Plant Propagation

Total Page:16

File Type:pdf, Size:1020Kb

Plant Propagation Chapter 3: Plant Propagation Plant Propagation Brief Description: • Aluminum foil Plant propagation is the process of creating new plants from a • Plastic wrap variety of sources: seeds, cuttings, bulbs and other plant parts. • Plant material: Many schoolyard shrubs can be used for here are several methods of plant propagation used in com- budding, grating and rooting cuttings. *Avoid oleander as mercial horticulture besides planting seeds. his lesson will these plants are VERY poisonous! introduce the industry skills of plant propagation, such as grat- Budding – hibiscus or shrub ing, budding, rooting cuttings, seed scariication, air layering Rooting cuttings – coleus, geraniums, crepe myrtle, and tissue culture. Students will also research on the internet woody ornamentals about several types of plant industries, and gain an appreciation Grating – tomato seedlings for how economically important they are. Scariication seeds – morning glory or birds of paradise Objective: Students will: Vocabulary: 1. Be introduced to the different methods of plant propaga- air layering, asexual propagation, budding, cloning, fungicide, tion. genetically modiied organism, grating, rooting cuttings, 2. Understand the importance of plant propagation in rootstock, scariication, scion, seeding, sterile, tissue culture agribusiness. and transplant 3. Explore plant propagation techniques through teacher demonstration and hands-on trials. Background: Vegetable plants, such as tomato and bell pepper, are oten Time: started in a greenhouse, where they are seeded in trays and Introduction: 30 to 60 minutes allowed to grow for four to six weeks. In Florida, one reason Activity 1: 60 to 90 minutes (depending on how much at- this is done is to get the harvested fruit to the market as early home time) as possible. Florida’s advantage is early season. It is not long STEMming Up Your Garden Lessons Garden Up Your STEMming Activity 2: One to two hours to demonstrate methods (One before other large vegetable producing states, such as Califor- hour to create a manual and multiple class periods depending nia and Texas, lood the market with their produce. his causes on how many propagation methods are attempted). prices to become lower for Florida farmers. Chapter 3: Chapter Materials: Some vegetables, notably tomatoes, are grated while young Will vary depending on propagation method used. transplants. his involves taking a Florida hearty root system • Budding tape of one tomato, and using it to grow a very tasty tomato fruit- • A lab hood with positive pressure for sterile technique ing plant, whose roots may not be suited for Florida’s soil (preferred for best tissue culture results) diseases. • A spray bottle of 70 percent alcohol to sterilize • A spray bottle of 10 percent bleach to sterilize Some vegetables, such as cucumber, are directly seeded. Cu- • Pruners cumber, in particular, is a very fast growing crop, and trans- • Budding knife planting does little to make the crop grow faster. Grains, such • Grating clips as corn and soybean, are also seeded. Soybean is oten a cover Florida Standards: SC.7.L.16.3, SC.7.L.16.4, SC.7.L.16.2, SC.8.N.4.2, SC.912.L.14.1, SC.912.L.14.10, SC.912.L.14.33, SC.912.L.14.7, SC.912.L.16.10, SC912.L.16.12, SC.912.L.17.16, LAFS.68.RST.1.3, LAFS.68.WHST.2.6, LAFS.68.WHST.3.7, LAFS.68.WHST.3.8, LAFS.68.WHST.4.10, LAFS.910.RST.1.3, LAFS.910. WHST.2.6, LAFS.910.WHST.3.7, LAFS.910.WHST.3.8, LAFS.910.WHST.4.10, LAFS.1112.RST.1.3, LAFS.1112.WHST.2.6, LAFS.1112.WHST.3.7, LAFS.1112. WHST.3.8, LAFS.1112.WHST.4.10 120 STEMming Up Gardening / www.faitc.org Chapter 3: Plant Propagation crop which can also be harvested. he legume nature of the tion and then seedling. his may be done to clone plants, or crop is good for ixing nitrogen in the soil as well as preventing may be done just to reproduce plants more rapidly. soil erosion. Lychee trees are predominantly air-layered. his method Most seeds will not germinate if the seed coat is scratched or produces genetically identical, great tasting fruit from the par- damaged. Entry of disease-causing bacteria or fungi may make ent plant. Air-layering is also used for shrubs that do not root the seed unviable. However, there are a few kinds of seeds, easily from cuttings. like Morning Glory, a lowering plant, that require seed coat scratching in order for water to enter the seed. his is called For more information on diferent propagation methods scariication. check out the following websites: https://ag.arizona.edu/ pubs/garden/mg/propagation/asexual.html, http://aggie- Citrus is budded using scion wood from trees that already horticulture.tamu.edu/ornamental/a-reference-guide-to- produce high quality fruit. his allows for genetically identical plant-care-handling-and-merchandising/propagating-foliage- fruit on the new tree as on the initial tree. Root stock is chosen lowering-plants/ based on disease resistance and strong adaption to Florida soils. 3: Chapter Budding also shortens time-until-fruit from eight to10 years Introduction: from a seeded tree to two to three years on a budded tree. 1. Show the PowerPoint (found at www.faitc.org/STEM- ming-Up), using embedded notes as a guide. Be sure to Orchids and hibiscus are cloned by tissue culture using a me- play the YouTube video links. Using Safesharetv.com will Lessons Garden Up Your STEMming dium of nutrients. Once a beautiful lower is bred or the plant remove all comments and screen pictures except for the is genetically modiied for a trait, tissue culture allows clones, desired video. (Instructions for this are on slide three of or genetically identical plants, to be produced from a few cells the PowerPoint.) of the initial plant on a large scale. Activity 1: Leaf and rooting cuttings is also a method of producing geneti- 1. Explain that presenting posters is an important way that cally identical plants by asexual propagation. his may be done scientists communicate their research at national and to avoid the lengthy process of pollination, fruit/seed produc- international conferences. Scientiic posters contain the steps of the scientiic procedure for an experiment, just like they may have seen at science fairs. 2. Although this assignment does not have an experiment, designing a poster will be a great exercise in scientific communication. 3. Divide students into groups and assign each group a method of plant propagation. If using the Worksheet Eval- uation: Propagation Industry Research, give each group a copy. There is an example poster at the end of the lesson that you can show students. Students should research on the internet examples of how plant propagation is used in industry. For example: • Grating roses • Budding citrus • Tissue culture of orchids • Rooting cuttings such as geranium, coleus, and woody ornamentals, such as crape myrtle. • Air layering of lychee, house plants or icus trees • Transplant vegetables (tomatoes) 4. As a group students will design a presentation on poster board using the information from Worksheet Evaluation: Propagation Industry Research provided. 5. Students present their poster to the class as a group. STEMming Up Gardening / www.faitc.org 121 Chapter 3: Plant Propagation Activity 2: Cornell University. Top Wedge Grating. Retrieved July 25, 1. Research all the diferent propagation techniques and 2015 from http://www.hort.cornell.edu/grating/methods. decide which one will be appropriate for your classroom alpha/TWGMeth.html [GRAFTING] setting and demonstrate each of them for the students or have students research the methods and design a demon- Crane, J.H., C. Balerdi, and I. Maguire. 2013. Lychee growing stration. in the Florida home landscape. Retrieved July 25, 2015 from 2. In groups students will create a step-by-step procedure https://edis.ifas.ul.edu/mg051 [AIR-LAYERING] manual for the propagation techniques demonstrated by the teacher. Example procedure manuals are Hagen, M. (2005). Rooting sotwood cuttings. Retrieved included at the end of the lesson. July 25, 2015 from https://extension.unh.edu/resources/iles/ 3. Groups will then switch manuals with another group and Resource000867_Rep913.pdf [ROOTING CUTTINGS] follow the step-by-step instructions and propagate a plant. 4. Make weekly observations of plant propagations to de- Lady Bird Johnson Wildlower Center. University of Texas termine plant growth and find out which method works Austin. (N.D.) Scariication FAQs. Retrieved July 25, best for the classroom environment. 2015 from https://www.wildlower.org/howto/show. php?id=34&frontpage=true [SCARIFICATION OF SEED] Alternative or Extensions: 1. Tissue culture is a diicult propagation method to at- McAvoy, G. and Ozores-Hampton, M. 2015. Commercial tempt in a classroom, especially if you do not have a way Transplant Production in Florida. Retrieved July 25, 2015 to create a sterile environment. You can have students from http://edis.ifas.ul.edu/cv104 [TRANSPLANT] get into groups and complete the Plant Tissue Culture (found at www.faitc.org/STEMming-Up) activity that Rivard, C., Louws, F. 2006. Grating for disease resistance in has information, step-by-step procedures and questions. Heirloom Tomatoes. Retrieved July 25, 2015 from http:// content.ces.ncsu.edu/grating-for-disease-resistance-in- Evaluation: heirloom-tomatoes.pdf [GRAFTING] 1. Grade group scientiic poster for neatness, completeness and teamwork on the use of each plant propagation tech- Santos, B. (2013) Seed Quality and Seed Technology. nique in industry. Retrieved July 25, 2015 from https://edis.ifas.ul.edu/cv103 2. Create a rubric for the procedure manual describing the [DIRECT SEEDING] STEMming Up Your Garden Lessons Garden Up Your STEMming steps of each technique, along with hand drawn pic- tures.
Recommended publications
  • Gillespie County Horticulture Newsletter
    Gillespie Horticulture Newsletter County Winter 2017/2018 Introduction Preview Recent Chill Hours Pg. 2 Yay, it’s cold! As much as I prefer warm- er weather, the cold weather has its uses too. Starting your own Pg. 3 Hopefully we will get enough cold weather to Transplants from give the peach trees enough chilling, and kill off all those cucumber beetles. Seed This newsletter will be a shorter one than normal, because the next one is scheduled Come join the Mas- Pg. 5 to come out in March. Read on to learn more ter Gardeners about the different methods for counting chill hours in peaches, how to start transplants for The Plantastic Veg- Pg. 6 your garden, program announcements and more! etable Gardening If you have any questions about any of Mini-Seminar the topics or programs in this newsletter, please email these to me at eliza- Pecan Show Results Pg. 7 [email protected] or call us at the extension office at 830-997-3452. Strange Tales of Pg. 8 One warning about calling our office. Our phone system is currently dropping calls Horticulture unexpectedly. If your call is dropped while be- ing transferred or while speaking to a staff Program An- Pg. 10 member, please call us back or we will call you nouncements back. We apologize for the issue and appreciate your patience. Garden Calendar Pg. 11 Name that Plant Pg. 12 Page 1 Winter 2017/2018 Gillespie County Horticulture Newsletter Recent Chill Hours If your peach trees didn’t produce fruit in 2017, it was proba- bly due to a lack of chilling.
    [Show full text]
  • How to Grow a Complete Diet with Permaculture Principles: Tropical Subsistence Gardening
    Plant Aloha Sustainable Farming Series Wade Bauer of Malama Aina Permaculture facilitating Thursday Feb 16, 2017 hawaiiansanctuary.com/plantaloha How to Grow a Complete Diet with Permaculture Principles: Tropical Subsistence Gardening. 24 class series, part 7 Plant Propagation & Home Nursery Maintenance: Learn how to grow all kinds of food plants from seed, cuttings, division, and more. Learn which trees are “true to seed” and which need grafting to produce. Acknowledgements: A special thanks to Hawaiian Sanctuary, County of Hawaii Research and Development and all others involved to make these classes a reality! We are still looking for support to complete and enhance this amazing FREE program. Please give what you can: hawaiiansanctuary.com/donate Introduction: Different plants require different methods of propagation. Propagation from Seed: Planting seeds: As a general rule for planting depth, plant seeds 2.5 times their width. Keep soil moist but not waterlogged. Potting soil has ideal drainage and moisture retention and is free from weed seeds and diseases. Direct seeding: Fast growing garden plants (often with larger seeds) are usually planted directly into their permanent location. For example, beans, pumpkin, radish, Seed in nursery: Plants that are slow growing in the begining may be easier to start in 3-4 in. pots in the nursery and then planted out when about 6 in. tall. Ex. kale, tomatoes, eggplant, peppers, or if fruit trees potted into bigger pots till they are 1 to 3 ft tall. Planting fruit trees from seed: Many varieties of tropical fruit trees seeds may die if allowed to dry out. Planting seeds as quickly as possible is a good rule of thumb.
    [Show full text]
  • Malama `Āina: a Conversation About Maui's Farming Future
    MALAMA `INA: A CONVERSATION ABOUT MAUI’S FARMING FUTURE A PROJECT OF THE MAUI TOMORROW FOUNDATION Looking towards Iao Valley Prepared for Maui Tomorrow Foundation, Inc. March 8, 2016 Report by Permaculture Design International LLC Copyright 2016 by Maui Tomorrow Foundation, Inc. rural lifestyle. Table of Contents FARM ENTERPRISE OPPORTUNITIES 28 INTRODUCTION 1 A Brief Overview of Maui’s “Central Valley” CONCLUSION 35 and Sugarcane 2 REGENERATIVE AGRICULTURE 3 APPENDICES 36 Climate Change and Regenerative Agriculture 5 Regenerative Agricultural Land Use Potential and Transition Strategy 6 Transition to Regenerative Agriculture 9 Mainframe Design 13 Methods to Reduce Overhead 13 Livestock and Holistic Management 14 16 Case Studies and Precedents 17 19 Biofuels 20 WATER AND SOIL 22 Water 22 Soil 24 Soil Building Strategies and Bioremediation 25 Cover illustration by Silvia Yordanova Copyright 2016 by Maui Tomorrow Foundation, Inc. INTRODUCTION - love and respect the land, make it yours and claim stewardship for it keep large tracts of contiguous farmland intact, and make farming more affordable. Maui’s - care for and nurture the land farming future is tied to this land. so it can give back all we need to sustain life for ourselves and our future generations people moving forward? For 150 years Maui -Puanani Rogers, Ho`okipa Network agriculture has been large-scale, mono-crop, chemical dependent, and export oriented. Beloved Maui is at a crossroads. The January Laguna Blanca, Argentina. Twelve years after transi- Can a new farming model bring both economic 2016 announcement by Alexander and Baldwin (A&B) that Hawaiian Commercial http://www.tompkinsconservation.org/farm_laguna_ & Sugar (HC&S) will be ending their 36,000 blanca.htm concerned about the loss of jobs for so many families, and want to see Maui’s agricultural wide open to a much-needed conversation legacy continue.
    [Show full text]
  • 2020 MEDIA KIT Currently in Production for Its 11Th Season with 13 Episodes Slated for September-2020 Launch
    2020 MEDIA KIT Currently in production for its 11th season with 13 episodes slated for September-2020 Launch. Growing a Greener World® (GGW) is an award-winning, a public television series, distributed by American Public Televisioin, airing on PBS stations across the country and on CREATE TV, focused on organic gardening, sustainability, and green living. Airing 52 weeks a year in 175 markets across the United States; the series features accessible and cutting-edge topics, compelling and expertly-told stories, and stunning visual imagery for its ever-growing network of broadcast and web communities. Joe Lamp’l (a.k.a. joe gardener), a recognized leader in organic gardening and authority within the sustainability movement, serves as host and executive producer of this inspiring journey. His vast expertise and engaging personality make him ideally suited to connect with audiences. Thanks to multiple TV series; websites, and podcasts, Joe has become a trusted go-to resource for millions in the fields of organic gardening, environmental and eco-friendly living, urban homesteading, farm-to-table growing, harvesting, and preserving the harvest. With nearly 200 episodes already in the archives, the Growing a Greener World® crew travels across the country, from its headquarters north of Atlanta to gardens and farms in nearly every state and beyond. The team captures remarkable stories of visionary people and unique places changing our world for the better, each in their own impactful way. While Growing a Greener World® appeals to traditional audiences with educational content and visually rich storytelling, there is also a noticeably fresh energy in each episode that deeply resonates with younger viewers.
    [Show full text]
  • Plant Propagation
    CHAPTER 7 Plant Propagation Sexual Propagation ..................................................................................................................................... 1 Seed ............................................................................................................................................................................1 Germination ................................................................................................................................................................2 Methods of Breaking Dormancy ..................................................................................................................................2 Starting Seeds ............................................................................................................................................................3 Seed Requirements ....................................................................................................................................................6 Transplanting and Handling ....................................................................................................................... 7 Propagation of Ferns by Spores .................................................................................................................................8 Asexual Propagation ................................................................................................................................... 9 Cuttings .......................................................................................................................................................................9
    [Show full text]
  • 37 Vegetatively Propagating Forest Trees
    Monteuuis O Vegetatively propagating forest trees Monteuuis O CIRAD-BIOS, UMR AGAP, TA A-108/03, Avenue Agropolis, 34398 Montpellier Cedex 5, France. [email protected] Abstract Propagation by seeds gives rise to individuals which are all genetically different from each other. By contrast, asexual or vegetative propagation consists in duplicating, theoretically unlimitedly, genotypes while preserving through mitotic divisions their original genetic make-up, and consequently all their individual characteristics. This is essential to ensure the transfer of economically important traits which are under non-additive control. Vegetative propagation can be applied to any individual that does not produce fertile seeds, either because it has not entered the mature reproductive stage yet, or due to unfavorable environmental conditions. Its usefulness is obvious for research as well as for operational activities, depending on the ultimate objectives and on the most suitable strategies to meet the goals. Conventional nursery techniques and in vitro culture can be used for vegetatively propagating forest tree species. The respective pros and cons of these various vegetative propagation methods, which can synergistically complement each other, are considered, mainly from an operational viewpoint. Species characteristics and cost effectiveness must be taken into account for applications while pondering the real advantages and limitations of vegetative versus seed- based propagation strategies in the general context of forest tree plantations. Keywords:axillary budding, clone, cuttings, grafting, in vitro culture, organogenesis, self-rooted plants, somatic embryogenesis. Foreword The 4th conference of the IUFRO working unit 2.09.02 has recently given us the opportunity to discuss the last advances of somatic embryogenesis (SE) and other vegetative propagation (VP) technologies applied to forest tree species.
    [Show full text]
  • Weed Control in Mist-Propagated Sitka Spruce (Picea Sitchensis (Bong.) Carr.) Cuttings by D.V Clay, F.L
    Weed control in mist-propagated Sitka spruce (Picea sitchensis (Bong.) Carr.) cuttings by D.V Clay, F.L. Dixon and I. Willoughby SUMMARY: When Sitka spruce is propagated in polytunnels, weed infestations can potentially interfere with the growth of cuttings and impact on general crop husbandry, as well as acting as a seed source to infest other parts of a nursery. Hand weeding can be carried out, but it is labour intensive. The use of herbicides might prove a cheaper option, but there are currently no products approved for Sitka spruce production in polytunnels in the UK. Hence in the work reported here, four weed species, hairy bitter-cress, annual meadow-grass, groundsel and common chickweed were grown in close proximity to Sitka spruce cuttings. The susceptibility of these species to the herbicides propyzamide, napropamide, simazine and propaquizafop (the latter on annual meadow-grass only) was assessed. Propyzamide controlled chickweed when applied pre- or post-weed–emergence, and annual meadow-grass when applied pre- and post-weed-emergence. Propaquizafop controlled annual meadow-grass when applied post-weed-emergence and prevented seeding when sprayed post-flushing. Napropamide and simazine were not effective in preventing seeding of any weed species. Although the herbicides generally did not appear to have any adverse effect on the growth of Sitka spruce cuttings, further work is needed to confirm herbicide selectivity, particularly regarding adventitious root formation. Competition from weeds did not appear to affect the early shoot growth of cuttings. Whilst these results indicate that propaquizafop, and possibly propyzamide, may have the potential for safely controlling some annual weed species, in the short term good nursery hygiene, coupled with hand weeding where necessary, remains a more practical approach than using herbicides within polyhouses.
    [Show full text]
  • Propagation Protocol for Production of Carex Mertensii Prescott Ex Bong
    Protocol Information USDA NRCS Corvallis Plant Materials Center 3415 NE Granger Ave Corvallis, Oregon 97330 (541)757-4812 Corvallis Plant Materials Center Corvallis, Oregon Family Scientific Name: Cyperaceae Family Common Name: Sedge Scientific Name: Carex mertensii Prescott ex Bong. Common Name: Merten's sedge Species Code: CAME6 Ecotype: Mount Rainier National Park, 4,200 to 4,400 ft elev. General Distribution: Pacific Northwest and northern California, north to Alaska, Idaho and Montana. In our collection, plants were found in open areas growing with Lupinus latifolius and other forbs along roadsides. Propagation Goal: Seeds Propagation Method: Seed Product Type: Propagules (seeds, cuttings, poles, etc.) Stock Type: Seed Time To Grow: 2 Years Target Specifications: Clean seed with no noxious weeds; seed weights averaged 1,565,500 seed / lb. Propagule Collection: Seeds hand-stripped from individual plants into cloth or paper sacks; or seed heads clipped with hand pruners where plants were more abundant. Propagule Processing: Dried seed heads very chaffy; if whole heads are collected, seed can be threshed using a geared-down hammermill with 1/16th screen; run through an oat dehuller one or more times; then through an office clipper (air screen machine) with #8 top screen, 1/20" round bottom screen, and medium air flow. Some workers at the PMC found that chaff was 1 irritating to skin and eyes: gloves, goggles, and dust masks were needed especially to clean larger quantities of seed. Pre-Planting Treatments: None - our lots showed 53 to 63% germination. Growing Area Preparation/ Fine, weed-free seed bed. Due to lack of available Annual Practices for Perennial Crops: herbicides to suppress weedy grasses, our best results were obtained by carbon-banding.
    [Show full text]
  • Plant Propagation - Seeds
    Module 5: Plant Propagation - Seeds LSU AgCenter Home Gardening Certificate Course Dr. Joe Willis, Dr. Paula Barton-Willis, Anna Timmerman & Chris Dunaway Gardening Notebook/Garden Journal 1. Soil Test Results 2. Amendments or fertilizers used, how much, when 3. Plant varieties planted and when 4. Seedlings started and when 5. Transplants planted and when Gardening Notebook/Garden Journal 6. Insects or diseases noted, when, control measures 7. Sprays (chemical or organic) used, when, how much, why 8. Unusual weather conditions 9. Production of vegetables, which ones you liked best 10. History Two Basic Methods of Plant Propagation Seeds (sexual) Vegetative (asexual) Sexual Reproduction in Plants Flowers contain the male and female flower parts either in the same flower (perfect) or in separate flowers (imperfect) Pollen (male) is moved from the anther to the stigma (female) Transfer of pollen can be by wind, by insects and animals, or by self-pollination Sexual Reproduction in Plants The pollen tube forms and the sperm cell moves down the tube to the egg (ovule) in the ovary. They join and the act of fertilization is complete. The plant develops (sets) seed The seed contains genes from the male and female flower parts They can both be from the same plant or from different plants Sexual Reproduction in Plants Sexual reproduction allows for crossbreeding or sharing of differing genetic material Sexual reproduction allows greater genetic diversity Many garden plants and trees/shrubs create seed that is The mustard or Brassica family creates seed that is easy to easy to save and collect collect Sexual Reproduction in Plants Seed Anatomy & Germination A Note on Seed Dormancy 1.
    [Show full text]
  • Organic Plant Breeding: a Key to Improved Vegetable Yield and Safe Food
    horticulturae Article Organic Plant Breeding: A Key to Improved Vegetable Yield and Safe Food Rodel Maghirang *, Maria Emblem Grulla, Gloria Rodulfo, Ivy Jane Madrid and Maria Cielo Paola Bartolome Institute of Plant Breeding, College of Agriculture, University of the Philippines Los Baños, Laguna 4031, Philippines; [email protected] (M.E.G.); [email protected] (G.R.); [email protected] (I.J.M.); [email protected] (M.C.P.B.) * Correspondence: [email protected] or [email protected]; Tel.: +63-49-576-0089; Fax: +63-49-543-9571 Academic Editors: Varit Srilaong, Mantana Buanong, Chalermchai Wongs-Aree, Sirichai Kanlayanarat and Douglas D. Archbold Received: 1 December 2015; Accepted: 18 February 2016; Published: 30 December 2016 Abstract: Most often, organic farming focuses on the improvement of management practices such as nutrient application and pest control, and very seldom deals with variety improvement or breeding. Because it has been dependent on commercially-available varieties developed under conventional high-input methods, traits are expressed resulting in low yields that are commonly attributed to organic farming practices rather than to the adaptability of the cultivar to the system. A research program in the Philippines involving several regions and institutions has pioneered in the evaluation and improvement of varieties through breeding under low-input organic conditions. After making several crosses, pedigree selection, replicated yield and on-farm trials, promising and potential varieties were developed and identified in squash, cucumber, lettuce and yardlong bean. The most promising yield advantages over the respective check varieties ranged up to 47% in squash, 31% in yardlong bean, 42% in lettuce, and 43% in cucumber.
    [Show full text]
  • (Vitis Vinifera L.) Cultivars from Shoot and Leaf Culture
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.6, No.23, 2016 Review on Invitro Regeneration of Some Selected Grapevines (Vitis vinifera L.) Cultivars from Shoot and Leaf Culture Fikadu Kumsa Department of Biology, College of Natural and Computational Science, Ambo University, Ethiopia Abstract Invitro regeneration is aseptic culture of cells, tissues, organs or whole plants under controlled nutritional and environmental conditions. Grapevine ( Vitis vinifera L.) is one of the most widely distributed fruit crops in the world. Conventional method of grapevine propagation is time consuming and allows disease transmission. A planted grape vine needs four to five years to be a propagation material by cutting, due to its long juvenility period. Therefore, the establishment of efficient in vitro regeneration is too much needed. The optimal levels of growth regulators and light conditions on callus induction and organogenesis of in-vitro cultured grapevine were assessed. Accordingly, maximum calluses and shoots were produced by using medium supplemented with different concentrations of growth regulators (BAP, IBA, TDZ and NAA) as alone or in combinations. For successful production of propagules, the occurrence and effect of in vitro shoot vetrification /hyperhydricity/were assessed. From the tested different concentrations of BAP and agar, the best mean numbers of vetrification free shoots were obtained at 0.5 mg/l BAP in 7.5g/l agar for both cheninblanc and canonannon cultivars.
    [Show full text]
  • Chapter 3: Propagation and Outplanting
    CHAPTER 3: PROPAGATION AND OUTPLANTING 3.1 INTRODUCTION Propagation and outplanting are necessary objectives toward the goal of achieving stable and sustainable populations for PTA’s listed species. The three areas of focus to meet these objectives have been genetic storage, germination and propagation tests, and rare plant reintroduction and augmentation. Genetic Storage: Seed collection protocols developed by the Center for Plant Conservation (CPC 1991) and the Mākua Implementation Team (US Army, Hawai`i 2002) were followed. These protocols include: 1.) collect from 50 individuals per population when possible; 2.) for populations with less than 50 individuals, collect from all individuals; 3.) collect approximately 20% of seed on existing plants unless there are less than 10 individuals remaining and the population is declining precipitously, in which case more seed may be collected in order to preserve genetic material. Germination and Propagation Tests: Germination and propagation tests were continued for Hedyotis coriacea, Neraudia ovata, Solanum incompletum, and Schiedea hawaiiensis. These tests complement work already completed and will work towards completing PTA propagation protocols for all listed species. Rare Plant Reintroduction and Augmentation: The introduction of rare plant populations to sites within and outside of PTA’s boundaries via outplanting was begun. The species and numbers outplanted were determined by general guidelines in the Scope of Work, site characteristics and greenhouse stock. Augmentation was most often implemented through site management such as fencing, weeding and rodent control. 3.2 GENETIC STORAGE INTRODUCTION Seeds provide a storehouse for genetic diversity. Propagule collection and protective storage are essential components of rare plant conservation. Two methods of germplasm preservation (seeds and standard plantings) are utilized by PTA’s Natural Resources Staff (NRS) for conserving listed species.
    [Show full text]