RNA Surveillance by the Nuclear RNA Exosome: Mechanisms and Significance

Total Page:16

File Type:pdf, Size:1020Kb

RNA Surveillance by the Nuclear RNA Exosome: Mechanisms and Significance non-coding RNA Review RNA Surveillance by the Nuclear RNA Exosome: Mechanisms and Significance Koichi Ogami 1,* ID , Yaqiong Chen 2 and James L. Manley 2 1 Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan 2 Department of Biological Sciences, Columbia University, New York, NY 10027, USA; [email protected] (Y.C.); [email protected] (J.L.M.) * Correspondence: [email protected]; Tel.: +81-52-836-3665 Received: 8 February 2018; Accepted: 8 March 2018; Published: 11 March 2018 Abstract: The nuclear RNA exosome is an essential and versatile machinery that regulates maturation and degradation of a huge plethora of RNA species. The past two decades have witnessed remarkable progress in understanding the whole picture of its RNA substrates and the structural basis of its functions. In addition to the exosome itself, recent studies focusing on associated co-factors have been elucidating how the exosome is directed towards specific substrates. Moreover, it has been gradually realized that loss-of-function of exosome subunits affect multiple biological processes, such as the DNA damage response, R-loop resolution, maintenance of genome integrity, RNA export, translation, and cell differentiation. In this review, we summarize the current knowledge of the mechanisms of nuclear exosome-mediated RNA metabolism and discuss their physiological significance. Keywords: exosome; RNA surveillance; RNA processing; RNA degradation 1. Introduction Regulation of RNA maturation and degradation is a crucial step in gene expression. The nuclear RNA exosome has a central role in monitoring nearly every type of transcript produced by RNA polymerase I, II, and III (Pol I, II, and III). The exosome guarantees fidelity of the mature 30 ends of certain stable RNA species, such as ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), telomeric RNAs, small nuclear and nucleolar RNAs (snRNAs and snoRNAs), not only by catalyzing 30 end trimming, but also by degrading transcripts containing an incomplete 30 end [1–3]. Besides, processing of messenger RNA precursors (pre-mRNAs), such as by splicing and 30 end formation, is also under the surveillance of the exosome (Figure1)[4–13]. Intriguingly, recent advances in RNA sequencing techniques have enabled detection of novel Pol II transcripts (Figure1), which are expressed at extremely low levels because of rapid RNA turnover by the exosome. A large fraction of these RNAs can be categorized as long non-coding RNA (lncRNA). The most well-known lncRNA substrates for the exosome are cryptic unstable transcripts (CUTs) in yeast [14–16], and their human counterparts, promoter upstream transcripts (PROMPTs) or upstream antisense RNAs (uaRNAs) [17,18], which arise due to antisense transcription from divergent gene promoters. The exosome removes sense non-coding transcripts, such as prematurely terminated RNAs (ptRNAs) [19], which are prematurely terminated and polyadenylated at a poly(A) signal (PAS) typically located in an intron of a protein-coding gene [20], and transcription start site (TSS)-associated RNAs (tssRNAs), which are infrequent short non-coding RNAs (ncRNA) (20–65 nt) generated as a result of promoter-proximal termination of sense transcription [21]. Transcriptional enhancers are also transcribed bi-directionally, and produce a class of lncRNA called enhancer RNAs (eRNAs). It was reported that exosome-sensitive eRNAs emerge from virtually all active enhancer regions, determined Non-coding RNA 2018, 4, 8; doi:10.3390/ncrna4010008 www.mdpi.com/journal/ncrna Non-coding RNA 2018, 4, 8 2 of 21 Non-Coding RNA 2018, 4, 8 2 of 20 by comprehensiveclass of lncRNA cap called analysis enhancer of gene RNAs expression (eRNAs). (CAGE) It was analysesreported that [22]. exosome Furthermore,-sensitive long eRNAs intergenic RNAsemerge (lincRNAs) from virtually are also all exosome active enhancer targets [ 23regions,], although determined they are by generallycomprehensive more cap stable analysis than uaRNAof and eRNAgene expression [24]. (CAGE) analyses [22]. Furthermore, long intergenic RNAs (lincRNAs) are also Strikingly,exosome targets recent [23], studies although have they been are graduallygenerally more revealing stable thatthan theuaRNA exosome and eRNA is involved [24]. in multiple importantStrikingly, biological recent processes. studies Those have includebeen gradually the DNA revealing damage that response the exosome (DDR), is R-loop involved resolution, in maintenancemultiple important of genome biological integrity, processes. RNA export, Those inclu translation,de the DNA and damage cell differentiation. response (DDR), In R this-loop work, we reviewresolution, and updatemaintenance our current of genome understanding integrity, RNA regarding export, structuraltranslation,insights and cell intodifferentiation. RNA degradation In this work, we review and update our current understanding regarding structural insights into RNA by the exosome and its associated co-factors. We also summarize how abrogation of the functions of degradation by the exosome and its associated co-factors. We also summarize how abrogation of the the exosome impacts cellular processes in mammals. functions of the exosome impacts cellular processes in mammals. Figure 1. Schematic depiction of Polymerase II transcripts generated from enhancers and gene Figure 1. Schematic depiction of Polymerase II transcripts generated from enhancers and gene promoters. Both enhancers and promoters are transcribed bi-directionally and produce various types promoters.of transcripts Both enhancers, including andmessenger promoters RNA are precursors transcribed (pre- bi-directionallymRNA), transcription and produce start site various-associated types of transcripts,RNA (tssRNA), including prematurely messenger RNAterminated precursors RNA (pre-mRNA),(ptRNA), upstream transcription antisense start RNA site-associated (uaRNA) or RNA (tssRNA),promoter prematurely upstream transcript terminated (PROMPT), RNA (ptRNA), and enhancer upstream RNA antisense(eRNA). The RNA exosome (uaRNA) functions or promoter in upstreamnuclear transcript RNA surveillance (PROMPT), to degrade and enhancer these RNAs RNA, as (eRNA).well as misprocessed The exosome messenger functions RNA in nuclear(mRNA) RNA surveillanceprecursors to, degrade such theseas RNAs,intron- asretained well as misprocessedand poly(A) messenger signal-mediated RNA (mRNA) cleavage precursors,, and such as intron-retainedpolyadenylation and-defective poly(A) pre signal-mediated-mRNAs. cleavage, and polyadenylation-defective pre-mRNAs. 2. The Nuclear RNA Exosome: Structure and RNA Degradation Mechanisms 2. The Nuclear RNA Exosome: Structure and RNA Degradation Mechanisms The eukaryotic nuclear RNA exosome is a 3′0–5′0 exonuclease complex, consisting of a 9-protein Thecatalytically eukaryotic inactive nuclear coreRNA complex exosome (EXO- is9) aand 3 –5 twoexonuclease catalytic subunits, complex, Rrp6 consisting (also known of a 9-protein as catalyticallyPM/Scl-100 inactive or EXOSC10) core complex, and (EXO-9) Dis3 (also and twoknown catalytic as Rrp44 subunits, or Rrp6EXOSC11). (also knownEXO-9 asforms PM/Scl-100 a or EXOSC10),double-layered and Dis3barrel (also-like knownstructure as that Rrp44 comprises or EXOSC11). six ribonuclease EXO-9 forms (RNase a double-layered) pleckstrin homology barrel-like structure(PH)-like that proteins comprises (Rrp41, six ribonucleaseRrp42, Rrp43, Rrp45, (RNase) Rrp46 pleckstrin, and Mtr3) homology and three (PH)-like S1/K homology proteins (KH) (Rrp41, Rrp42,“cap Rrp43,” proteins Rrp45, (Rrp4, Rrp46, Rrp40 and, and Mtr3) Csl4) and [3]. three The S1/Ktwo catalytic homology subunits (KH) “cap”occupy proteins opposite (Rrp4,ends of Rrp40, and Csl4)EXO-9 [ 3to]. constitute The two catalyticEXO-11. Rrp6 subunits is placed occupy at the opposite top of the ends S1/KH of EXO-9 cap ring to constitutenear the RNA EXO-11. entry Rrp6 is placedpore, atand the Dis3 top is oftethered the S1/KH to the bottom cap ring of EXO near-9 the near RNA the RNA entry exit pore, pore and [25– Dis327]. Both is tethered Rrp6 and to the Dis3 are 3′–5′ exonucleases, but the latter also has endonucleolytic activity [28–30]. Rrp6 widens the bottom of EXO-9 near the RNA exit pore [25–27]. Both Rrp6 and Dis3 are 30–50 exonucleases, but central channel of core EXO-9 and allosterically stimulates Dis3 activity [26]. Recently, a study the latter also has endonucleolytic activity [28–30]. Rrp6 widens the central channel of core EXO-9 and allosterically stimulates Dis3 activity [26]. Recently, a study focused on the last 100 amino acids of Rrp6, referred to as a “lasso,” and revealed that the lasso binds RNA proximal to the EXO-9 Non-coding RNA 2018, 4, 8 3 of 21 Non-Coding RNA 2018, 4, 8 3 of 20 channelfocused and on enhances the last 100 RNA amino decay acids [31 of]. Rrp6, In humans, referred bothto as Rrp6a “lasso,” and and Dis3 revealed are mostly that the nuclear, lasso binds but Rrp6 showsRNA significant proximal to nucleolar the EXO-9 enrichment channel and [32 enhances,33], whereas RNA decay Dis3 [31]. is excluded In humans, from both the Rrp6 nucleoli and Dis3 [33, 34]. In contrastare mostly to humans, nuclear, yeastbut Rrp6 Rrp6 isshows restricted significant to the nucleus,nucleolar butenrichment Rrp6 and [32,33], Dis3 are whereas both present Dis3 inis the nucleoplasmexcluded from and the nucleolus nucleoli [ 32[33,34].,35]. In contrast to humans, yeast Rrp6 is restricted to the nucleus, but Rrp6Three and additional
Recommended publications
  • Current Perspectives on the Role of TRAMP in Nuclear RNA Surveillance and Quality Control
    Research and Reports in Biochemistry Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Current perspectives on the role of TRAMP in nuclear RNA surveillance and quality control Kewu Pan Abstract: The TRAMP complex assists the nuclear exosome to degrade a broad range of Zhe Huang ribonucleic acid (RNA) substrates by increasing both exoribonucleolytic activity and substrate Jimmy Tsz Hang Lee specificity. However, how the interactions between the TRAMP subunits and the components Chi-Ming Wong of the nuclear exosome regulate their functions in RNA degradation and substrate specificity remain unclear. This review aims to provide a summary of the recent findings on the role of State Key Laboratory of Pharmaceutical Biotechnology, the TRAMP complex in nuclear RNA degradation. The new insights from recent structural Department of Medicine, Shenzhen biological studies are discussed. Institute of Research and Innovation, Keywords: TRAMP, nuclear exosome, NEXT, RNA surveillance the University of Hong Kong, Pokfulam, Hong Kong Introduction TRAMP complex is one of the most well-characterized nuclear exosome cofactors, which enhances the activity and substrate specificity of the exosome.1 In Saccharomyces cerevisiae, TRAMP complex is a heterotrimeric complex consisting of a poly(A) poly- merase (either Trf4p or Trf5p); a zinc-knuckle ribonucleic acid (RNA)-binding protein (either Air1p or Air2p); and an RNA helicase Mtr4p.2,3 The main function of TRAMP is to assist the nuclear exosome to degrade a large
    [Show full text]
  • Evidence for in Vivo Modulation of Chloroplast RNA Stability by 3؅-UTR Homopolymeric Tails in Chlamydomonas Reinhardtii
    Evidence for in vivo modulation of chloroplast RNA stability by 3؅-UTR homopolymeric tails in Chlamydomonas reinhardtii Yutaka Komine*, Elise Kikis*, Gadi Schuster†, and David Stern*‡ *Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853; and †Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel Edited by Lawrence Bogorad, Harvard University, Cambridge, MA, and approved January 8, 2002 (received for review June 27, 2001) Polyadenylation of synthetic RNAs stimulates rapid degradation in synthesizes and degrades poly(A) tails (13). E. coli, by contrast, vitro by using either Chlamydomonas or spinach chloroplast extracts. encodes a poly(A) polymerase. These differences may reflect the Here, we used Chlamydomonas chloroplast transformation to test the evolution of the chloroplast to a compartment whose gene effects of mRNA homopolymer tails in vivo, with either the endog- regulation is controlled by the nucleus. enous atpB gene or a version of green fluorescent protein developed Unlike eukaryotic poly(A) tails, the roles of 3Ј-UTR tails in for chloroplast expression as reporters. Strains were created in which, prokaryotic gene expression are largely unexplored, although after transcription of atpB or gfp, RNase P cleavage occurred upstream they are widely distributed in microorganisms including cya- Glu of an ectopic tRNA moiety, thereby exposing A28,U25A3,[A؉U]26, nobacteria (14). Polyadenylated mRNAs have also been found in or A3 tails. Analysis of these strains showed that, as expected, both plant (15, 16) and animal mitochondria (17). The functions polyadenylated transcripts failed to accumulate, with RNA being of these tails have mostly been tested in vitro, which has undetectable either by filter hybridization or reverse transcriptase– highlighted RNA degradation but not interactions with other PCR.
    [Show full text]
  • Substrate Specificity of the TRAMP Nuclear Surveillance Complexes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976274; this version posted March 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Substrate Specificity of the TRAMP Nuclear Surveillance Complexes Clémentine Delan-Forino1, Christos Spanos1, Juri Rappsilber1, David Tollervey1 1: Wellcome Center for Cell Biology, University of Edinburgh, UK. Running Title: Targeting RNAs for Nuclear Surveillance 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.976274; this version posted March 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT During nuclear surveillance in yeast, the RNA exosome functions together with the TRAMP complexes. These include the DEAH-box RNA helicase Mtr4 together with an RNA-binding protein (Air1 or Air2) and a poly(A) polymerase (Trf4 or Trf5). To better determine how RNA substrates are targeted, we analyzed protein and RNA interactions for TRAMP components. Mass spectrometry identified three distinct TRAMP complexes formed in vivo. These complexes preferentially assemble on different classes of transcripts. Unexpectedly, on many substrates, including pre-rRNAs and pre-mRNAs, binding specificity was apparently conferred by Trf4 and Trf5. Clustering of mRNAs by TRAMP association showed co- enrichment for mRNAs with functionally related products, supporting the significance of surveillance in regulating gene expression.
    [Show full text]
  • Exosome-Mediated Recognition and Degradation of Mrnas Lacking A
    R EPORTS wild-type PGK1 mRNA was synthesized with a poly(A) tail of approximately 70 residues and Exosome-Mediated Recognition was subsequently deadenylated slowly (Fig. 2A) (12). In contrast, nonstop-PGK1 transcripts dis- and Degradation of mRNAs appeared rapidly without any detectable dead- enylation intermediates (Fig. 2B). In addition, in Lacking a Termination Codon a ski7⌬ strain, the nonstop mRNA persisted as a fully polyadenylated species for 8 to 10 min Ambro van Hoof,1,2* Pamela A. Frischmeyer,1,3 Harry C. Dietz,1,3 before disappearing (Fig. 2C). These data indi- Roy Parker1,2* cate that exosome function is required for rapid degradation of both the poly(A) tail and the One role of messenger RNA (mRNA) degradation is to maintain the fidelity of body of the mRNA. Based on these observa- gene expression by degrading aberrant transcripts. Recent results show that tions, we suggest that nonstop mRNAs are rap- mRNAs without translation termination codons are unstable in eukaryotic cells. idly degraded in a 3Ј-to-5Ј direction by the We used yeast mutants to demonstrate that these “nonstop” mRNAs are exosome, beginning at the 3Ј end of the poly(A) degraded by the exosome in a 3Ј-to-5Ј direction. The degradation of nonstop tail (13). transcripts requires the exosome-associated protein Ski7p. Ski7p is closely Two observations suggest a mechanism by related to the translation elongation factor EF1A and the translation termi- which nonstop mRNAs are specifically recog- nation factor eRF3. This suggests that the recognition of nonstop mRNAs nized and targeted for destruction by the exo- involves the binding of Ski7p to an empty aminoacyl-(RNA-binding) site (A site) some.
    [Show full text]
  • How Eukaryotes Degrade Their Ribosomes
    Review A ‘garbage can’ for ribosomes: how eukaryotes degrade their ribosomes Denis L.J. Lafontaine1,2 1 Fonds de la Recherche Scientifique (FRS-F.N.R.S.), Institut de Biologie et de Me´ decine Mole´ culaire (IBMM), Universite´ Libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium 2 Center for Microscopy and Molecular Imaging (CMMI), Acade´ mie Wallonie – Bruxelles, Charleroi-Gosselies, Belgium Ribosome synthesis is a major metabolic activity that somes to productive synthesis pathways [5]. In other cases, involves hundreds of individual reactions, each of which trans-acting factors with partial homology to ribosomal is error-prone. Ribosomal insults occur in cis (alteration proteins or translation factors might bind pre-ribosomes in rRNA sequences) and in trans (failure to bind to, or to monitor and tether the structural integrity of ribosomal loss of, an assembly factor or ribosomal protein). In protein-binding sites [6,7]. In wild-type cells, ribosome addition, specific growth conditions, such as starvation, assembly defects can result from the delayed binding of require that excess ribosomes are turned over efficiently. a trans-acting factor. In these circumstances, and provid- Recent work indicates that cells evolved multiple strat- ing that the proper assembly reaction occurs within a egies to recognize specifically, and target for clearance, defined timeframe, faithful assembly presumably resumes; ribosomes that are structurally and/or functionally otherwise, pre-ribosomes are identified as defective and deficient, as well as in excess. This surveillance is active targeted for rapid degradation by active surveillance mech- at every step of the ribosome synthesis pathway and on anisms. In addition to alterations in trans, mutations can mature ribosomes, involves nearly entirely different occur in cis either during RNA synthesis or, more fre- mechanisms for the small and large subunits, and quently, as a consequence of exposure to genotoxic stress.
    [Show full text]
  • RNA Unwinding by the Trf4/Air2/Mtr4 Polyadenylation (TRAMP) Complex
    RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex Huijue Jiaa, Xuying Wangb, James T. Andersonb, and Eckhard Jankowskya,1 aCenter for RNA Molecular Biology, Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and bDepartment of Biological Sciences, Marquette University, Milwaukee, WI 53201 Edited by James E. Dahlberg, University of Wisconsin Medical School, Madison, WI, and approved March 28, 2012 (received for review January 20, 2012) Many RNA-processing events in the cell nucleus involve the Trf4/ functional interplay between helicase and polymerase during Air2/Mtr4 polyadenylation (TRAMP) complex, which contains the polyadenylation. poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the Here we show that TRAMP possesses robust unwinding activity RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for that is also directed by complex functional interplay between Mtr4p processing by the nuclear exosome. In addition, TRAMP functions as and Trf4p/Air2p. Using recombinant S. cerevisiae TRAMP, we find an exosome cofactor during RNA degradation, and it has been that Trf4p/Air2p significantly stimulates the unwinding activity of speculated that this role involves disruption of RNA secondary Mtr4p. However, this stimulation does not depend on ongoing structure. However, it is unknown whether TRAMP displays RNA polyadenylation. Nonetheless, polyadenylation by Trf4p enables unwinding activity. It is also not clear how unwinding would be Mtr4p to unwind substrates that it otherwise cannot separate. coordinated with polyadenylation and the function of the RNA Our data show optimal unwinding activity of TRAMP on helicase Mtr4p in modulating poly(A) addition. Here, we show that substrates that contain just a minimal binding site for Mtr4p, TRAMP robustly unwinds RNA duplexes.
    [Show full text]
  • Transcription Termination by Nuclear RNA Polymerases
    Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Transcription termination by nuclear RNA polymerases Patricia Richard and James L. Manley1 Department of Biological Sciences, Columbia University, New York, New York 10027, USA Gene transcription in the cell nucleus is a complex and few base pairs to several kilobases downstream from the highly regulated process. Transcription in eukaryotes 39-end of the mature RNA (Proudfoot 1989). RNAPII requires three distinct RNA polymerases, each of which transcription termination is coupled to 39-end processing employs its own mechanisms for initiation, elongation, of the pre-mRNA (Birse et al. 1998; Hirose and Manley and termination. Termination mechanisms vary consid- 2000; Yonaha and Proudfoot 2000; Proudfoot 2004; erably, ranging from relatively simple to exceptionally Buratowski 2005), and an intact polyadenylation signal complex. In this review, we describe the present state of has long been known to be necessary for transcription knowledge on how each of the three RNA polymerases termination of protein-coding genes in human and yeast terminates and how mechanisms are conserved, or vary, cells (Whitelaw and Proudfoot 1986; Logan et al. 1987; from yeast to human. Connelly and Manley 1988). RNAPIII and RNAPI termination appear simpler than Transcription in eukaryotes is performed by three RNA RNAPII termination. RNAPIII terminates transcription polymerases, which are functionally and structurally at T-rich sequences located a short distance from the related (Cramer et al. 2008). RNA polymerase II (RNAPII) mature RNA 39-end and seems to involve at most a is responsible for transcription of protein-coding genes limited number of auxiliary factors (Cozzarelli et al.
    [Show full text]
  • Characterization of the RNA Exosome in Insect Cells
    Characterization of the RNA Exosome in Insect Cells Role in mRNA Surveillance Viktoria Hessle Doctoral Thesis Stockholm, 2011 Department of Molecular Biology and Functional Genomics Stockholm University, Sweden The cover picture shows an immunolabeling experiment with an antibody against the core exosome protein Rrp4 in a salivary gland cell of Chironomus tentans. Viktoria Hessle, 2011 ISBN 978-91-7447-208-0 Printed in Sweden by Universitetsservice US-AB Stockholm 2011 Distributor: Stockholm University Library 1 To my family 2 Table of Contents ABSTRACT ..............................................................................................................................4 LIST OF ARTICLES INCLUDED IN THIS THESIS ......................................................... 5 LIST OF ABBREVIATIONS.................................................................................................. 6 INTRODUCTION.................................................................................................................... 7 NUCLEAR ORGANIZATION IN EUKARYOTIC CELLS............................................... 7 The nuclear envelope, chromatin and the nucleolus ......................................................... 7 Subnuclear compartments ...............................................................................................10 EXPRESSION OF PROTEIN-CODING GENES IN EUKARYOTIC CELLS .............. 15 Co-transcriptional mRNA processing ............................................................................. 16 Coupling
    [Show full text]
  • A Conserved Antiviral Role for a Virus-Induced Cytoplasmic Exosome Complex
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2016 A Conserved Antiviral Role For A Virus-Induced Cytoplasmic Exosome Complex Jerome Michael Molleston University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Allergy and Immunology Commons, Genetics Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, and the Virology Commons Recommended Citation Molleston, Jerome Michael, "A Conserved Antiviral Role For A Virus-Induced Cytoplasmic Exosome Complex" (2016). Publicly Accessible Penn Dissertations. 2480. https://repository.upenn.edu/edissertations/2480 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2480 For more information, please contact [email protected]. A Conserved Antiviral Role For A Virus-Induced Cytoplasmic Exosome Complex Abstract RNA degradation is a tightly regulated and highly conserved process which selectively targets aberrant RNAs using both 5’ and 3’ exonucleases. The RNAs degraded by this process include viral RNA, but the mechanisms by which viral RNA is identified and ecruitedr to the degradation machinery are incompletely understood. To identify new antiviral genes, we performed RNAi screening of genes with known roles in RNA metabolism in Drosophila cells. We identified the RNA exosome, which targets RNA for 3’ end decay, and two components of the exosome cofactor TRAMP complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. As these genes are highly conserved, I extended these studies to human cells and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, I found that infection by cytoplasmic RNA viruses induces their export to cytoplasmic granules, where they form a complex that specifically ecognizr es and induces degradation of viral mRNAs.
    [Show full text]
  • Critical Review of the Evolution of Extracellular Vesicles’ Knowledge: from 1946 to Today
    International Journal of Molecular Sciences Review Critical Review of the Evolution of Extracellular Vesicles’ Knowledge: From 1946 to Today Erica Bazzan 1,*,† , Mariaenrica Tinè 1,† , Alvise Casara 1, Davide Biondini 1, Umberto Semenzato 1 , Elisabetta Cocconcelli 1, Elisabetta Balestro 1, Marco Damin 1, Claudia Maria Radu 2,3 , Graziella Turato 1, Simonetta Baraldo 1 , Paolo Simioni 3 , Paolo Spagnolo 1 , Marina Saetta 1,‡ and Manuel G. Cosio 1,4,‡ 1 Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; [email protected] (M.T.); [email protected] (A.C.); [email protected] (D.B.); [email protected] (U.S.); [email protected] (E.C.); [email protected] (E.B.); [email protected] (M.D.); [email protected] (G.T.); [email protected] (S.B.); [email protected] (P.S.); [email protected] (M.S.); [email protected] (M.G.C.) 2 Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; [email protected] 3 Department of Medicine, University of Padova, 35128 Padova, Italy; [email protected] 4 Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada * Correspondence: [email protected]; Tel.: +39-0498213449 † These authors contributed equally to this work as first authors. ‡ These authors contributed equally to this work as senior authors. Abstract: Extracellular vesicles (EVs) are a family of particles/vesicles present in blood and body fluids, composed of phospholipid bilayers that carry a variety of molecules that can mediate cell Citation: Bazzan, E.; Tinè, M.; communication, modulating crucial cell processes such as homeostasis, induction/dampening of Casara, A.; Biondini, D.; Semenzato, inflammation, and promotion of repair.
    [Show full text]
  • A Robustly Benchmarked R Package for the Identification of Core Fitness Genes in Genome-Wide Pooled CRISPR Knock-Out Screens
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445610; this version posted May 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. CoRe: A robustly benchmarked R package for the identification of core fitness genes in genome-wide pooled CRISPR knock-out screens Alessandro Vinceti1, Emre Karakoc2, Clare Pacini2, Umberto Perron1, Riccardo Roberto De Lucia1, Mathew J. Garnett2, Francesco Iorio1,2,† 1 Human Technopole, Milano, Italy 2 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK †Correspondence: [email protected] Abstract CRISPR-Cas9 recessive genome-wide pooled screens have allowed systematic explorations of weaknesses and vulnerabilities existing in cancer cells, across different tissue lineages at unprecedented accuracy and scale. The identification of novel genes essential for selective cancer cell survival is currently one of the main applications of this technology. Towards this aim, distinguishing genes that are constitutively essential (invariantly across tissues and genomic contexts, i.e. core-fitness genes) from those whose essentiality is associated with molecular features peculiar to certain cancers is of paramount importance for identifying new oncology therapeutic targets. This is crucial to assess the risk of a candidate target’s suppression impacting critical cellular processes that are unspecific to cancer. On the other hand, identifying new human core-fitness genes might also elucidate new mechanisms involved in tissue-specific genetic diseases. We present CoRe: an open-source R package implementing established and novel methods for the identification of core-fitness genes based on joint analyses of data from multiple CRISPR-Cas9 screens.
    [Show full text]
  • RNA Unwinding by the Trf4/Air2/Mtr4 Polyadenylation (TRAMP) Complex
    RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex Huijue Jiaa, Xuying Wangb, James T. Andersonb, and Eckhard Jankowskya,1 aCenter for RNA Molecular Biology, Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106; and bDepartment of Biological Sciences, Marquette University, Milwaukee, WI 53201 Edited by James E. Dahlberg, University of Wisconsin Medical School, Madison, WI, and approved March 28, 2012 (received for review January 20, 2012) Many RNA-processing events in the cell nucleus involve the Trf4/ functional interplay between helicase and polymerase during Air2/Mtr4 polyadenylation (TRAMP) complex, which contains the polyadenylation. poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the Here we show that TRAMP possesses robust unwinding activity RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for that is also directed by complex functional interplay between Mtr4p processing by the nuclear exosome. In addition, TRAMP functions as and Trf4p/Air2p. Using recombinant S. cerevisiae TRAMP, we find an exosome cofactor during RNA degradation, and it has been that Trf4p/Air2p significantly stimulates the unwinding activity of speculated that this role involves disruption of RNA secondary Mtr4p. However, this stimulation does not depend on ongoing structure. However, it is unknown whether TRAMP displays RNA polyadenylation. Nonetheless, polyadenylation by Trf4p enables unwinding activity. It is also not clear how unwinding would be Mtr4p to unwind substrates that it otherwise cannot separate. coordinated with polyadenylation and the function of the RNA Our data show optimal unwinding activity of TRAMP on helicase Mtr4p in modulating poly(A) addition. Here, we show that substrates that contain just a minimal binding site for Mtr4p, TRAMP robustly unwinds RNA duplexes.
    [Show full text]