Native Plant: Propagation and Restoration Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Native Plant: Propagation and Restoration Strategies br 2, 200 rr.f.rt.dpntnt.ht hnl Cprtv, Orn Stt Unvrt Wtrn rtr nd Cnrvtn Atn .trnfrtr.r n . & bn pr r prvdd fr prntn b th thr, h r thrfr rpnbl fr th ntnt nd r. h f trd, fr, r rprtn n n th pbltn fr th nfrtn nd nvnn f th rdr nd d nt pl ndrnt b th rnztn f n prdt r rv. Knt Commo Gou a Cooesy i aie a esoaio e SOMS eae Souce isace a Seecios a a esoaio-Oiee eiiio o aie h . K ....................................................................................... 5 rptn Strt Geeic Cosieaios o Gassa esoaio i Oegos Wiamee aey rbr . Wln ................................................................................... I 3 eciques a Cosieaios o aie a See Coecio ll W. Mrn ................................................................................. 3 Some oceues o omacy eak a Gemiaio o iicu Sees Crl C n & rr M. n ......................................................... 9 o See oucio a Soe usey Stvn nr .......................................................................................... 35 Oouiies o Imoe Ecomycoia Cooiaio wii a usey Iocuaio ogam rndtt Cn ................................................................................... 40 oagaio Successes aiues a essos eae n lr .......................................................................................... 5 aie a a See oucio o ig Eeaioesoaio Gowig ig eeaio secies i a oe ais ese ph . Snn & Mr E. Mjr ..................................................... 55 Gowig a Maagig Sie Seciic as i e usey Ann hr Chndlr ............................................................................... 3 Cosieaios i e oagaio o ae as Srh hrd ........................................................................................ 9 e age Seeig Coce e is Se i Gowig o Oeig aie as h . nd .................................................................................. 71 oagaio ooco aaase o e aie a ewok . Ktn r & h . nd ................................................ 80 trtn Strt aie a Gae acices a ecommeaios nd . MMhn ................................................................................. 5 aesis i esoaio a Eucaio i Gacie aioa ak pp 91 ioogy Ecoogy a Maageme o Iasie as Cltn Ant ..................................................................................... 93 eciques Use o esoe uge aiie Commuiies a ae a aias Roberta Davenport ........................................................................................... 99 io-sucua" Eosio Coo Icooaig egeaio i Egi- eeig esigs o oec uge Sou Soeies Elliott Menashe .............................................................................................. 15 aie Sus as a Sueme o e Use o Wiows as ie Sakes a ascies i Wese Oego a Wese Wasigo Dale C Darns D'Lynn Williams ............................................................ 11 e Waese eegeaio ogam essos eae om age Scae aie a oagaio Toby Query ................................................................................................... 11 Geomoic Asecs o iaia Aea eegeaio a Eiomeay Sesiie Seamak Saiiaio Todd Moses ..................................................................................................... 126 iogaies .................................................................................................. 13 4 oagaio a aig o aie as o aia esoaio is a mui-acee ocess ee ae may issues oe wic ee is geea ageeme amog esoaioiss u ee ae a ume o suecs a cause isageeme o eame esoaioiss oe agee a aie as sou e emasie u isagee oe wee sees o asas sou come om I is ae I eam- ie ou aeas o cooesy e use sige o muie souces o a secies a a gie esoaio sie (e SOMS eae souce isace o a maeias e use o aie a seecios a e imoace o oes eiiio o "aie a" I cocue a some o ese issues may e esoe oug caeu e- seac wie oes wi emai a mae o esoa oiio a ca oy e e- soe oug a cea saeme a scoe o oecies o eac esoaio oec aie a oagaio esoaio a coseaio ae come aciiies a equie may ses a ecisios a ace may caeges O oe a ee is oa ageeme a eas amog esoaioiss oe e imoace o aie as a e eeis o aia esoaio u o e oe ee is wiesea u- ceaiy a isse aou ow o aciee ese esoaio goas Wa sou e ae a wee? ow sou a-maeias o esoaio e oaie? Wee sou ey come om? Wa is e oea goa? e oecie o is ae is o ieiy aeas o ageeme a isageeme o e ame eaes i Proceedings of the Conference: Native Plant Propagation and Restoration Strategies. Haase, D.L. and R. Rose, editors. Nursery Technology Cooperative and Western Forestry and Conservation Association. December t 2, 1 . Eugene, OR. Keynote aie a esoaio a us im- cesses a aiues We e o agee iae hb , a soi oo wes; oe ou aiiy o iscuss a co- a oious wees ae a imeime age ouaio sie (ow ig mus uc is wok om a osiio o mu- o esaisig aie as a co- a esoe ouaio e o miimie ua uesaig a oucie seig eagee secies May o oeiay aaous socasic o- iaog us aso ecogie a a esoaio cesses?; eagee secies (aoiig oec is o oe oce e iiia "ake" aia coseaio s ei- wok is comee — esoe ai- oucio; a cuiaio o a a may ee o e moioe a maeias (ow ca iee souces e gow a e same usey a si ee is ie isue a aie maiaie ieiiey y aoiae e cosiee seaae? as ae a aoiae coice o maageme iay e ecoomics o usig aies ae iceies a may aia esoaio oecs aie eow I aess a ew cooesies esoaioiss aocae aie secies egeaio oies aia o e suouig souces o aie a aie as emsees a a as may equie ewe esouces o mai- maeias o esoaio suc as iesiy o oe ogaisms om ai (eg ess wae eiie a sou sige o muie souces o wiie o eow-gou soi aceia mowig a o-aies a e a gie secies e ae a a gie a om commo o eagee se- commecia oagaio o aie esoaio sie? ow a sou a cies aie as eom auae as oes a ew make o see maeias e moe? Ae aie a ecosysem ucios suc as soi eo- gowes a useies seecios aoiae? A iay sio coo uie caue a u ee ae imoa isageemes wa is a aie secies? sae i iaia aeas a o wic i e ie o aie a esoaio imoe wae quaiy eay a Snl r ltpl r: th May o ese ca e esoe oug SOMS dbt commuiies aso oie som wa- eeimeaio a commuicaio e eeio a owse o age owee some ae ase o a ie- A coeious issue i coseaio wiie Sig wiowes i oess ece o esecie o goas a i wi ioogy oay is wee o o see eai uies eease io e soi e imoa o e eeome o souces sou e mie a a esoa- y ee ea ecay us oig ese ou ie o aicuae ese issues a io sie e SOMS eae o uies o-sie makig e oes isiguis ewee ecica a e Sige O Muie Souce is a a- moe oucie (isse 199 a- iosoica coces gume ewee ose wo aocae ie as oe ae uique associa- usig a maeias om a sige ios wi aie isecs oiig souce ouaio a ose wo a- isec aus wi oo om eca o (o oeae miig maeias a oe as we as o aae om om moe a oe souce oua- Amog e may cooesia oics ei eaes a oe issues io ace y esoaioiss ae issues suc ee ae aso seea asecs o e as age aia-ye (wa a is cooesy is as imoa o- esoaio ocess o wic mos commuiy sou e esaise?; ay as e 197s cooesy oe coseaioiss agee o eame i iasie wee coo (wa ec- wee o ae sige age o seea is imoa o se cea acieae iques sou we use eicies sma aue esees (e so cae esoaio goas Aso esoaioiss iocoo ages soi-scaig ie SOSS eae see iamo 1975 wi e mos eecie i we ocume soaiaio mowig?; aig ma- eog 197 a Simeo a a sae a ses o e esoaio eia ye a ecique (iec see- Aee 197 Geeic icies e- ocess a oow-u wi moio- ig s ou-aig o geeouse i o sies o e SOMS eae ig so a we ca ea om ou suc- sas; e imoace o myco- ae e coces o ieeig a 6 Knt oueeig eessio (see o 1 o oca maeias Acquiig sees may (El ld om see wese a eiew o ese suecs e muc easie a esoaio may saes i commo gaes o ee eeoe e ossie a moe sies a yeas o comae a gow a Keeig eey see souce sicy age scaes see oucio (Woo ey seaae a ee aowig miig o seece oe sai o is eeia gee ow mimics aia agmea- Keeig souces oca may make coss gass o is cosise ig-yie o io a ouaio isoaio acos ige u i imoes e cace a sees a age sie a eease i o a ea o geeic oems icu- e as wi e ocay aae wi gowes ue e ame "Sa o- ig ieeig eessio i e- a "ome-sie aaage" (Moao ow" squieai uce iesiy a euce eecie a Esa ; see o o a ouaio sie u aoe way i iscussio o oca aaaio a is seecio as seea eeicia may e ossie o e oo sic aou eeoe may icease esoaio suc- quaiies Is sueio aiiy o o- keeig gee oos seaae O e cess I aiio oca souces euce uce age amous o see makes i oe a miig souces o a e isk o oueeig eessio a goo coice o gowes wo ca maeias may ioe e comiaio om cosses ewee e esoe geeae age amous o ecoomica o as om wiey iee geo- ouaio a eigoig wi see o esoaio oecs Sa gaic egios a aias a ouaios Suc cosses ca aso oows aiiy o gow we i may cou ea o oueeig eessio esu i yiiaio a/o io- ai eiomes oeae ie a (o I a e oss o uique ge- gessio ewee ecoyes susecies successuy comee wi wese eic quaiies o iiiua oua- o secies wi suseque isks o wees suc as ceagass (r ios A aaage o usig muie oca ouaio ecie o eicio ttr, make i a goo coice i a- souces is a icease ikeioo a (yme a Simeo 199 eas wee wiies ae amage sage- a eas some o e a maeias Aeo e a 1 a iec us commuiies a aoe ia- sie as a i may imoe ai- wi e successu a a gie sie a eas o eagee secies (ei miig may e ecommee we e a 199 a o sma oes o wic age is o ey ee (Woo see souces ae eie om sma Sice cos saigs a ig aes o agmee ouaio lnt ltn esaisme a gow ae imo- Seecios o aie as ae oe a o e success o ay esoaio Sr dtn use o age-scae esoaio igoous seecios ae a aacie A eae cooesy is oe e is- oecs a seecios ae usuay coice o a maeias ace a maeias may e moe mae om a age gou o wi co- e agumes agais is aoac om souce o esoaio sie Oe ecios a ae sceee o esiae ae umeous owee Sice e use sie o is eae coes a a sie suia a ecuiy e e- o seecios oe eeses a og- maeias sou e oug oy om ease o gowes o commecia o- isace asocaio seecios may e coses mos ecoogicay a/o ucio o aways o we i a gie esoa- geeicay simia sie wie e oe o eame eseaces a e Agi- io sie eseciay i a sie ies agues o e ee moeme o a cuua eseac Seice ecey
Recommended publications
  • Gillespie County Horticulture Newsletter
    Gillespie Horticulture Newsletter County Winter 2017/2018 Introduction Preview Recent Chill Hours Pg. 2 Yay, it’s cold! As much as I prefer warm- er weather, the cold weather has its uses too. Starting your own Pg. 3 Hopefully we will get enough cold weather to Transplants from give the peach trees enough chilling, and kill off all those cucumber beetles. Seed This newsletter will be a shorter one than normal, because the next one is scheduled Come join the Mas- Pg. 5 to come out in March. Read on to learn more ter Gardeners about the different methods for counting chill hours in peaches, how to start transplants for The Plantastic Veg- Pg. 6 your garden, program announcements and more! etable Gardening If you have any questions about any of Mini-Seminar the topics or programs in this newsletter, please email these to me at eliza- Pecan Show Results Pg. 7 [email protected] or call us at the extension office at 830-997-3452. Strange Tales of Pg. 8 One warning about calling our office. Our phone system is currently dropping calls Horticulture unexpectedly. If your call is dropped while be- ing transferred or while speaking to a staff Program An- Pg. 10 member, please call us back or we will call you nouncements back. We apologize for the issue and appreciate your patience. Garden Calendar Pg. 11 Name that Plant Pg. 12 Page 1 Winter 2017/2018 Gillespie County Horticulture Newsletter Recent Chill Hours If your peach trees didn’t produce fruit in 2017, it was proba- bly due to a lack of chilling.
    [Show full text]
  • How to Grow a Complete Diet with Permaculture Principles: Tropical Subsistence Gardening
    Plant Aloha Sustainable Farming Series Wade Bauer of Malama Aina Permaculture facilitating Thursday Feb 16, 2017 hawaiiansanctuary.com/plantaloha How to Grow a Complete Diet with Permaculture Principles: Tropical Subsistence Gardening. 24 class series, part 7 Plant Propagation & Home Nursery Maintenance: Learn how to grow all kinds of food plants from seed, cuttings, division, and more. Learn which trees are “true to seed” and which need grafting to produce. Acknowledgements: A special thanks to Hawaiian Sanctuary, County of Hawaii Research and Development and all others involved to make these classes a reality! We are still looking for support to complete and enhance this amazing FREE program. Please give what you can: hawaiiansanctuary.com/donate Introduction: Different plants require different methods of propagation. Propagation from Seed: Planting seeds: As a general rule for planting depth, plant seeds 2.5 times their width. Keep soil moist but not waterlogged. Potting soil has ideal drainage and moisture retention and is free from weed seeds and diseases. Direct seeding: Fast growing garden plants (often with larger seeds) are usually planted directly into their permanent location. For example, beans, pumpkin, radish, Seed in nursery: Plants that are slow growing in the begining may be easier to start in 3-4 in. pots in the nursery and then planted out when about 6 in. tall. Ex. kale, tomatoes, eggplant, peppers, or if fruit trees potted into bigger pots till they are 1 to 3 ft tall. Planting fruit trees from seed: Many varieties of tropical fruit trees seeds may die if allowed to dry out. Planting seeds as quickly as possible is a good rule of thumb.
    [Show full text]
  • Malama `Āina: a Conversation About Maui's Farming Future
    MALAMA `INA: A CONVERSATION ABOUT MAUI’S FARMING FUTURE A PROJECT OF THE MAUI TOMORROW FOUNDATION Looking towards Iao Valley Prepared for Maui Tomorrow Foundation, Inc. March 8, 2016 Report by Permaculture Design International LLC Copyright 2016 by Maui Tomorrow Foundation, Inc. rural lifestyle. Table of Contents FARM ENTERPRISE OPPORTUNITIES 28 INTRODUCTION 1 A Brief Overview of Maui’s “Central Valley” CONCLUSION 35 and Sugarcane 2 REGENERATIVE AGRICULTURE 3 APPENDICES 36 Climate Change and Regenerative Agriculture 5 Regenerative Agricultural Land Use Potential and Transition Strategy 6 Transition to Regenerative Agriculture 9 Mainframe Design 13 Methods to Reduce Overhead 13 Livestock and Holistic Management 14 16 Case Studies and Precedents 17 19 Biofuels 20 WATER AND SOIL 22 Water 22 Soil 24 Soil Building Strategies and Bioremediation 25 Cover illustration by Silvia Yordanova Copyright 2016 by Maui Tomorrow Foundation, Inc. INTRODUCTION - love and respect the land, make it yours and claim stewardship for it keep large tracts of contiguous farmland intact, and make farming more affordable. Maui’s - care for and nurture the land farming future is tied to this land. so it can give back all we need to sustain life for ourselves and our future generations people moving forward? For 150 years Maui -Puanani Rogers, Ho`okipa Network agriculture has been large-scale, mono-crop, chemical dependent, and export oriented. Beloved Maui is at a crossroads. The January Laguna Blanca, Argentina. Twelve years after transi- Can a new farming model bring both economic 2016 announcement by Alexander and Baldwin (A&B) that Hawaiian Commercial http://www.tompkinsconservation.org/farm_laguna_ & Sugar (HC&S) will be ending their 36,000 blanca.htm concerned about the loss of jobs for so many families, and want to see Maui’s agricultural wide open to a much-needed conversation legacy continue.
    [Show full text]
  • 2020 MEDIA KIT Currently in Production for Its 11Th Season with 13 Episodes Slated for September-2020 Launch
    2020 MEDIA KIT Currently in production for its 11th season with 13 episodes slated for September-2020 Launch. Growing a Greener World® (GGW) is an award-winning, a public television series, distributed by American Public Televisioin, airing on PBS stations across the country and on CREATE TV, focused on organic gardening, sustainability, and green living. Airing 52 weeks a year in 175 markets across the United States; the series features accessible and cutting-edge topics, compelling and expertly-told stories, and stunning visual imagery for its ever-growing network of broadcast and web communities. Joe Lamp’l (a.k.a. joe gardener), a recognized leader in organic gardening and authority within the sustainability movement, serves as host and executive producer of this inspiring journey. His vast expertise and engaging personality make him ideally suited to connect with audiences. Thanks to multiple TV series; websites, and podcasts, Joe has become a trusted go-to resource for millions in the fields of organic gardening, environmental and eco-friendly living, urban homesteading, farm-to-table growing, harvesting, and preserving the harvest. With nearly 200 episodes already in the archives, the Growing a Greener World® crew travels across the country, from its headquarters north of Atlanta to gardens and farms in nearly every state and beyond. The team captures remarkable stories of visionary people and unique places changing our world for the better, each in their own impactful way. While Growing a Greener World® appeals to traditional audiences with educational content and visually rich storytelling, there is also a noticeably fresh energy in each episode that deeply resonates with younger viewers.
    [Show full text]
  • Plant Propagation
    CHAPTER 7 Plant Propagation Sexual Propagation ..................................................................................................................................... 1 Seed ............................................................................................................................................................................1 Germination ................................................................................................................................................................2 Methods of Breaking Dormancy ..................................................................................................................................2 Starting Seeds ............................................................................................................................................................3 Seed Requirements ....................................................................................................................................................6 Transplanting and Handling ....................................................................................................................... 7 Propagation of Ferns by Spores .................................................................................................................................8 Asexual Propagation ................................................................................................................................... 9 Cuttings .......................................................................................................................................................................9
    [Show full text]
  • 37 Vegetatively Propagating Forest Trees
    Monteuuis O Vegetatively propagating forest trees Monteuuis O CIRAD-BIOS, UMR AGAP, TA A-108/03, Avenue Agropolis, 34398 Montpellier Cedex 5, France. [email protected] Abstract Propagation by seeds gives rise to individuals which are all genetically different from each other. By contrast, asexual or vegetative propagation consists in duplicating, theoretically unlimitedly, genotypes while preserving through mitotic divisions their original genetic make-up, and consequently all their individual characteristics. This is essential to ensure the transfer of economically important traits which are under non-additive control. Vegetative propagation can be applied to any individual that does not produce fertile seeds, either because it has not entered the mature reproductive stage yet, or due to unfavorable environmental conditions. Its usefulness is obvious for research as well as for operational activities, depending on the ultimate objectives and on the most suitable strategies to meet the goals. Conventional nursery techniques and in vitro culture can be used for vegetatively propagating forest tree species. The respective pros and cons of these various vegetative propagation methods, which can synergistically complement each other, are considered, mainly from an operational viewpoint. Species characteristics and cost effectiveness must be taken into account for applications while pondering the real advantages and limitations of vegetative versus seed- based propagation strategies in the general context of forest tree plantations. Keywords:axillary budding, clone, cuttings, grafting, in vitro culture, organogenesis, self-rooted plants, somatic embryogenesis. Foreword The 4th conference of the IUFRO working unit 2.09.02 has recently given us the opportunity to discuss the last advances of somatic embryogenesis (SE) and other vegetative propagation (VP) technologies applied to forest tree species.
    [Show full text]
  • Weed Control in Mist-Propagated Sitka Spruce (Picea Sitchensis (Bong.) Carr.) Cuttings by D.V Clay, F.L
    Weed control in mist-propagated Sitka spruce (Picea sitchensis (Bong.) Carr.) cuttings by D.V Clay, F.L. Dixon and I. Willoughby SUMMARY: When Sitka spruce is propagated in polytunnels, weed infestations can potentially interfere with the growth of cuttings and impact on general crop husbandry, as well as acting as a seed source to infest other parts of a nursery. Hand weeding can be carried out, but it is labour intensive. The use of herbicides might prove a cheaper option, but there are currently no products approved for Sitka spruce production in polytunnels in the UK. Hence in the work reported here, four weed species, hairy bitter-cress, annual meadow-grass, groundsel and common chickweed were grown in close proximity to Sitka spruce cuttings. The susceptibility of these species to the herbicides propyzamide, napropamide, simazine and propaquizafop (the latter on annual meadow-grass only) was assessed. Propyzamide controlled chickweed when applied pre- or post-weed–emergence, and annual meadow-grass when applied pre- and post-weed-emergence. Propaquizafop controlled annual meadow-grass when applied post-weed-emergence and prevented seeding when sprayed post-flushing. Napropamide and simazine were not effective in preventing seeding of any weed species. Although the herbicides generally did not appear to have any adverse effect on the growth of Sitka spruce cuttings, further work is needed to confirm herbicide selectivity, particularly regarding adventitious root formation. Competition from weeds did not appear to affect the early shoot growth of cuttings. Whilst these results indicate that propaquizafop, and possibly propyzamide, may have the potential for safely controlling some annual weed species, in the short term good nursery hygiene, coupled with hand weeding where necessary, remains a more practical approach than using herbicides within polyhouses.
    [Show full text]
  • Propagation Protocol for Production of Carex Mertensii Prescott Ex Bong
    Protocol Information USDA NRCS Corvallis Plant Materials Center 3415 NE Granger Ave Corvallis, Oregon 97330 (541)757-4812 Corvallis Plant Materials Center Corvallis, Oregon Family Scientific Name: Cyperaceae Family Common Name: Sedge Scientific Name: Carex mertensii Prescott ex Bong. Common Name: Merten's sedge Species Code: CAME6 Ecotype: Mount Rainier National Park, 4,200 to 4,400 ft elev. General Distribution: Pacific Northwest and northern California, north to Alaska, Idaho and Montana. In our collection, plants were found in open areas growing with Lupinus latifolius and other forbs along roadsides. Propagation Goal: Seeds Propagation Method: Seed Product Type: Propagules (seeds, cuttings, poles, etc.) Stock Type: Seed Time To Grow: 2 Years Target Specifications: Clean seed with no noxious weeds; seed weights averaged 1,565,500 seed / lb. Propagule Collection: Seeds hand-stripped from individual plants into cloth or paper sacks; or seed heads clipped with hand pruners where plants were more abundant. Propagule Processing: Dried seed heads very chaffy; if whole heads are collected, seed can be threshed using a geared-down hammermill with 1/16th screen; run through an oat dehuller one or more times; then through an office clipper (air screen machine) with #8 top screen, 1/20" round bottom screen, and medium air flow. Some workers at the PMC found that chaff was 1 irritating to skin and eyes: gloves, goggles, and dust masks were needed especially to clean larger quantities of seed. Pre-Planting Treatments: None - our lots showed 53 to 63% germination. Growing Area Preparation/ Fine, weed-free seed bed. Due to lack of available Annual Practices for Perennial Crops: herbicides to suppress weedy grasses, our best results were obtained by carbon-banding.
    [Show full text]
  • Plant Propagation - Seeds
    Module 5: Plant Propagation - Seeds LSU AgCenter Home Gardening Certificate Course Dr. Joe Willis, Dr. Paula Barton-Willis, Anna Timmerman & Chris Dunaway Gardening Notebook/Garden Journal 1. Soil Test Results 2. Amendments or fertilizers used, how much, when 3. Plant varieties planted and when 4. Seedlings started and when 5. Transplants planted and when Gardening Notebook/Garden Journal 6. Insects or diseases noted, when, control measures 7. Sprays (chemical or organic) used, when, how much, why 8. Unusual weather conditions 9. Production of vegetables, which ones you liked best 10. History Two Basic Methods of Plant Propagation Seeds (sexual) Vegetative (asexual) Sexual Reproduction in Plants Flowers contain the male and female flower parts either in the same flower (perfect) or in separate flowers (imperfect) Pollen (male) is moved from the anther to the stigma (female) Transfer of pollen can be by wind, by insects and animals, or by self-pollination Sexual Reproduction in Plants The pollen tube forms and the sperm cell moves down the tube to the egg (ovule) in the ovary. They join and the act of fertilization is complete. The plant develops (sets) seed The seed contains genes from the male and female flower parts They can both be from the same plant or from different plants Sexual Reproduction in Plants Sexual reproduction allows for crossbreeding or sharing of differing genetic material Sexual reproduction allows greater genetic diversity Many garden plants and trees/shrubs create seed that is The mustard or Brassica family creates seed that is easy to easy to save and collect collect Sexual Reproduction in Plants Seed Anatomy & Germination A Note on Seed Dormancy 1.
    [Show full text]
  • Organic Plant Breeding: a Key to Improved Vegetable Yield and Safe Food
    horticulturae Article Organic Plant Breeding: A Key to Improved Vegetable Yield and Safe Food Rodel Maghirang *, Maria Emblem Grulla, Gloria Rodulfo, Ivy Jane Madrid and Maria Cielo Paola Bartolome Institute of Plant Breeding, College of Agriculture, University of the Philippines Los Baños, Laguna 4031, Philippines; [email protected] (M.E.G.); [email protected] (G.R.); [email protected] (I.J.M.); [email protected] (M.C.P.B.) * Correspondence: [email protected] or [email protected]; Tel.: +63-49-576-0089; Fax: +63-49-543-9571 Academic Editors: Varit Srilaong, Mantana Buanong, Chalermchai Wongs-Aree, Sirichai Kanlayanarat and Douglas D. Archbold Received: 1 December 2015; Accepted: 18 February 2016; Published: 30 December 2016 Abstract: Most often, organic farming focuses on the improvement of management practices such as nutrient application and pest control, and very seldom deals with variety improvement or breeding. Because it has been dependent on commercially-available varieties developed under conventional high-input methods, traits are expressed resulting in low yields that are commonly attributed to organic farming practices rather than to the adaptability of the cultivar to the system. A research program in the Philippines involving several regions and institutions has pioneered in the evaluation and improvement of varieties through breeding under low-input organic conditions. After making several crosses, pedigree selection, replicated yield and on-farm trials, promising and potential varieties were developed and identified in squash, cucumber, lettuce and yardlong bean. The most promising yield advantages over the respective check varieties ranged up to 47% in squash, 31% in yardlong bean, 42% in lettuce, and 43% in cucumber.
    [Show full text]
  • (Vitis Vinifera L.) Cultivars from Shoot and Leaf Culture
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.6, No.23, 2016 Review on Invitro Regeneration of Some Selected Grapevines (Vitis vinifera L.) Cultivars from Shoot and Leaf Culture Fikadu Kumsa Department of Biology, College of Natural and Computational Science, Ambo University, Ethiopia Abstract Invitro regeneration is aseptic culture of cells, tissues, organs or whole plants under controlled nutritional and environmental conditions. Grapevine ( Vitis vinifera L.) is one of the most widely distributed fruit crops in the world. Conventional method of grapevine propagation is time consuming and allows disease transmission. A planted grape vine needs four to five years to be a propagation material by cutting, due to its long juvenility period. Therefore, the establishment of efficient in vitro regeneration is too much needed. The optimal levels of growth regulators and light conditions on callus induction and organogenesis of in-vitro cultured grapevine were assessed. Accordingly, maximum calluses and shoots were produced by using medium supplemented with different concentrations of growth regulators (BAP, IBA, TDZ and NAA) as alone or in combinations. For successful production of propagules, the occurrence and effect of in vitro shoot vetrification /hyperhydricity/were assessed. From the tested different concentrations of BAP and agar, the best mean numbers of vetrification free shoots were obtained at 0.5 mg/l BAP in 7.5g/l agar for both cheninblanc and canonannon cultivars.
    [Show full text]
  • Chapter 3: Propagation and Outplanting
    CHAPTER 3: PROPAGATION AND OUTPLANTING 3.1 INTRODUCTION Propagation and outplanting are necessary objectives toward the goal of achieving stable and sustainable populations for PTA’s listed species. The three areas of focus to meet these objectives have been genetic storage, germination and propagation tests, and rare plant reintroduction and augmentation. Genetic Storage: Seed collection protocols developed by the Center for Plant Conservation (CPC 1991) and the Mākua Implementation Team (US Army, Hawai`i 2002) were followed. These protocols include: 1.) collect from 50 individuals per population when possible; 2.) for populations with less than 50 individuals, collect from all individuals; 3.) collect approximately 20% of seed on existing plants unless there are less than 10 individuals remaining and the population is declining precipitously, in which case more seed may be collected in order to preserve genetic material. Germination and Propagation Tests: Germination and propagation tests were continued for Hedyotis coriacea, Neraudia ovata, Solanum incompletum, and Schiedea hawaiiensis. These tests complement work already completed and will work towards completing PTA propagation protocols for all listed species. Rare Plant Reintroduction and Augmentation: The introduction of rare plant populations to sites within and outside of PTA’s boundaries via outplanting was begun. The species and numbers outplanted were determined by general guidelines in the Scope of Work, site characteristics and greenhouse stock. Augmentation was most often implemented through site management such as fencing, weeding and rodent control. 3.2 GENETIC STORAGE INTRODUCTION Seeds provide a storehouse for genetic diversity. Propagule collection and protective storage are essential components of rare plant conservation. Two methods of germplasm preservation (seeds and standard plantings) are utilized by PTA’s Natural Resources Staff (NRS) for conserving listed species.
    [Show full text]