    [Show full text]
  • Mota Et Al 2004 Optimal Ecosystem Management with Structur…
    Optimal Ecosystem Management with Structural Dynamics Rui Pedro Mota1, Tiago Domingos, Environment and Energy Section, DEM, Instituto Superior Técnico Abstract We address the problem of optimal management of a self-organizing ecosystem along ecological succession. A dynamic carrying capacity is interpreted as depicting the dynamics of habitat creation and occupation along ecological succession. The ecosystem may have three growth modes: pure compensation (concave ecosystem regeneration function), depensation (convex-concave regeneration function) and critical depensation (additionally having negative growth rates for low biomass). We analyse the optimal policies for the management of the ecosystem for the three growth modes. Accordingly, we prove the existence of a Skiba points for certain types of ecosystems. Further, we compare usual golden rule paths with the derived optimal policies near the Skiba points. Keywords: Ecosystem management, habitat creation, optimal policies, Skiba point. JEL Classification: Q20, C61, C62 1. Introduction In this work we follow a theoretical approach in the context of ecosystem management to deal with the ecosystem dynamics along ecological succession. Ecosystem succession is the process of species change over time. It includes the development of complex systems from simple biotic and abiotic components. Effective manipulations of our environment to improve fertility, productivity or diversity and an ability to mitigate undesirable conditions all depend on our ability to understand ecological succession. In this paper we bring this subject into the realm of economic analysis. We take the perspective of ecosystem management. An ecosystem consists of so many interacting components that it is impossible ever to be able to separate and examine all these relationships (Kay and Schneider, 1994; Jorgensen, 1992).
    [Show full text]