Resistance to Rifampicin: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
COMMENTARY Does Transcription by RNA Polymerase Play a Direct Role in the Initiation of Replication?
Journal of Cell Science 107, 1381-1387 (1994) 1381 Printed in Great Britain © The Company of Biologists Limited 1994 COMMENTARY Does transcription by RNA polymerase play a direct role in the initiation of replication? A. Bassim Hassan* and Peter R. Cook† CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK *Present address: Addenbrooke’s NHS Trust, Hills Rd, Cambridge CB2 2QQ, UK †Author for correspondence SUMMARY RNA polymerases have been implicated in the initiation of replication in bacteria. The conflicting evidence for a role in initiation in eukaryotes is reviewed. Key words: cell cycle, initiation, origin, replication, transcription PRIMERS AND PRIMASES complex becomes exclusively involved in the synthesis of Okazaki fragments on the lagging strand. A critical step in this DNA polymerases cannot initiate the synthesis of new DNA process is the unwinding of the duplex. chains, they can only elongate pre-existing primers. The opposite polarities of the two strands of the double helix coupled with the 5′r3′ polarity of the polymerase means that RNA POLYMERASES AND THE INITIATION OF replication occurs relatively continuously on one (leading) REPLICATION IN BACTERIA strand and discontinuously on the other (lagging) strand. The continuous strand probably needs to be primed once, usually The first evidence of a role for RNA polymerase came from at an origin. Nature has found many different ways of doing the demonstration that the initiation of replication in this, including the use of RNA primers made by an RNA poly- Escherichia coli was sensitive to rifampicin, an inhibitor of merase (e.g. -
Antibiotic Resistance by High-Level Intrinsic Suppression of a Frameshift Mutation in an Essential Gene
Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene Douglas L. Husebya, Gerrit Brandisa, Lisa Praski Alzrigata, and Diarmaid Hughesa,1 aDepartment of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala SE-751 23, Sweden Edited by Sankar Adhya, National Institutes of Health, National Cancer Institute, Bethesda, MD, and approved January 4, 2020 (received for review November 5, 2019) A fundamental feature of life is that ribosomes read the genetic (unlikely if the DNA sequence analysis was done properly), that the code in messenger RNA (mRNA) as triplets of nucleotides in a mutants carry frameshift suppressor mutations (15–17), or that the single reading frame. Mutations that shift the reading frame gen- mRNA contains sequence elements that promote a high level of ri- erally cause gene inactivation and in essential genes cause loss of bosomal shifting into the correct reading frame to support cell viability viability. Here we report and characterize a +1-nt frameshift mutation, (10). Interest in understanding these mutations goes beyond Mtb and centrally located in rpoB, an essential gene encoding the beta-subunit concerns more generally the potential for rescue of mutants that ac- of RNA polymerase. Mutant Escherichia coli carrying this mutation are quire a frameshift mutation in any essential gene. We addressed this viable and highly resistant to rifampicin. Genetic and proteomic exper- by isolating a mutant of Escherichia coli carrying a frameshift mutation iments reveal a very high rate (5%) of spontaneous frameshift suppres- in rpoB and experimentally dissecting its genotype and phenotypes. sion occurring on a heptanucleotide sequence downstream of the mutation. -
Rho Dependent Termination of Transcription in Prokaryotes
Rho Dependent Termination Of Transcription In Prokaryotes Organoleptic Tymon scrimshaws no athenaeums yean fleetly after Teodorico whiled tunably, quite scrawliest. Amalgamative and honeyed Ximenes syllables her bullheads picket stork's-bill and debouch visually. Colory Jeffery concentred her avidity so injudiciously that Sergio briquet very injunctively. Dna in prokaryotic polymerase in termination may vary. Dna sequence by enzymes and fall off of transcripts, and marylène bertrand for the conformation of rho in the stalled rna helicases, rho dependent termination of in transcription. The other physiological functions are the basis for rna polymerase and longer as elongation complex forming a series of one of rho termination in transcription factors recognizing promoters in four steps. Eukaryotes require cookies from prokaryotes, depending on a fifth subunit involved. Thus, when translation termination occurs within same gene it the cause transcriptional termination, preventing expression of downstream genes. Atp synthase alpha and therefore be specialized rnas make a bsr, in termination of rho transcription prokaryotes. Dna must accept cookies and also found later in part because of rho termination occurs by the initiation site that bind to understand how they cannot be logged in replicating dna. Concerned about the Coronavirus? It is made rna polymerase causes rna in termination of rho transcription termination mechanisms to specific genes. Depending upon request your changes indicating that prokaryotic rnap with and prokaryotes. The DNA strand within this an is transcribed by the RNA polymerase. The basic promoter region in prokaryotic transcription is referred to two the Pribnow box. Formation of which prokaryotic and on the hfq is shown as the transcript of action of rho dependent termination transcription in prokaryotes have far more about ten base that elongation complex cell components and cell. -
Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the Tna Operon of Escherichia Coli
JOURNAL OF BACTERIOLOGY, Aug. 1995, p. 4451–4456 Vol. 177, No. 15 0021-9193/95/$04.0010 Copyright 1995, American Society for Microbiology Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the tna Operon of Escherichia coli CHARLES YANOFSKY* AND VIRGINIA HORN Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 Received 13 March 1995/Accepted 27 May 1995 The growth-inhibiting drug bicyclomycin, known to be an inhibitor of Rho factor activity in Escherichia coli, was shown to increase basal level expression of the tryptophanase (tna) operon and to allow growth of a tryptophan auxotroph on indole. The drug also relieved polarity in the trp operon and permitted growth of a trp double nonsense mutant on indole. Nine bicyclomycin-resistant mutants were isolated and partially characterized. Recombination data and genetic and biochemical complementation analyses suggest that five have mutations that affect rho, three have mutations that affect rpoB, and one has a mutation that affects a third locus, near rpoB. Individual mutants showed decreased, normal, or increased basal-level expression of the tna operon. All but one of the resistant mutants displayed greatly increased tna operon expression when grown in the presence of bicyclomycin. The tna operon of the wild-type drug-sensitive parent was also shown to be highly expressed during growth with noninhibitory concentrations of bicyclomycin. These findings demonstrate that resistance to this drug may be acquired by mutations at any one of three loci, two of which appear to be rho and rpoB. Zwiefka et al. (24) found that the antibiotic bicyclomycin segment and interacts with the transcribing RNA polymerase (bicozamycin), an inhibitor of the growth of several gram- molecule, causing it to terminate transcription (7, 9). -
Plasmid-Based Controls to Detect Rpob Mutations in Mycobacterium Tuberculosis by Quantitative Polymerase Chain Reaction-High-Resolution Melting
106 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 108(1): 106-109, February 2013 Plasmid-based controls to detect rpoB mutations in Mycobacterium tuberculosis by quantitative polymerase chain reaction-high-resolution melting Joas Lucas da Silva1/+, Gabriela Guimaraes Sousa Leite1, Gisele Medeiros Bastos1, Beatriz Cacciacarro Lucas1, Daniel Keniti Shinohara1, Joice Sayuri Takinami1, Marcelo Miyata1, Cristina Moreno Fajardo1, André Ducati Luchessi1, Clarice Queico Fujimura Leite2, Rosilene Fressatti Cardoso3, Rosario Dominguez Crespo Hirata1, Mario Hiroyuki Hirata1 1Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil 2Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP, Brasil 3Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR, Brasil Quantitative polymerase chain reaction-high-resolution melting (qPCR-HRM) analysis was used to screen for mutations related to drug resistance in Mycobacterium tuberculosis. We detected the C526T and C531T mutations in the rifampicin resistance-determining region (RRDR) of the rpoB gene with qPCR-HRM using plasmid-based controls. A segment of the RRDR region from M. tuberculosis H37Rv and from strains carrying C531T or C526T mutations in the rpoB were cloned into pGEM-T vector and these vectors were used as controls in the qPCR-HRM analysis of 54 M. tuberculosis strains. The results were confirmed by DNA sequencing and showed that recombinant plasmids can replace genomic DNA as controls in the qPCR-HRM assay. Plasmids can be handled outside of bio- safety level 3 facilities, reducing the risk of contamination and the cost of the assay. Plasmids have a high stability, are normally maintained in Escherichia coli and can be extracted in large amounts. -
Termination of RNA Polymerase II Transcription by the 5’-3’ Exonuclease Xrn2
TERMINATION OF RNA POLYMERASE II TRANSCRIPTION BY THE 5’-3’ EXONUCLEASE XRN2 by MICHAEL ANDRES CORTAZAR OSORIO B.S., Universidad del Valle – Colombia, 2011 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Molecular Biology Program 2018 This thesis for the Doctor of Philosophy degree by Michael Andrés Cortázar Osorio has been approved for the Molecular Biology Program by Mair Churchill, Chair Richard Davis Jay Hesselberth Thomas Blumenthal James Goodrich David Bentley, Advisor Date: Aug 17, 2018 ii Cortázar Osorio, Michael Andrés (Ph.D., Molecular Biology) Termination of RNA polymerase II transcription by the 5’-3’ exonuclease Xrn2 Thesis directed by Professor David L. Bentley ABSTRACT Termination of transcription occurs when RNA polymerase (pol) II dissociates from the DNA template and releases a newly-made mRNA molecule. Interestingly, an active debate fueled by conflicting reports over the last three decades is still open on which of the two main models of termination of RNA polymerase II transcription does in fact operate at 3’ ends of genes. The torpedo model indicates that the 5’-3’ exonuclease Xrn2 targets the nascent transcript for degradation after cleavage at the polyA site and chases pol II for termination. In contrast, the allosteric model asserts that transcription through the polyA signal induces a conformational change of the elongation complex and converts it into a termination-competent complex. In this thesis, I propose a unified allosteric-torpedo mechanism. Consistent with a polyA site-dependent conformational change of the elongation complex, I found that pol II transitions at the polyA site into a mode of slow transcription elongation that is accompanied by loss of Spt5 phosphorylation in the elongation complex. -
3-End Formation of Baculovirus Late Rnas
JOURNAL OF VIROLOGY, Oct. 2000, p. 8930–8937 Vol. 74, No. 19 0022-538X/00/$04.00ϩ0 Copyright © 2000, American Society for Microbiology. All Rights Reserved. 3Ј-End Formation of Baculovirus Late RNAs 1 1,2 JIANPING JIN AND LINDA A. GUARINO * Departments of Biochemistry and Biophysics1 and Entomology,2 Texas A&M University, College Station, Texas 77843-2128 Received 13 March 2000/Accepted 30 June 2000 Baculovirus late RNAs are transcribed by a four-subunit RNA polymerase that is virus encoded. The late viral mRNAs are capped and polyadenylated, and we have previously shown that capping is mediated by the LEF-4 subunit of baculovirus RNA polymerase. Here we report studies undertaken to determine the mecha- Downloaded from nism of 3-end formation. A globin cleavage/polyadenylation signal, which was previously shown to direct 3-end formation of viral RNAs in vivo, was cloned into a baculovirus transcription template. In vitro assays with purified baculovirus RNA polymerase revealed that 3 ends were formed not by a cleavage mechanism but rather by termination after transcription of a T-rich region of the globin sequence. Terminated RNAs were released from ternary complexes and were subsequently polyadenylated. Mutational analyses indicated that the T-rich sequence was essential for termination and polyadenylation, but the poly(A) signal and the GT-rich region of the globin polyadenylation/cleavage signal were not required. Termination was not dependent on ATP hydrolysis, indicating a slippage mechanism. http://jvi.asm.org/ mRNA 3Ј-end formation is a complicated process that re- promoters used for overexpression in baculovirus vectors be- quires protein-nucleic acid and protein-protein interactions. -
Transcription in Archaea
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 8545–8550, July 1999 Evolution Transcription in Archaea NIKOS C. KYRPIDES* AND CHRISTOS A. OUZOUNIS†‡ *Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemistry and Life Sciences, MC 110, 407 South Goodwin Avenue, Urbana, IL 61801; and †Computational Genomics Group, Research Programme, The European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge Outstation, Wellcome Trust Genome Campus, Cambridge CB10 1SD, United Kingdom Edited by Norman R. Pace, University of California, Berkeley, CA, and approved May 11, 1999 (received for review December 21, 1998) ABSTRACT Using the sequences of all the known transcrip- enzyme was found to have a complexity similar to that of the tion-associated proteins from Bacteria and Eucarya (a total of Eucarya (consisting of up to 15 components) (17). Subsequently, 4,147), we have identified their homologous counterparts in the the sequence similarity between the large (universal) subunits of four complete archaeal genomes. Through extensive sequence archaeal and eukaryotic polymerases was demonstrated (18). comparisons, we establish the presence of 280 predicted tran- This discovery was followed by the first unambiguous identifica- scription factors or transcription-associated proteins in the four tion of transcription factor TFIIB in an archaeon, Pyrococcus archaeal genomes, of which 168 have homologs only in Bacteria, woesei (19). Since then, we have witnessed a growing body of 51 have homologs only in Eucarya, and the remaining 61 have evidence confirming the presence of key eukaryotic-type tran- homologs in both phylogenetic domains. Although bacterial and scription initiation factors in Archaea (5, 20). Therefore, the eukaryotic transcription have very few factors in common, each prevailing view has become that Archaea and Eucarya share a exclusively shares a significantly greater number with the Ar- transcription machinery that is very different from that of Bac- chaea, especially the Bacteria. -
Regulatory Interplay Between Small Rnas and Transcription Termination Factor Rho Lionello Bossi, Nara Figueroa-Bossi, Philippe Bouloc, Marc Boudvillain
Regulatory interplay between small RNAs and transcription termination factor Rho Lionello Bossi, Nara Figueroa-Bossi, Philippe Bouloc, Marc Boudvillain To cite this version: Lionello Bossi, Nara Figueroa-Bossi, Philippe Bouloc, Marc Boudvillain. Regulatory interplay be- tween small RNAs and transcription termination factor Rho. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms , Elsevier, 2020, pp.194546. 10.1016/j.bbagrm.2020.194546. hal-02533337 HAL Id: hal-02533337 https://hal.archives-ouvertes.fr/hal-02533337 Submitted on 6 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Regulatory interplay between small RNAs and transcription termination factor Rho Lionello Bossia*, Nara Figueroa-Bossia, Philippe Bouloca and Marc Boudvillainb a Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France b Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France * Corresponding author: [email protected] Highlights Repression -
Sequence Analysis of the Drug‑Resistant Rpob Gene in the Mycobacterium Tuberculosis L‑Form Among Patients with Pneumoconiosis Complicated by Tuberculosis
MOLECULAR MEDICINE REPORTS 9: 1325-1330, 2014 Sequence analysis of the drug‑resistant rpoB gene in the Mycobacterium tuberculosis L‑form among patients with pneumoconiosis complicated by tuberculosis JUN LU1, SHAN JIANG2, SONG YE1, YUN DENG1, SHUAI MA1 and CHAO-PIN LI3 1Department of Pathogen Biology and Immunology, Anhui University of Science and Technology, Huainan, Anhui 232001; 2Department of Mining Engineering, Huainan Vocational Technical College, Huainan, Anhui 232001; 3Department of Medical Parasitology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China Received June 12, 2013; Accepted February 4, 2014 DOI: 10.3892/mmr.2014.1948 Abstract. The aim of the present study was to investigate the Introduction mutational characteristics of the drug-resistant Mycobacterium tuberculosis L-form of the rpoB gene isolated from patients Tuberculosis is a chronic infectious disease caused by the with pneumoconiosis complicated by tuberculosis, in order to bacterium Mycobacterium tuberculosis, and it remains a reduce the occurrence of the drug resistance of patients and significant public health risk worldwide. Cosmopolitan tuber- gain a more complete information on the resistance of the culosis pestilence has quickly returned due to the misuse of Mycobacterium tuberculosis L-form. A total of 42 clinically antituberculosis drugs and infection with HIV that has been isolated strains of Mycobacterium tuberculosis L-form were apparent since the 1980's (1,2). Since becoming the first elected collected, including 31 drug-resistant strains. The genomic antituberculosis drug, the clinical therapeutic efficacy of RFP DNA was extracted, then the target genes were amplified by has severely degraded due to the appearance of drug-resistant polymerase chain reaction and the hot mutational regions of strains and the L-form mutations of Mycobacterium tubercu‑ the rpoB gene were analyzed by direct sequencing. -
Analysis of the Pcra-RNA Polymerase Complex Reveals a Helicase
RESEARCH ARTICLE Analysis of the PcrA-RNA polymerase complex reveals a helicase interaction motif and a role for PcrA/UvrD helicase in the suppression of R-loops Inigo Urrutia-Irazabal1, James R Ault2, Frank Sobott2, Nigel J Savery1, Mark S Dillingham1* 1DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom; 2Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom Abstract The PcrA/UvrD helicase binds directly to RNA polymerase (RNAP) but the structural basis for this interaction and its functional significance have remained unclear. In this work, we used biochemical assays and hydrogen-deuterium exchange coupled to mass spectrometry to study the PcrA-RNAP complex. We find that PcrA binds tightly to a transcription elongation complex in a manner dependent on protein:protein interaction with the conserved PcrA C-terminal Tudor domain. The helicase binds predominantly to two positions on the surface of RNAP. The PcrA C-terminal domain engages a conserved region in a lineage-specific insert within the b subunit which we identify as a helicase interaction motif present in many other PcrA partner proteins, including the nucleotide excision repair factor UvrB. The catalytic core of the helicase binds near the RNA and DNA exit channels and blocking PcrA activity in vivo leads to the accumulation of R-loops. We propose a role for PcrA as an R-loop suppression factor that helps to minimize conflicts between transcription and other processes on DNA including replication. *For correspondence: [email protected] Competing interests: The Introduction authors declare that no Helicases are conserved proteins found in all kingdoms of life. -
Sral Srna Interaction Regulates the Terminator by Preventing Premature Transcription Termination of Rho Mrna
SraL sRNA interaction regulates the terminator by preventing premature transcription termination of rho mRNA Inês Jesus Silvaa,1, Susana Barahonaa,2, Alex Eyraudb,2, David Lalaounab, Nara Figueroa-Bossic, Eric Masséb, and Cecília Maria Arraianoa,1 aInstituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; bRNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; and cInstitute for Integrative Biology of the Cell (I2BC), Commissariat à l’énergie atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France Edited by Tina M. Henkin, The Ohio State University, Columbus, OH, and approved December 28, 2018 (received for review July 5, 2018) Transcription termination is a critical step in the control of gene sequence, leading to changes in translation and/or mRNA degra- expression. One of the major termination mechanisms is mediated dation (9–11). However, distinct mechanisms of action have been by Rho factor that dissociates the complex mRNA-DNA-RNA poly- increasingly reported in the literature (11). For instance, the Sal- merase upon binding with RNA polymerase. Rho promotes termina- monella sRNA ChiX was shown to induce premature transcription tion at the end of operons, but it can also terminate transcription termination within the coding sequence of chiP as a result of its within leader regions, performing regulatory functions and avoiding interaction with 5′-UTR of the operon chiPQ, thus affecting the pervasive transcription. Transcription of rho is autoregulated through expression of both genes of the operon (12). Conversely, it was a Rho-dependent attenuation in the leader region of the transcript.