1 2 3 4 5 Exosome Complex Orchestrates Developmental

Total Page:16

File Type:pdf, Size:1020Kb

1 2 3 4 5 Exosome Complex Orchestrates Developmental 1 2 3 4 5 6 Exosome Complex Orchestrates Developmental Signaling to Balance 7 Proliferation and Differentiation During Erythropoiesis 8 9 10 Skye C. McIver1, Koichi R Katsumura1, Elsa Davids1, Peng Liu2, Yoon-A Kang1, 11 David Yang3 and Emery H. Bresnick1 12 13 14 1Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, 15 Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 16 Madison, WI, 53705, USA; 2Department of Biostatistics and Medical Informatics, Carbone 17 Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, 18 WI, 53705, USA; 3Department of Pathology, University of Wisconsin School of Medicine 19 and Public Health, Madison, WI, 53705, USA 20 21 22 23 24 25 26 To whom correspondence should be addressed: Emery H. Bresnick, 1111 Highland Ave, 27 4009 WIMR, Madison, WI, 53705; email: [email protected]; TEL: 608-265-6446 28 SUMMARY 29 Since the highly conserved exosome complex mediates the degradation and 30 processing of multiple classes of RNAs, it almost certainly controls diverse biological 31 processes. How this post-transcriptional RNA-regulatory machine impacts cell fate 32 decisions and differentiation is poorly understood. Previously, we demonstrated that 33 exosome complex subunits confer an erythroid maturation barricade, and the erythroid 34 transcription factor GATA-1 dismantles the barricade by transcriptionally repressing the 35 cognate genes. While dissecting requirements for the maturation barricade in Mus 36 musculus, we discovered that the exosome complex is a vital determinant of a 37 developmental signaling transition that dictates proliferation and amplification versus 38 differentiation. Exosome complex integrity in erythroid precursor cells ensures Kit receptor 39 tyrosine kinase expression and stem cell factor/Kit signaling, while preventing 40 responsiveness to erythropoietin-instigated signals that promote differentiation. 41 Functioning as a gatekeeper of this developmental signaling transition, the exosome 42 complex controls the massive production of erythroid cells that ensures organismal 43 survival in homeostatic and stress contexts. 44 45 46 47 48 49 50 51 2 52 INTRODUCTION 53 The highly conserved exosome complex, an RNA-degrading and processing 54 machine, is expressed in all eukaryotic cells (Januszyk and Lima, 2014; Kilchert et al., 55 2016). The first subunit was discovered from an analysis of mechanisms controlling yeast 56 rRNA synthesis. Mutations of Exosc2 (Rrp4) disrupt 5.8S rRNA 3’-end processing (Mitchell 57 et al., 1996). Exosc2 assembles into a complex with components homologous to bacterial 58 3’ to 5’ exoribonuclease (PNPase) (Mitchell et al., 1997). Nine exosome complex subunits 59 form a cylindrical core consisting of the RNA binding subunits Exosc1 (Csl4), Exosc2 60 (Rrp4) and Exosc3 (Rrp40), which cap a ring formed by Exosc4 (Rrp41), Exosc5 (Rrp46), 61 Exosc6 (Mtr3), Exosc7 (Rrp42), Exosc8 (Rrp43) and Exosc9 (Rrp45) (Liu et al., 2006; 62 Makino et al., 2013; Makino et al., 2015; Wasmuth et al., 2014) (Figure 1A). Despite 63 homology with bacterial PNPases, the vertebrate core subunits lack RNA-degrading 64 activity (Liu et al., 2006). Whereas Dis3 (Rrp44) (nuclear) and Dis3L (cytoplasmic) catalytic 65 subunits bind the same position of the core complex, adjacent to Exosc4 and Exosc7, the 66 predominantly nuclear catalytic subunit Exosc10 (Rrp6) binds the opposite site 67 (Dziembowski et al., 2007; Makino et al., 2015) (Figure 1A). The catalytic subunits, which 68 may function redundantly in certain contexts, mediate RNA degradation and/or processing 69 (Kilchert et al., 2016). Unlike Dis3L and Exosc10, which are strictly exoribonucleases, Dis3 70 is also an endoribonuclease (Lebreton et al., 2008; Tomecki and Dziembowski, 2010). The 71 core subunits, except Exosc1, are considered to confer structural integrity (Liu et al., 2006). 72 The apparent diversity of exosome complex-regulated RNAs (Schneider et al., 73 2012) suggests the complex controls a plethora of cellular processes. Exosome complex 74 subunits regulate cell differentiation and are implicated in human pathologies. Exosc8, 75 Exosc9 and Dis3 suppress erythroid maturation of primary murine erythroid precursor cells 3 76 (McIver et al., 2014). EXOSC7, EXOSC9 and EXOSC10 maintain human epidermal 77 progenitor function (Mistry et al., 2012). In principle, the exosome complex might control 78 differentiation through complex RNA remodeling mechanisms or by targeting factors 79 mediating the balance between self-renewal and lineage commitment, 80 proliferation/amplification or terminal differentiation. DIS3 has been implicated as a tumor 81 suppressor mutated in multiple myeloma (Chapman et al., 2011) and is overexpressed in 82 colorectal cancer (de Groen et al., 2014). EXOSC8, EXOSC3 or EXOSC2 mutations cause 83 syndromes with complex phenotypes including neurological defects, cerebellar hypoplasia, 84 retinitis pigmentosum, progressive hearing loss and premature aging (Boczonadi et al., 85 2014; Di Donato et al., 2016; Wan et al., 2012). 86 As downregulating exosome complex subunits can yield compelling phenotypes, 87 and exosome complex subunit mutations yield pathologies, it is instructive to consider 88 whether the phenotypes reflect complex disruption or subunit-specific activities. By 89 conferring exosome complex integrity, all exosome complex activities might require 90 structural subunits, or sub-complexes might have distinct functions (Kiss and Andrulis, 91 2011). The structural subunit requirement for complex stability in vitro (Liu et al., 2006), 92 and lethality due to loss of structural components in yeast (Allmang et al., 1999a; Allmang 93 et al., 1999b) support the importance of the intact complex. However, core subunit 94 downregulation revealed little overlap in the ensembles of regulated RNAs in Drosophila 95 (Kiss and Andrulis, 2010) and differentially influenced RNA processing in humans 96 (Tomecki et al., 2010). Moreover, Arabidopsis Exosc1, Exosc2 and Exosc4 knockouts 97 yielded distinct phenotypes (Chekanova et al., 2007). 98 While investigating these models in the context of erythroid maturation, we 99 discovered that Exosc8 or Exosc9 downregulation disrupted protein/protein interactions 4 100 within the complex and greatly decreased expression of the receptor tyrosine kinase Kit. 101 Loss of Stem Cell Factor (SCF)-induced Kit signaling occurred concomitant with 102 precocious acquisition of erythropoietin signaling, which drives erythroid maturation. As Kit 103 stimulates erythroid precursor cell proliferation, our results establish a paradigm in which 104 the exosome complex regulates a receptor tyrosine kinase to orchestrate a vital 105 developmental signaling transition dictating proliferation/amplification versus differentiation. 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 5 124 RESULTS 125 Dismantling protein-protein interactions within the exosome complex 126 Previously, we demonstrated that downregulating exosome complex subunits 127 (Exosc8, Exosc9 or Dis3) in murine fetal liver erythroid precursor cells induced erythroid 128 maturation (McIver et al., 2014). Analogous to Exosc8 and Exosc9 (McIver et al., 2014), 129 experiments in which Exosc3 expression is impaired suggest that this protein also 130 suppresses maturation of primary murine fetal liver lineage-negative hematopoietic 131 precursor cells. In particular, Exosc3 downregulation using two distinct shRNAs increased 132 the R4 (late basophilic/orthochromatic erythroblasts) cell population 9 fold (p = 0.006 and p 133 = 0.01 for the two shRNAs, respectively) (Figure 1 - figure supplement 1). However, it 134 remains unclear whether the single subunit perturbations impact exosome complex 135 integrity. To address this, we developed a co-immunoprecipitation assay to test whether 136 individual components mediate complex integrity (Figure 1A). Using the X-ray crystal 137 structure of the exosome complex as a guide (Liu et al., 2006), the strategy involved 138 testing whether downregulating endogenous Exosc8 or Exosc9 alter interactions between 139 endogenous Exosc2 and Exosc3, subunits that do not interact directly in the complex 140 (Figure 1A). As Exosc2 and Exosc3 are only expected to co-immunoprecipitate when 141 residing in the complex or a sub-complex, the extent of co-immunoprecipitation constitutes 142 a metric of complex integrity. 143 We conducted the protein/protein interaction analysis in G1E cells stably expressing 144 a conditionally active GATA-1 allele (G1E-ER-GATA-1), which mimic a normal erythroid 145 precursor cell, the proerythroblast (Weiss et al., 1997). Estradiol activation of ER-GATA-1 146 induces an erythroid transcriptional program and recapitulates a physiological window of 147 erythroid maturation (Welch et al., 2004). G1E-ER-GATA-1 cells were infected with 6 148 retroviruses expressing control (luciferase) shRNA or shRNAs targeting Exosc8 or Exosc9. 149 Whole cell lysates prepared 48 hours post-infection were immunoprecipitated with anti- 150 Exosc3 or isotype-matched control antibody, and Western blotting was conducted with 151 anti-Exosc2 antibody. Whereas knocking down Exosc8 or Exosc9 by ~75% (Figure 1B) did 152 not alter Exosc2 levels in the input, the knockdowns reduced the amount of Exosc2 153 recovered with the anti-Exosc3 antibody (Figure 1C). Densitometric analysis indicated that 154 Exosc8 and Exosc9 knockdowns reduced the amount of Exosc2 co-immunoprecipitated 155
Recommended publications
  • Genotyping for Response to Physical Training
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2019 Genotyping for Response to Physical Training Stacy Simmons Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Molecular Biology Commons Repository Citation Simmons, Stacy, "Genotyping for Response to Physical Training" (2019). Browse all Theses and Dissertations. 2109. https://corescholar.libraries.wright.edu/etd_all/2109 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. GENOTYPING FOR RESPONSE TO PHYSICAL TRAINING A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By STACY SIMMONS B.S., Wright State University, 2014 _________________________________________________________ 2019 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL July 29, 2019 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Stacy Simmons ENTITLED Genotyping for Response to Physical Training BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. ___________________________________ Michael Markey, Ph.D. Thesis Director ____________________________________ Madhavi P. Kadakia, Ph.D. Committee on Chair, Department of Biochemistry Final Examination and
    [Show full text]
  • Katalog 2015 Cover Paul Lin *Hinweis Förderung.Indd
    Product List 2015 WE LIVE SERVICE Certificates quartett owns two productions sites that are certified according to EN ISO 9001:2008 Quality management systems - Requirements EN ISO 13485:2012 + AC:2012 Medical devices - Quality management systems - Requirements for regulatory purposes GMP Conformity Our quality management guarantees products of highest quality! 2 Foreword to the quartett product list 2015 quartett Immunodiagnostika, Biotechnologie + Kosmetik Vertriebs GmbH welcomes you as one of our new business partners as well as all of our previous loyal clients. You are now member of quartett´s worldwide customers. First of all we would like to introduce ourselves to you. Founded as a family-run company in 1986, quartett ensures for more than a quarter of a century consistent quality of products. Service and support of our valued customers are our daily businesses. And we will continue! In the end 80´s quartett offered radioimmunoassay and enzyme immunoassay kits from different manufacturers in the USA. In the beginning 90´s the company changed its strategy from offering products for routine diagnostic to the increasing field of research and development. Setting up a production plant in 1997 and a second one in 2011 supported this decision. The company specialized its product profile in the field of manufacturing synthetic peptides for antibody production, peptides such as protease inhibitors, biochemical reagents and products for histology, cytology and immunohistology. All products are exclusively manufactured in Germany without outsourcing any production step. Nowadays, we expand into all other diagnostic and research fields and supply our customers in universities, government institutes, pharmaceutical and biotechnological companies, hospitals, and private doctor offices.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Role of DIS3L2 in the Degradation of the Uridylated RNA Species in Humans
    MASARYK UNIVERSITY Faculty of Science National Center for Biomedical Research Dmytro Ustianenko The role of DIS3L2 in the degradation of the uridylated RNA species in humans Ph.D. THESIS SUPERVISOR doc. Mgr. ŠTĚPÁNKA VAŇÁČOVÁ, Ph.D. BRNO, 2014 _______________________________ Cover: A schematic representation of the RNA degradation process which oc- curs in the cytoplasm. Copyright © 2014 Dmytro Ustianenko, Masaryk University, All rights reserved. _______________________________ Copyright © Dmytro Ustianenko, Masaryk University Bibliographic entry Author: Mgr. Dmytro Ustianenko Faculty of Science, Masaryk University National Centre for Biomolecular Research Central European Institute of Technology Title of Dissertation: The role of DIS3L2 in the degradation of the uridylat- ed RNA species in humans. Degree Programme: Biochemistry Field of Study: Biomolecular chemistry Supervisor: Doc. Mgr. Štěpánka Vaňáčová, Ph.D. Academic Year: 2014 Number of Pages: 131 Keywords: RNA degradation, DIS3L2, uridylation, humans, miRNA, let-7 Bibliografický záznam Autor: Mgr. Dmytro Ustianenko Přírodovědecká fakulta, Masarykova univerzita Národní centrum pro výzkum biomolekul Středoevropský technologický institut Název práce: The role of DIS3L2 in the degradation of the uridylat- ed RNA species in humans. Studijní program: Biochemie Studijní obor: Biomolekulární chemie Školitel: doc. Mgr. Štěpánka Vaňáčová, Ph.D. Akademický rok: 2014 Počet stran: 131 Klíčová slova: RNA degradace, DIS3L2, uridylace, mikro RNA, let-7 Acknowledgements I would like to thank to all the people who have contributed to this work. Foremost I would like to thank my supervisor Stepanka Vanacova for her enthusiasm, support and patience though all of my studies. I would like to acknowledge the members of the RNA processing and degradation group for their support and help in achieving this goal.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Evidence for in Vivo Modulation of Chloroplast RNA Stability by 3؅-UTR Homopolymeric Tails in Chlamydomonas Reinhardtii
    Evidence for in vivo modulation of chloroplast RNA stability by 3؅-UTR homopolymeric tails in Chlamydomonas reinhardtii Yutaka Komine*, Elise Kikis*, Gadi Schuster†, and David Stern*‡ *Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853; and †Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel Edited by Lawrence Bogorad, Harvard University, Cambridge, MA, and approved January 8, 2002 (received for review June 27, 2001) Polyadenylation of synthetic RNAs stimulates rapid degradation in synthesizes and degrades poly(A) tails (13). E. coli, by contrast, vitro by using either Chlamydomonas or spinach chloroplast extracts. encodes a poly(A) polymerase. These differences may reflect the Here, we used Chlamydomonas chloroplast transformation to test the evolution of the chloroplast to a compartment whose gene effects of mRNA homopolymer tails in vivo, with either the endog- regulation is controlled by the nucleus. enous atpB gene or a version of green fluorescent protein developed Unlike eukaryotic poly(A) tails, the roles of 3Ј-UTR tails in for chloroplast expression as reporters. Strains were created in which, prokaryotic gene expression are largely unexplored, although after transcription of atpB or gfp, RNase P cleavage occurred upstream they are widely distributed in microorganisms including cya- Glu of an ectopic tRNA moiety, thereby exposing A28,U25A3,[A؉U]26, nobacteria (14). Polyadenylated mRNAs have also been found in or A3 tails. Analysis of these strains showed that, as expected, both plant (15, 16) and animal mitochondria (17). The functions polyadenylated transcripts failed to accumulate, with RNA being of these tails have mostly been tested in vitro, which has undetectable either by filter hybridization or reverse transcriptase– highlighted RNA degradation but not interactions with other PCR.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • A Short Splicing Isoform of HBS1L Links the Cytoplasmic Exosome and SKI Complexes in Humans Katarzyna Kalisiak1,2, Tomasz M
    Nucleic Acids Research Advance Access published September 26, 2016 Nucleic Acids Research, 2016 1 doi: 10.1093/nar/gkw862 A short splicing isoform of HBS1L links the cytoplasmic exosome and SKI complexes in humans Katarzyna Kalisiak1,2, Tomasz M. Kulinski´ 1,2,Rafa-l Tomecki1,2, Dominik Cysewski1,2, Zbigniew Pietras1,2,3, Aleksander Chlebowski1,2, Katarzyna Kowalska1,2 and Andrzej Dziembowski1,2,* 1Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland, 2Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland and 3International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109 Warsaw, Poland Received April 18, 2016; Revised August 25, 2016; Accepted September 20, 2016 Downloaded from ABSTRACT INTRODUCTION The exosome complex is a major eukaryotic exori- Messenger RNA (mRNA) molecules exist largely to pro- duce proteins. Since steady-state mRNA levels are deter- bonuclease that requires the SKI complex for its http://nar.oxfordjournals.org/ activity in the cytoplasm. In yeast, the Ski7 protein mined by the rates of synthesis and decay, cytoplasmic links both complexes, whereas a functional equiva- degradation of mRNA plays a fundamental role in the reg- lent of the Ski7 has remained unknown in the human ulation of gene expression. Multiple enzymes, particularly nucleases, participate in genome. eukaryotic mRNA decay. Nucleases involved in 3 -5 cyto- Proteomic analysis revealed that a previously plasmic mRNA degradation pathways can act individually uncharacterized short splicing isoform of HBS1L (e.g. the DIS3L2 protein) (1,2), or be constituents of mul- (HBS1LV3) is the long-sought factor linking the tisubunit complexes.
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]
  • Exosome-Mediated Recognition and Degradation of Mrnas Lacking A
    R EPORTS wild-type PGK1 mRNA was synthesized with a poly(A) tail of approximately 70 residues and Exosome-Mediated Recognition was subsequently deadenylated slowly (Fig. 2A) (12). In contrast, nonstop-PGK1 transcripts dis- and Degradation of mRNAs appeared rapidly without any detectable dead- enylation intermediates (Fig. 2B). In addition, in Lacking a Termination Codon a ski7⌬ strain, the nonstop mRNA persisted as a fully polyadenylated species for 8 to 10 min Ambro van Hoof,1,2* Pamela A. Frischmeyer,1,3 Harry C. Dietz,1,3 before disappearing (Fig. 2C). These data indi- Roy Parker1,2* cate that exosome function is required for rapid degradation of both the poly(A) tail and the One role of messenger RNA (mRNA) degradation is to maintain the fidelity of body of the mRNA. Based on these observa- gene expression by degrading aberrant transcripts. Recent results show that tions, we suggest that nonstop mRNAs are rap- mRNAs without translation termination codons are unstable in eukaryotic cells. idly degraded in a 3Ј-to-5Ј direction by the We used yeast mutants to demonstrate that these “nonstop” mRNAs are exosome, beginning at the 3Ј end of the poly(A) degraded by the exosome in a 3Ј-to-5Ј direction. The degradation of nonstop tail (13). transcripts requires the exosome-associated protein Ski7p. Ski7p is closely Two observations suggest a mechanism by related to the translation elongation factor EF1A and the translation termi- which nonstop mRNAs are specifically recog- nation factor eRF3. This suggests that the recognition of nonstop mRNAs nized and targeted for destruction by the exo- involves the binding of Ski7p to an empty aminoacyl-(RNA-binding) site (A site) some.
    [Show full text]