Different Phosphoisoforms of RNA Polymerase II Engage the Rtt103 Termination Factor in a Structurally Analogous Manner
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Liver Med23 Ablation Improves Glucose and Lipid Metabolism Through Modulating FOXO1 Activity
Cell Research (2014) 24:1250-1265. npg © 2014 IBCB, SIBS, CAS All rights reserved 1001-0602/14 ORIGINAL ARTICLE www.nature.com/cr Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity Yajing Chu1, Leonardo Gómez Rosso1, Ping Huang2, Zhichao Wang1, Yichi Xu3, Xiao Yao1, Menghan Bao1, Jun Yan3, Haiyun Song2, Gang Wang1 1State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chi- nese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; 2Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shang- hai 200031, China; 3CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China Mediator complex is a molecular hub integrating signaling, transcription factors, and RNA polymerase II (RNAPII) machinery. Mediator MED23 is involved in adipogenesis and smooth muscle cell differentiation, suggesting its role in energy homeostasis. Here, through the generation and analysis of a liver-specific Med23-knockout mouse, we found that liver Med23 deletion improved glucose and lipid metabolism, as well as insulin responsiveness, and prevented diet-induced obesity. Remarkably, acute hepatic Med23 knockdown in db/db mice significantly improved the lipid profile and glucose tolerance. Mechanistically, MED23 participates in gluconeogenesis and cholesterol synthesis through modulating the transcriptional activity of FOXO1, a key metabolic transcription factor. Indeed, hepatic Med23 deletion impaired the Mediator and RNAPII recruitment and attenuated the expression of FOXO1 target genes. Moreover, this functional interaction between FOXO1 and MED23 is evolutionarily conserved, as the in vivo activities of dFOXO in larval fat body and in adult wing can be partially blocked by Med23 knockdown in Drosophila. -
Yeast Genome Gazetteer P35-65
gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal -
Sudips Revised Thesis
Investigation Of The Behavior Of The Gal4 Inhibitor Gal80 Of The GAL Genetic Switch In The Yeast Saccharomyces Cerevisiae Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sudip Goswami, M.S. Graduate Program in Molecular Genetics The Ohio State University 2014 Dissertation Committee Dr. James Hopper, Advisor Dr. Stephen Osmani Dr. Hay-Oak Park Dr. Jian-Qiu Wu ii Copyright by Sudip Goswami 2014 iii ABSTRACT The DNA-binding transcriptional activator Gal4 and its regulators Gal80 and Gal3 constitute a galactose-responsive switch for the GAL genes of Saccharomyces cerevisiae. Gal4 binds to upstream activation sequences or UASGAL sites on GAL gene promoters as a dimer both in the absence and presence of galactose. In the absence of galactose, a Gal80 dimer binds to and masKs the Gal4 activation domain, inhibiting its activity. In the presence of galactose, Gal3 interacts with Gal80 and relieves Gal80’s inhibition of Gal4 activity allowing rapid induction of expression of GAL genes. In the first part of this work (Chapter 2) in-vitro chemical crosslinking coupled with SDS PAGE and native PAGE analysis were employed to show that the presence of Gal3 that can interact with Gal80 impairs Gal80 self association. In addition, live cell spinning disK confocal imaging showed that dissipation of newly discovered Gal80-2mYFP/2GFP clusters in galactose is dependent on Gal3’s ability to interact with Gal80. In the second part (Chapter 3), extensive analysis of Gal80 clusters was carried out which showed that these clusters associate strongly with the GAL1-10-7 locus and this association is dependent on the presence of the UASGAL sites at this locus. -
Commentary a Positive Addition to a Negative Tail's Tale Arno L
Commentary A positive addition to a negative tail's tale Arno L. Greenleaf Biochemistry Department, Duke University Medical Center, Durham, NC 27710 The C-terminal repeat domain (CTD) of threonine hyperphosphorylation, this promoter-proximal paused complexes, the largest subunit ofRNA polymerase II modification produces a shift in SDS/gel thereby allowing productive elongation. is composed of multiple repeats of the mobility. In contrast to c-Abl, a different The presence of CTD kinase activity in consensus heptamer sequence Tyr-Ser- tyrosine kinase, c-Src, does not phos- preinitiation complexes and the apparent Pro-Thr-Ser-Pro-Ser (YSPTSPS in sin- phorylate the CTD in vitro. This addi- association of CTD kinase activity with gle-letter code) (for reviews, see refs. tional information forces a significant re- transcription factor TFIIH are consistent 1-3); thus five of the seven residues of evaluation of our ideas about CTD phos- with this suggestion (refs. 8-10 and the each repeat are potential sites of phos- phorylation. references therein). More recent in vivo phorylation. Indeed, hyperphosphoryla- One obvious question raised by these experiments are also in general agree- tion ofthis domain has been documented findings concerns the identity of the ty- ment with this overall picture (11). It in organisms from yeast to human (one rosine kinase(s) that phosphorylates the should be pointed out, however, that diagnostic for hyperphosphorylation of CTD in vivo. The previously known and despite the identification and character- the CTD is a marked mobility change of now reported properties ofc-Abl are con- ization of a number of different CTD the largest subunit in SDS gels; unphos- sistent with its playing such a role in the kinases, the identity of the kinase(s) act- phorylated subunit "IIa" migrates with nucleus, but additional tests will be re- ing on the CTD in vivo has not been an apparent molecular mass of -215 quired to test critically this possibility. -
Rho Dependent Termination of Transcription in Prokaryotes
Rho Dependent Termination Of Transcription In Prokaryotes Organoleptic Tymon scrimshaws no athenaeums yean fleetly after Teodorico whiled tunably, quite scrawliest. Amalgamative and honeyed Ximenes syllables her bullheads picket stork's-bill and debouch visually. Colory Jeffery concentred her avidity so injudiciously that Sergio briquet very injunctively. Dna in prokaryotic polymerase in termination may vary. Dna sequence by enzymes and fall off of transcripts, and marylène bertrand for the conformation of rho in the stalled rna helicases, rho dependent termination of in transcription. The other physiological functions are the basis for rna polymerase and longer as elongation complex forming a series of one of rho termination in transcription factors recognizing promoters in four steps. Eukaryotes require cookies from prokaryotes, depending on a fifth subunit involved. Thus, when translation termination occurs within same gene it the cause transcriptional termination, preventing expression of downstream genes. Atp synthase alpha and therefore be specialized rnas make a bsr, in termination of rho transcription prokaryotes. Dna must accept cookies and also found later in part because of rho termination occurs by the initiation site that bind to understand how they cannot be logged in replicating dna. Concerned about the Coronavirus? It is made rna polymerase causes rna in termination of rho transcription termination mechanisms to specific genes. Depending upon request your changes indicating that prokaryotic rnap with and prokaryotes. The DNA strand within this an is transcribed by the RNA polymerase. The basic promoter region in prokaryotic transcription is referred to two the Pribnow box. Formation of which prokaryotic and on the hfq is shown as the transcript of action of rho dependent termination transcription in prokaryotes have far more about ten base that elongation complex cell components and cell. -
Double-Stranded DNA Translocase Activity of Transcription Factor TFIIH and the Mechanism of RNA Polymerase II Open Complex Formation
Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation James Fishburna, Eric Tomkob, Eric Galburtb,1, and Steven Hahna,1 aDivision of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and bDepartment of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110 Edited by Robert G. Roeder, The Rockefeller University, New York, NY, and approved February 24, 2015 (received for review September 12, 2014) Formation of the RNA polymerase II (Pol II) open complex (OC) re- downstream from the site of DNA unwinding in the OC (20–24). quires DNA unwinding mediated by the transcription factor Therefore, XPB/Ssl2 cannot function as a conventional helicase TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds to promote OC formation (20). Three models have been pro- DNA downstream from the location of DNA unwinding, it cannot posed to explain the role of XPB/Ssl2 in transcription. First, it function using a conventional helicase mechanism. Here we show was postulated that XPB acts as a molecular wrench, binding to that yeast TFIIH contains an Ssl2-dependent double-stranded DNA its site on downstream DNA and using its ATPase to rotate up- translocase activity. Ssl2 tracks along one DNA strand in the 5′ → stream DNA within the Pol II cleft (20). Because upstream DNA 3′ direction, implying it uses the nontemplate promoter strand to is constrained by TBP, TFIIB, and other factors, DNA rotation reel downstream DNA into the Pol II cleft, creating torsional strain could lead to DNA opening. -
Resistance to Rifampicin: a Review
The Journal of Antibiotics (2014) 67, 625–630 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja REVIEW ARTICLE Resistance to rifampicin: a review Beth P Goldstein Resistance to rifampicin (RIF) is a broad subject covering not just the mechanism of clinical resistance, nearly always due to a genetic change in the b subunit of bacterial RNA polymerase (RNAP), but also how studies of resistant polymerases have helped us understand the structure of the enzyme, the intricacies of the transcription process and its role in complex physiological pathways. This review can only scratch the surface of these phenomena. The identification, in strains of Escherichia coli, of the positions within b of the mutations determining resistance is discussed in some detail, as are mutations in organisms that are therapeutic targets of RIF, in particular Mycobacterium tuberculosis. Interestingly, changes in the same three codons of the consensus sequence occur repeatedly in unrelated RIF-resistant (RIFr) clinical isolates of several different bacterial species, and a single mutation predominates in mycobacteria. The utilization of our knowledge of these mutations to develop rapid screening tests for detecting resistance is briefly discussed. Cross-resistance among rifamycins has been a topic of controversy; current thinking is that there is no difference in the susceptibility of RNAP mutants to RIF, rifapentine and rifabutin. Also summarized are intrinsic RIF resistance and other resistance mechanisms. The Journal of Antibiotics (2014) 67, 625–630; doi:10.1038/ja.2014.107; published online 13 August 2014 INTRODUCTION laboratory studies and emerging in patients who received mono- In celebrating the life of Professor Piero Sensi and his discovery of therapy with RIF. -
Supplementary Information
Supplementary Information Table S1. Pathway analysis of the 1246 dwf1-specific differentially expressed genes. Fold Change Fold Change Fold Change Gene ID Description (dwf1/WT) (XL-5/WT) (XL-6/WT) Carbohydrate Metabolism Glycolysis/Gluconeogenesis POPTR_0008s11770.1 Glucose-6-phosphate isomerase −1.7382 0.512146 0.168727 POPTR_0001s47210.1 Fructose-bisphosphate aldolase, class I 1.599591 0.044778 0.18237 POPTR_0011s05190.3 Probable phosphoglycerate mutase −2.11069 −0.34562 −0.9738 POPTR_0012s01140.1 Pyruvate kinase −1.25054 0.074697 −0.16016 POPTR_0016s12760.1 Pyruvate decarboxylase 2.664081 0.021062 0.371969 POPTR_0012s08010.1 Aldehyde dehydrogenase (NAD+) −1.41556 0.479957 −0.21366 POPTR_0014s13710.1 Acetyl-CoA synthetase −1.337 0.154552 −0.26532 POPTR_0017s11660.1 Aldose 1-epimerase 2.770518 0.016874 0.73016 POPTR_0010s11970.1 Phosphoglucomutase −1.25266 −0.35581 0.074064 POPTR_0012s14030.1 Phosphoglucomutase −1.15872 −0.68468 −0.93596 POPTR_0002s10850.1 Phosphoenolpyruvate carboxykinase (ATP) 1.489119 0.967284 0.821559 Citrate cycle (TCA cycle) 2-Oxoglutarate dehydrogenase E2 component POPTR_0014s15280.1 −1.63733 0.076435 0.170827 (dihydrolipoamide succinyltransferase) POPTR_0002s26120.1 Succinyl-CoA synthetase β subunit −1.29244 −0.38517 −0.3497 POPTR_0007s12750.1 Succinate dehydrogenase (ubiquinone) flavoprotein subunit −1.83751 0.519356 0.309149 POPTR_0002s10850.1 Phosphoenolpyruvate carboxykinase (ATP) 1.489119 0.967284 0.821559 Pentose phosphate pathway POPTR_0008s11770.1 Glucose-6-phosphate isomerase −1.7382 0.512146 0.168727 POPTR_0013s00660.1 Glucose-6-phosphate 1-dehydrogenase −1.26949 −0.18314 0.374822 POPTR_0015s00960.1 6-Phosphogluconolactonase 2.022223 0.168877 0.971431 POPTR_0010s11970.1 Phosphoglucomutase −1.25266 −0.35581 0.074064 POPTR_0012s14030.1 Phosphoglucomutase −1.15872 −0.68468 −0.93596 POPTR_0001s47210.1 Fructose-bisphosphate aldolase, class I 1.599591 0.044778 0.18237 S2 Table S1. -
Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the Tna Operon of Escherichia Coli
JOURNAL OF BACTERIOLOGY, Aug. 1995, p. 4451–4456 Vol. 177, No. 15 0021-9193/95/$04.0010 Copyright 1995, American Society for Microbiology Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the tna Operon of Escherichia coli CHARLES YANOFSKY* AND VIRGINIA HORN Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 Received 13 March 1995/Accepted 27 May 1995 The growth-inhibiting drug bicyclomycin, known to be an inhibitor of Rho factor activity in Escherichia coli, was shown to increase basal level expression of the tryptophanase (tna) operon and to allow growth of a tryptophan auxotroph on indole. The drug also relieved polarity in the trp operon and permitted growth of a trp double nonsense mutant on indole. Nine bicyclomycin-resistant mutants were isolated and partially characterized. Recombination data and genetic and biochemical complementation analyses suggest that five have mutations that affect rho, three have mutations that affect rpoB, and one has a mutation that affects a third locus, near rpoB. Individual mutants showed decreased, normal, or increased basal-level expression of the tna operon. All but one of the resistant mutants displayed greatly increased tna operon expression when grown in the presence of bicyclomycin. The tna operon of the wild-type drug-sensitive parent was also shown to be highly expressed during growth with noninhibitory concentrations of bicyclomycin. These findings demonstrate that resistance to this drug may be acquired by mutations at any one of three loci, two of which appear to be rho and rpoB. Zwiefka et al. (24) found that the antibiotic bicyclomycin segment and interacts with the transcribing RNA polymerase (bicozamycin), an inhibitor of the growth of several gram- molecule, causing it to terminate transcription (7, 9). -
Review Galactokinase: Structure, Function and Role in Type II
CMLS, Cell. Mol. Life Sci. 61 (2004) 2471–2484 1420-682X/04/202471-14 DOI 10.1007/s00018-004-4160-6 CMLS Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2004 Review Galactokinase: structure, function and role in type II galactosemia H. M. Holden a,*, J. B. Thoden a, D. J. Timson b and R. J. Reece c,* a Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (USA), Fax: +1 608 262 1319, e-mail: [email protected] b School of Biology and Biochemistry, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, (United Kingdom) c School of Biological Sciences, The University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, (United Kingdom), Fax: +44 161 275 5317, e-mail: [email protected] Received 13 April 2004; accepted 7 June 2004 Abstract. The conversion of beta-D-galactose to glucose unnatural sugar 1-phosphates. Additionally, galactoki- 1-phosphate is accomplished by the action of four en- nase-like molecules have been shown to act as sensors for zymes that constitute the Leloir pathway. Galactokinase the intracellular concentration of galactose and, under catalyzes the second step in this pathway, namely the con- suitable conditions, to function as transcriptional regula- version of alpha-D-galactose to galactose 1-phosphate. tors. This review focuses on the recent X-ray crystallo- The enzyme has attracted significant research attention graphic analyses of galactokinase and places the molecu- because of its important metabolic role, the fact that de- lar architecture of this protein in context with the exten- fects in the human enzyme can result in the diseased state sive biochemical data that have accumulated over the last referred to as galactosemia, and most recently for its uti- 40 years regarding this fascinating small molecule ki- lization via ‘directed evolution’ to create new natural and nase. -
Termination of RNA Polymerase II Transcription by the 5’-3’ Exonuclease Xrn2
TERMINATION OF RNA POLYMERASE II TRANSCRIPTION BY THE 5’-3’ EXONUCLEASE XRN2 by MICHAEL ANDRES CORTAZAR OSORIO B.S., Universidad del Valle – Colombia, 2011 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Molecular Biology Program 2018 This thesis for the Doctor of Philosophy degree by Michael Andrés Cortázar Osorio has been approved for the Molecular Biology Program by Mair Churchill, Chair Richard Davis Jay Hesselberth Thomas Blumenthal James Goodrich David Bentley, Advisor Date: Aug 17, 2018 ii Cortázar Osorio, Michael Andrés (Ph.D., Molecular Biology) Termination of RNA polymerase II transcription by the 5’-3’ exonuclease Xrn2 Thesis directed by Professor David L. Bentley ABSTRACT Termination of transcription occurs when RNA polymerase (pol) II dissociates from the DNA template and releases a newly-made mRNA molecule. Interestingly, an active debate fueled by conflicting reports over the last three decades is still open on which of the two main models of termination of RNA polymerase II transcription does in fact operate at 3’ ends of genes. The torpedo model indicates that the 5’-3’ exonuclease Xrn2 targets the nascent transcript for degradation after cleavage at the polyA site and chases pol II for termination. In contrast, the allosteric model asserts that transcription through the polyA signal induces a conformational change of the elongation complex and converts it into a termination-competent complex. In this thesis, I propose a unified allosteric-torpedo mechanism. Consistent with a polyA site-dependent conformational change of the elongation complex, I found that pol II transitions at the polyA site into a mode of slow transcription elongation that is accompanied by loss of Spt5 phosphorylation in the elongation complex. -
3-End Formation of Baculovirus Late Rnas
JOURNAL OF VIROLOGY, Oct. 2000, p. 8930–8937 Vol. 74, No. 19 0022-538X/00/$04.00ϩ0 Copyright © 2000, American Society for Microbiology. All Rights Reserved. 3Ј-End Formation of Baculovirus Late RNAs 1 1,2 JIANPING JIN AND LINDA A. GUARINO * Departments of Biochemistry and Biophysics1 and Entomology,2 Texas A&M University, College Station, Texas 77843-2128 Received 13 March 2000/Accepted 30 June 2000 Baculovirus late RNAs are transcribed by a four-subunit RNA polymerase that is virus encoded. The late viral mRNAs are capped and polyadenylated, and we have previously shown that capping is mediated by the LEF-4 subunit of baculovirus RNA polymerase. Here we report studies undertaken to determine the mecha- Downloaded from nism of 3-end formation. A globin cleavage/polyadenylation signal, which was previously shown to direct 3-end formation of viral RNAs in vivo, was cloned into a baculovirus transcription template. In vitro assays with purified baculovirus RNA polymerase revealed that 3 ends were formed not by a cleavage mechanism but rather by termination after transcription of a T-rich region of the globin sequence. Terminated RNAs were released from ternary complexes and were subsequently polyadenylated. Mutational analyses indicated that the T-rich sequence was essential for termination and polyadenylation, but the poly(A) signal and the GT-rich region of the globin polyadenylation/cleavage signal were not required. Termination was not dependent on ATP hydrolysis, indicating a slippage mechanism. http://jvi.asm.org/ mRNA 3Ј-end formation is a complicated process that re- promoters used for overexpression in baculovirus vectors be- quires protein-nucleic acid and protein-protein interactions.