Transcription Termination by Nuclear RNA Polymerases

Total Page:16

File Type:pdf, Size:1020Kb

Transcription Termination by Nuclear RNA Polymerases Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Transcription termination by nuclear RNA polymerases Patricia Richard and James L. Manley1 Department of Biological Sciences, Columbia University, New York, New York 10027, USA Gene transcription in the cell nucleus is a complex and few base pairs to several kilobases downstream from the highly regulated process. Transcription in eukaryotes 39-end of the mature RNA (Proudfoot 1989). RNAPII requires three distinct RNA polymerases, each of which transcription termination is coupled to 39-end processing employs its own mechanisms for initiation, elongation, of the pre-mRNA (Birse et al. 1998; Hirose and Manley and termination. Termination mechanisms vary consid- 2000; Yonaha and Proudfoot 2000; Proudfoot 2004; erably, ranging from relatively simple to exceptionally Buratowski 2005), and an intact polyadenylation signal complex. In this review, we describe the present state of has long been known to be necessary for transcription knowledge on how each of the three RNA polymerases termination of protein-coding genes in human and yeast terminates and how mechanisms are conserved, or vary, cells (Whitelaw and Proudfoot 1986; Logan et al. 1987; from yeast to human. Connelly and Manley 1988). RNAPIII and RNAPI termination appear simpler than Transcription in eukaryotes is performed by three RNA RNAPII termination. RNAPIII terminates transcription polymerases, which are functionally and structurally at T-rich sequences located a short distance from the related (Cramer et al. 2008). RNA polymerase II (RNAPII) mature RNA 39-end and seems to involve at most a is responsible for transcription of protein-coding genes limited number of auxiliary factors (Cozzarelli et al. and many noncoding RNAs, including spliceosomal 1983). RNAPI terminates at a major terminator located small nuclear RNAs (snRNAs), small nucleolar RNAs downstream from the rRNA precursor sequence and (snoRNAs), microRNA (miRNA) precursors, and cryptic requires terminator recognition by specific protein fac- unstable transcripts (CUTs). RNA polymerase I (RNAPI) tors (Kuhn and Grummt 1989; Lang and Reeder 1995). transcribes the abundant ribosomal RNAs (rRNAs), and Recent studies, though, suggest that additional complex- RNA polymerase III (RNAPIII) transcribes noncoding ities are involved (El Hage et al. 2008; Kawauchi et al. RNAs such as transfer RNAs (tRNAs), 5S rRNA, and 2008). U6 spliceosomal snRNA. Transcription consists of three The three transcription machineries use different strat- main steps: initiation, elongation, and termination, all egies for transcription termination, although they share of which are highly controlled and involve a large number common features (Cramer et al. 2008; Gilmour and Fan of specific factors. While initiation and elongation 2008). This review describes advances in our understand- have been well studied (Sims et al. 2004), termination ing of transcription termination of all three RNAPs, was until recently an obscure mechanism, especially for particularly in human and in yeast, where transcription RNAPII transcription. Termination is crucial for the termination mechanisms are somewhat better character- release of RNAP from its template, and is important ized. We refer the reader to several excellent recent not only to avoid interference with transcription of reviews that have dealt with aspects of transcription downstream genes (Greger et al. 2000), but also to ensure termination (Rosonina et al. 2006; Lykke-Andersen and that a pool of RNAPs is available for reinitiation or Jensen 2007; Gilmour and Fan 2008; Rondon et al. 2008). new transcription. Termination can also prevent forma- We begin with the most complex, RNAPII termination. tion of antisense RNAs that can interfere with normal pre-RNA production, thereby preventing aberrant gene Termination by RNAPII expression. Termination by RNAPII does not occur at a conserved 39-End processing machinery site or constant distance from the 39-end of mature RNAs. In mammals, termination can occur anywhere from a Given the importance of mRNA 39-end formation in transcription termination, we begin with a brief descrip- tion of the 39-end processing reaction and the factors in- [Keywords: Transcription termination; RNA polymerase I; RNA volved. 39-End processing is an essential step in the polymerase II; RNA polymerase III; yeast; mammals] maturation of all mRNAs and is coupled to transcription 1Corresponding author. E-MAIL [email protected]; FAX (212) 865-8246. and splicing, as well as termination (Hirose and Manley 2000; Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1792809. Proudfoot et al. 2002; Buratowski 2005). The mammalian GENES & DEVELOPMENT 23:1247–1269 Ó 2009 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/09; www.genesdev.org 1247 Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Richard and Manley pre-mRNA 39-end processing machinery contains more subunit, Cdc73 or parafibromin, has been identified as than 14 proteins giving rise to a 1-MDa complex (for a tumor suppressor protein, and the Paf1 protein is over- review, see Colgan and Manley 1997; Zhao et al. 1999; expressed in many cancers (Chaudhary et al. 2007). Mandel et al. 2008; see also Shi et al. 2009). In yeast, noncanonical nuclear PAPs, Trf4/5 (Haracska In mammals, cleavage and polyadenylation occur et al. 2005; Egecioglu et al. 2006; Houseley and Tollervey ;10–30 nucleotides (nt) downstream from a conserved 2006), function in a nuclear RNA surveillance pathway hexanucleotide, AAUAAA, and ;30 nt upstream of a less as part of the TRAMP (Trf–Air–Mtr4 polyadenylation) conserved U- or GU-rich region. The AAUAAA signal is complex, which activates degradation by the exosome of recognized by the cleavage and polyadenylation specific- a variety of aberrant nuclear precursors of many types of ity factor (CPSF), which contains five subunits: CPSF-30, RNAs after addition of a poly(A) tail (LaCava et al. 2005). CPSF-73, CPSF-100, CPSF-160, and Fip1. Cleavage stim- Although not well studied, this RNA surveillance function ulation factor (CstF) contains three subunits—CstF-50, is likely conserved in humans since homologs of the CstF-77, and CstF-64—the latter of which directly recog- TRAMP and exosome complexes are present in mammals. nizes the U/GU-rich element. The endonucleolytic cleav- age that precedes polyadenylation is carried out by CTD of the RNAPII large subunit CPSF-73 (Ryan et al. 2004; Mandel et al. 2006). CPSF-73 contains a metallo-b-lactamase domain and is a member At least in mammals, the CTD plays an important role in of the b-CASP protein superfamily (Callebaut et al. 2002). 39-end processing as first determined by experiments CPSF-73 is also likely responsible for cleavage of non- examining the effects on processing of CTD deletions in polyadenylated histone pre-mRNAs (Marzluff et al. 2008; transfected cells (McCracken et al. 1997) and the re- Yang et al. 2009). CPSF-100 also belongs to the b-CASP quirement of the CTD for efficient 39 cleavage in vitro superfamily (Callebaut et al. 2002) but lacks certain key (Hirose and Manley 1998). The CTD of RNAPII is flexibly catalytic residues and plays an unknown role in 39-end linked to the core enzyme and consists of heptapeptide cleavage. However, mutations affecting the metallo- repeats (25 or 26 repeats in yeast, 52 in mammals) with b-lactamase domain of both CPSF-73 and CPSF-100 the consensus sequence Tyr1–Ser2–Pro3–Thr4–Ser5– impair the endonucleolytic cleavage of histone mRNA Pro6–Ser7 (YSPTSPS). The CTD displays different precursors (Kolev et al. 2008). CPSF-160, which directly phosphorylation patterns during the transcription cycle recognizes AAUAAA, binds CPSF-100, CstF-77, poly(A) (Phatnani and Greenleaf 2006; Egloff and Murphy polymerase (PAP), and Fip1 (Murthy and Manley 2008). RNAPII is recruited to the promoter in an unphos- 1995; Kaufmann et al. 2004). In addition, the cleavage phorylated form (RNAPIIA) that becomes extensively complex contains CFI (cleavage factor I), a dimeric pro- phosphorylated during transcription (RNAPIIO). Phos- tein implicated in the regulation of poly(A) site selec- phorylation of Ser5 by the cyclin-dependant kinase tion (Ruegsegger et al. 1998; Brown and Gilmartin 2003; CDK7, a subunit of the general transcription factor Venkataraman et al. 2005), and CFII, containing Pcf11 and TFIIH, occurs at the initiation step of transcription to Clp1. Clp1, which interacts with the CFI and CPSF facilitate promoter release and recruitment of capping complexes (de Vries et al. 2000), also possesses an RNA factors (Komarnitsky et al. 2000; Schroeder et al. 2000) kinase activity (Weitzer and Martinez 2007), although the and the methyltransferase Set1 that is responsible for significance of this to 39-end formation is unknown. trimethylation of Lys4 on histone 3 (H3-K4) (Hampsey Another protein, symplekin, is also part of the 39-end and Reinberg 2003). Phosphorylation of Ser2 by the processing complex and appears to function as a scaffold positive transcription elongation factor P-TEFb, compris- (Takagaki and Manley 2000). PABP [poly(A)-binding pro- ing the kinase CDK9 (Ctk1 in yeast) and cyclin T, occurs tein] protects the pre-mRNA from exonuclease degrada- after initiation. Ser2 phosphorylated CTD helps to recruit tion by binding the poly(A) tail and is required for correct and/or stabilize polyadenylation factors, thereby facili- and efficient poly(A) tail synthesis (Minvielle-Sebastia tating coupling of transcription and mRNA 39-end for- et al. 1997). mation. For instance, in yeast, Ser2 phosphorylation of Several factors help link 39-end processing to transcrip- the CTD potentiates interaction with the essential poly- tion. For example, the C-terminal domain (CTD) of the adenylation factor Pcf11 (de Vries et al. 2000; Barilla et al. RNAPII largest subunit also plays an important role in 2001; Licatalosi et al. 2002; Ahn et al. 2004). The H3-K36 39-end processing, likely by mediating interactions with methyltransferase Set2 binds elongating RNAPII, recog- 39-end processing factors (McCracken et al.
Recommended publications
  • Supplementary Materials
    DEPs in osteosarcoma cells comparing to osteoblastic cells Biological Process Protein Percentage of Hits metabolic process (GO:0008152) 29.3 29.3% cellular process (GO:0009987) 20.2 20.2% localization (GO:0051179) 9.4 9.4% biological regulation (GO:0065007) 8 8.0% developmental process (GO:0032502) 7.8 7.8% response to stimulus (GO:0050896) 5.6 5.6% cellular component organization (GO:0071840) 5.6 5.6% multicellular organismal process (GO:0032501) 4.4 4.4% immune system process (GO:0002376) 4.2 4.2% biological adhesion (GO:0022610) 2.7 2.7% apoptotic process (GO:0006915) 1.6 1.6% reproduction (GO:0000003) 0.8 0.8% locomotion (GO:0040011) 0.4 0.4% cell killing (GO:0001906) 0.1 0.1% 100.1% Genes 2179Hits 3870 biological adhesion apoptotic process … reproduction (GO:0000003) , 0.8% (GO:0022610) , 2.7% locomotion (GO:0040011) ,… immune system process cell killing (GO:0001906) , 0.1% (GO:0002376) , 4.2% multicellular organismal process (GO:0032501) , metabolic process 4.4% (GO:0008152) , 29.3% cellular component organization (GO:0071840) , 5.6% response to stimulus (GO:0050896), 5.6% developmental process (GO:0032502) , 7.8% biological regulation (GO:0065007) , 8.0% cellular process (GO:0009987) , 20.2% localization (GO:0051179) , 9.
    [Show full text]
  • EHD2 Is a Mechanotransducer Connecting Caveolae Dynamics with Gene Transcription
    EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription Satish Kailasam Mani, Cesar Valades-Cruz, Stéphanie Torrino, Wei-Wei Shen, Cedric Blouin, Satish Kailasam Mani, Christine Viaris de Lesegno, Pierre Bost, Alexandre Grassart, Darius Köster, et al. To cite this version: Satish Kailasam Mani, Cesar Valades-Cruz, Stéphanie Torrino, Wei-Wei Shen, Cedric Blouin, et al.. EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription. Journal of Cell Biology, Rockefeller University Press, 2018, 217 (12), pp.4092-4105. 10.1083/jcb.201801122. inserm- 02426440 HAL Id: inserm-02426440 https://www.hal.inserm.fr/inserm-02426440 Submitted on 2 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License REPORT EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription Stéphanie Torrino1,2,3*, Wei‑Wei Shen1,2,3*, Cédric M. Blouin1,2,3, Satish Kailasam Mani1,2,3, Christine Viaris de Lesegno1,2,3, Pierre Bost4,5, Alexandre Grassart6, Darius Köster7, Cesar Augusto Valades‑Cruz2,3,8, Valérie Chambon2,3,8, Ludger Johannes2,3,8, Paolo Pierobon9, Vassili Soumelis4, Catherine Coirault10, Stéphane Vassilopoulos10, and Christophe Lamaze1,2,3 Caveolae are small invaginated pits that function as dynamic mechanosensors to buffer tension variations at the plasma membrane.
    [Show full text]
  • Genomic and Expression Profiling of Chromosome 17 in Breast Cancer Reveals Complex Patterns of Alterations and Novel Candidate Genes
    [CANCER RESEARCH 64, 6453–6460, September 15, 2004] Genomic and Expression Profiling of Chromosome 17 in Breast Cancer Reveals Complex Patterns of Alterations and Novel Candidate Genes Be´atrice Orsetti,1 Me´lanie Nugoli,1 Nathalie Cervera,1 Laurence Lasorsa,1 Paul Chuchana,1 Lisa Ursule,1 Catherine Nguyen,2 Richard Redon,3 Stanislas du Manoir,3 Carmen Rodriguez,1 and Charles Theillet1 1Ge´notypes et Phe´notypes Tumoraux, EMI229 INSERM/Universite´ Montpellier I, Montpellier, France; 2ERM 206 INSERM/Universite´ Aix-Marseille 2, Parc Scientifique de Luminy, Marseille cedex, France; and 3IGBMC, U596 INSERM/Universite´Louis Pasteur, Parc d’Innovation, Illkirch cedex, France ABSTRACT 17q12-q21 corresponding to the amplification of ERBB2 and collinear genes, and a large region at 17q23 (5, 6). A number of new candidate Chromosome 17 is severely rearranged in breast cancer. Whereas the oncogenes have been identified, among which GRB7 and TOP2A at short arm undergoes frequent losses, the long arm harbors complex 17q21 or RP6SKB1, TBX2, PPM1D, and MUL at 17q23 have drawn combinations of gains and losses. In this work we present a comprehensive study of quantitative anomalies at chromosome 17 by genomic array- most attention (6–10). Furthermore, DNA microarray studies have comparative genomic hybridization and of associated RNA expression revealed additional candidates, with some located outside current changes by cDNA arrays. We built a genomic array covering the entire regions of gains, thus suggesting the existence of additional amplicons chromosome at an average density of 1 clone per 0.5 Mb, and patterns of on 17q (8, 9). gains and losses were characterized in 30 breast cancer cell lines and 22 Our previous loss of heterozygosity mapping data pointed to the primary tumors.
    [Show full text]
  • Current Perspectives on the Role of TRAMP in Nuclear RNA Surveillance and Quality Control
    Research and Reports in Biochemistry Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Current perspectives on the role of TRAMP in nuclear RNA surveillance and quality control Kewu Pan Abstract: The TRAMP complex assists the nuclear exosome to degrade a broad range of Zhe Huang ribonucleic acid (RNA) substrates by increasing both exoribonucleolytic activity and substrate Jimmy Tsz Hang Lee specificity. However, how the interactions between the TRAMP subunits and the components Chi-Ming Wong of the nuclear exosome regulate their functions in RNA degradation and substrate specificity remain unclear. This review aims to provide a summary of the recent findings on the role of State Key Laboratory of Pharmaceutical Biotechnology, the TRAMP complex in nuclear RNA degradation. The new insights from recent structural Department of Medicine, Shenzhen biological studies are discussed. Institute of Research and Innovation, Keywords: TRAMP, nuclear exosome, NEXT, RNA surveillance the University of Hong Kong, Pokfulam, Hong Kong Introduction TRAMP complex is one of the most well-characterized nuclear exosome cofactors, which enhances the activity and substrate specificity of the exosome.1 In Saccharomyces cerevisiae, TRAMP complex is a heterotrimeric complex consisting of a poly(A) poly- merase (either Trf4p or Trf5p); a zinc-knuckle ribonucleic acid (RNA)-binding protein (either Air1p or Air2p); and an RNA helicase Mtr4p.2,3 The main function of TRAMP is to assist the nuclear exosome to degrade a large
    [Show full text]
  • The Conserved Structure of Plant Telomerase RNA Provides the Missing Link for an Evolutionary Pathway from Ciliates to Humans
    The conserved structure of plant telomerase RNA provides the missing link for an evolutionary pathway from ciliates to humans Jiarui Songa, Dhenugen Logeswaranb,1, Claudia Castillo-Gonzáleza,1, Yang Lib, Sreyashree Bosea, Behailu Birhanu Aklilua, Zeyang Mac,d, Alexander Polkhovskiya,e, Julian J.-L. Chenb,2, and Dorothy E. Shippena,2 aDepartment of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843; bSchool of Molecular Sciences, Arizona State University, Tempe, AZ 85287; cNational Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China; dCollege of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China; and eCenter of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russian Federation Edited by Thomas R. Cech, University of Colorado Boulder, Boulder, CO, and approved October 24, 2019 (received for review September 4, 2019) Telomerase is essential for maintaining telomere integrity. Although transcribed by RNA polymerase III (Pol III) (6, 7). The La-related telomerase function is widely conserved, the integral telomerase protein P65 in Tetrahymena recognizes the 3′ poly-U tail of TR RNA (TR) that provides a template for telomeric DNA synthesis has and bends the RNA to facilitate telomerase RNP assembly (8, 9). diverged dramatically. Nevertheless, TR molecules retain 2 highly In contrast, fungi maintain much larger TR molecules (900 to conserved structural domains critical for catalysis: a template- 2,400 nt) that are transcribed by RNA polymerase II (Pol II) (3). proximal pseudoknot (PK) structure and a downstream stem-loop The 3′ end maturation of fungal TRs requires components of the structure. Here we introduce the authentic TR from the plant canonical snRNA biogenesis pathway and results in RNP assembly Arabidopsis thaliana, called AtTR, identified through next-generation sequencing of RNAs copurifying with Arabidopsis TERT.
    [Show full text]
  • Functional Architecture of the Reb1-Ter Complex of PNAS PLUS Schizosaccharomyces Pombe
    Functional architecture of the Reb1-Ter complex of PNAS PLUS Schizosaccharomyces pombe Rahul Jaiswala,1,2, Malay Choudhuryb,2, Shamsu Zamanb, Samarendra Singhb,3, Vishaka Santosha, Deepak Bastiab,4, and Carlos R. Escalantea,4 aDepartment of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298; and bDepartment of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 Edited by Lucia B. Rothman-Denes, The University of Chicago, Chicago, IL, and approved February 26, 2016 (received for review December 28, 2015) Reb1 of Schizosaccharomyces pombe represents a family of multi- consisting of purified pol I, Reb1 (ScReb1), the Ter site, and an functional proteins that bind to specific terminator sites (Ter) and upstream AT-rich release element were necessary and sufficient cause polar termination of transcription catalyzed by RNA polymer- for transcription termination (7). However, recent work has shown ase I (pol I) and arrest of replication forks approaching the Ter sites that Nsi1 (Ytt1) is also responsible for transcription termination in from the opposite direction. However, it remains to be investigated S. cerevisiae (28). whether the same mechanism causes arrest of both DNA transac- In addition to their aforementioned role, many of these proteins tions. Here, we present the structure of Reb1 as a complex with a are also involved in replication termination and transcription acti- Ter site at a resolution of 2.7 Å. Structure-guided molecular genetic vation. For instance, in S. pombe, the Reb1 (Sp.Reb1) protein binds analyses revealed that it has distinct and well-defined DNA binding to tandem pairs of terminator sites (Ter2 and Ter3) located on the and transcription termination (TTD) domains.
    [Show full text]
  • Rho Dependent Termination of Transcription in Prokaryotes
    Rho Dependent Termination Of Transcription In Prokaryotes Organoleptic Tymon scrimshaws no athenaeums yean fleetly after Teodorico whiled tunably, quite scrawliest. Amalgamative and honeyed Ximenes syllables her bullheads picket stork's-bill and debouch visually. Colory Jeffery concentred her avidity so injudiciously that Sergio briquet very injunctively. Dna in prokaryotic polymerase in termination may vary. Dna sequence by enzymes and fall off of transcripts, and marylène bertrand for the conformation of rho in the stalled rna helicases, rho dependent termination of in transcription. The other physiological functions are the basis for rna polymerase and longer as elongation complex forming a series of one of rho termination in transcription factors recognizing promoters in four steps. Eukaryotes require cookies from prokaryotes, depending on a fifth subunit involved. Thus, when translation termination occurs within same gene it the cause transcriptional termination, preventing expression of downstream genes. Atp synthase alpha and therefore be specialized rnas make a bsr, in termination of rho transcription prokaryotes. Dna must accept cookies and also found later in part because of rho termination occurs by the initiation site that bind to understand how they cannot be logged in replicating dna. Concerned about the Coronavirus? It is made rna polymerase causes rna in termination of rho transcription termination mechanisms to specific genes. Depending upon request your changes indicating that prokaryotic rnap with and prokaryotes. The DNA strand within this an is transcribed by the RNA polymerase. The basic promoter region in prokaryotic transcription is referred to two the Pribnow box. Formation of which prokaryotic and on the hfq is shown as the transcript of action of rho dependent termination transcription in prokaryotes have far more about ten base that elongation complex cell components and cell.
    [Show full text]
  • Resistance to Rifampicin: a Review
    The Journal of Antibiotics (2014) 67, 625–630 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja REVIEW ARTICLE Resistance to rifampicin: a review Beth P Goldstein Resistance to rifampicin (RIF) is a broad subject covering not just the mechanism of clinical resistance, nearly always due to a genetic change in the b subunit of bacterial RNA polymerase (RNAP), but also how studies of resistant polymerases have helped us understand the structure of the enzyme, the intricacies of the transcription process and its role in complex physiological pathways. This review can only scratch the surface of these phenomena. The identification, in strains of Escherichia coli, of the positions within b of the mutations determining resistance is discussed in some detail, as are mutations in organisms that are therapeutic targets of RIF, in particular Mycobacterium tuberculosis. Interestingly, changes in the same three codons of the consensus sequence occur repeatedly in unrelated RIF-resistant (RIFr) clinical isolates of several different bacterial species, and a single mutation predominates in mycobacteria. The utilization of our knowledge of these mutations to develop rapid screening tests for detecting resistance is briefly discussed. Cross-resistance among rifamycins has been a topic of controversy; current thinking is that there is no difference in the susceptibility of RNAP mutants to RIF, rifapentine and rifabutin. Also summarized are intrinsic RIF resistance and other resistance mechanisms. The Journal of Antibiotics (2014) 67, 625–630; doi:10.1038/ja.2014.107; published online 13 August 2014 INTRODUCTION laboratory studies and emerging in patients who received mono- In celebrating the life of Professor Piero Sensi and his discovery of therapy with RIF.
    [Show full text]
  • Stromal CAVIN1 Controls Prostate Cancer Microenvironment and Metastasis by Modulating Lipid Distribution and Inflammatory Signaling
    Published OnlineFirst June 3, 2020; DOI: 10.1158/1541-7786.MCR-20-0364 MOLECULAR CANCER RESEARCH | TUMOR MICROENVIRONMENT AND IMMUNOBIOLOGY Stromal CAVIN1 Controls Prostate Cancer Microenvironment and Metastasis by Modulating Lipid Distribution and Inflammatory Signaling Jin-Yih Low1, W. Nathaniel Brennen2, Alan K. Meeker2,3,4, Elina Ikonen5,6, Brian W. Simons7, and Marikki Laiho1,2 ABSTRACT ◥ Lipid uptake occurs through caveolae, plasma membrane invagi- accumulation and increases inflammation. Stromal cells lacking nations formed by caveolins (CAV) and caveolae-associated protein 1 CAVIN1 enhance prostate cancer cell migration and invasion. (CAVIN1). Genetic alterations of CAV1N1 and CAV1 modify lipid Remarkably, they increase lipid uptake and M2 inflammatory mac- metabolism and underpin lipodystrophy syndromes. Lipids contrib- rophage infiltration in the primary tumors and metastasis to distant ute to tumorigenesis by providing fuel to cancer metabolism and sites. Our data support the concept that stromal cells contribute to supporting growth and signaling. Tumor stroma promotes tumor prostate cancer aggressiveness by modulating lipid content and proliferation, invasion, and metastasis, but how stromal lipids influ- inflammation in the tumor microenvironment. ence these processes remain to be defined. Here, we show that stromal CAVIN1 regulates lipid abundance in the prostate cancer microen- Implications: This study showed that stromal CAVIN1 suppresses vironment and suppresses metastasis. We show that depletion of prostate cancer metastasis by modulating tumor microenvironment, CAVIN1 in prostate stromal cells markedly reduces their lipid droplet lipid content, and inflammatory response. Introduction Mice and humans with targeted disruption or mutations of CAVIN1 are affected by numerous abnormalities including lipodystrophy, Caveolae, ultrastructural microdomains at the plasma membrane, muscular dystrophy, cardiovascular disease, and diabetes (8, 13–16).
    [Show full text]
  • Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the Tna Operon of Escherichia Coli
    JOURNAL OF BACTERIOLOGY, Aug. 1995, p. 4451–4456 Vol. 177, No. 15 0021-9193/95/$04.0010 Copyright 1995, American Society for Microbiology Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the tna Operon of Escherichia coli CHARLES YANOFSKY* AND VIRGINIA HORN Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 Received 13 March 1995/Accepted 27 May 1995 The growth-inhibiting drug bicyclomycin, known to be an inhibitor of Rho factor activity in Escherichia coli, was shown to increase basal level expression of the tryptophanase (tna) operon and to allow growth of a tryptophan auxotroph on indole. The drug also relieved polarity in the trp operon and permitted growth of a trp double nonsense mutant on indole. Nine bicyclomycin-resistant mutants were isolated and partially characterized. Recombination data and genetic and biochemical complementation analyses suggest that five have mutations that affect rho, three have mutations that affect rpoB, and one has a mutation that affects a third locus, near rpoB. Individual mutants showed decreased, normal, or increased basal-level expression of the tna operon. All but one of the resistant mutants displayed greatly increased tna operon expression when grown in the presence of bicyclomycin. The tna operon of the wild-type drug-sensitive parent was also shown to be highly expressed during growth with noninhibitory concentrations of bicyclomycin. These findings demonstrate that resistance to this drug may be acquired by mutations at any one of three loci, two of which appear to be rho and rpoB. Zwiefka et al. (24) found that the antibiotic bicyclomycin segment and interacts with the transcribing RNA polymerase (bicozamycin), an inhibitor of the growth of several gram- molecule, causing it to terminate transcription (7, 9).
    [Show full text]
  • Supplementary Material Computational Prediction of SARS
    Supplementary_Material Computational prediction of SARS-CoV-2 encoded miRNAs and their putative host targets Sheet_1 List of potential stem-loop structures in SARS-CoV-2 genome as predicted by VMir. Rank Name Start Apex Size Score Window Count (Absolute) Direct Orientation 1 MD13 2801 2864 125 243.8 61 2 MD62 11234 11286 101 211.4 49 4 MD136 27666 27721 104 205.6 119 5 MD108 21131 21184 110 204.7 210 9 MD132 26743 26801 119 188.9 252 19 MD56 9797 9858 128 179.1 59 26 MD139 28196 28233 72 170.4 133 28 MD16 2934 2974 76 169.9 71 43 MD103 20002 20042 80 159.3 403 46 MD6 1489 1531 86 156.7 171 51 MD17 2981 3047 131 152.8 38 87 MD4 651 692 75 140.3 46 95 MD7 1810 1872 121 137.4 58 116 MD140 28217 28252 72 133.8 62 122 MD55 9712 9758 96 132.5 49 135 MD70 13171 13219 93 130.2 131 164 MD95 18782 18820 79 124.7 184 173 MD121 24086 24135 99 123.1 45 176 MD96 19046 19086 75 123.1 179 196 MD19 3197 3236 76 120.4 49 200 MD86 17048 17083 73 119.8 428 223 MD75 14534 14600 137 117 51 228 MD50 8824 8870 94 115.8 79 234 MD129 25598 25642 89 115.6 354 Reverse Orientation 6 MR61 19088 19132 88 197.8 271 10 MR72 23563 23636 148 188.8 286 11 MR11 3775 3844 136 185.1 116 12 MR94 29532 29582 94 184.6 271 15 MR43 14973 15028 109 183.9 226 27 MR14 4160 4206 89 170 241 34 MR35 11734 11792 111 164.2 37 52 MR5 1603 1652 89 152.7 118 53 MR57 18089 18132 101 152.7 139 94 MR8 2804 2864 122 137.4 38 107 MR58 18474 18508 72 134.9 237 117 MR16 4506 4540 72 133.8 311 120 MR34 10010 10048 82 132.7 245 133 MR7 2534 2578 90 130.4 75 146 MR79 24766 24808 75 127.9 59 150 MR65 21528 21576 99 127.4 83 180 MR60 19016 19049 70 122.5 72 187 MR51 16450 16482 75 121 363 190 MR80 25687 25734 96 120.6 75 198 MR64 21507 21544 70 120.3 35 206 MR41 14500 14542 84 119.2 94 218 MR84 26840 26894 108 117.6 94 Sheet_2 List of stable stem-loop structures based on MFE.
    [Show full text]
  • Termination of RNA Polymerase II Transcription by the 5’-3’ Exonuclease Xrn2
    TERMINATION OF RNA POLYMERASE II TRANSCRIPTION BY THE 5’-3’ EXONUCLEASE XRN2 by MICHAEL ANDRES CORTAZAR OSORIO B.S., Universidad del Valle – Colombia, 2011 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Molecular Biology Program 2018 This thesis for the Doctor of Philosophy degree by Michael Andrés Cortázar Osorio has been approved for the Molecular Biology Program by Mair Churchill, Chair Richard Davis Jay Hesselberth Thomas Blumenthal James Goodrich David Bentley, Advisor Date: Aug 17, 2018 ii Cortázar Osorio, Michael Andrés (Ph.D., Molecular Biology) Termination of RNA polymerase II transcription by the 5’-3’ exonuclease Xrn2 Thesis directed by Professor David L. Bentley ABSTRACT Termination of transcription occurs when RNA polymerase (pol) II dissociates from the DNA template and releases a newly-made mRNA molecule. Interestingly, an active debate fueled by conflicting reports over the last three decades is still open on which of the two main models of termination of RNA polymerase II transcription does in fact operate at 3’ ends of genes. The torpedo model indicates that the 5’-3’ exonuclease Xrn2 targets the nascent transcript for degradation after cleavage at the polyA site and chases pol II for termination. In contrast, the allosteric model asserts that transcription through the polyA signal induces a conformational change of the elongation complex and converts it into a termination-competent complex. In this thesis, I propose a unified allosteric-torpedo mechanism. Consistent with a polyA site-dependent conformational change of the elongation complex, I found that pol II transitions at the polyA site into a mode of slow transcription elongation that is accompanied by loss of Spt5 phosphorylation in the elongation complex.
    [Show full text]