Table of Contents

Glossary...... 14 1.Introduction ...... 16 1.1Background ...... 16 1.2DevelopmentsinHighFrequencyOTACFilters ...... 19 1.3ResearchScope ...... 21 1.4OriginalContributions ...... 22 1.5OrganizationofthisThesis ...... 23 2.ReviewofAnalogueFiltersforComputerHardDiskDriveSystems ...... 25 2.1Introduction...... 25 2.2ArchitectureofHDD...... 25 2.3PreviousWorkofAnalogueFiltersforHDDSystems...... 35 2.4FilterDesignConsiderationsforReadChannelOTACFilters...... 42 2.4.1GroupDelayResponse...... 42 2.4.2TransferFunctionoftheFilter...... 43 2.4.3FilterArchitectures ...... 45 2.4.4FilterCircuitsandTuning...... 47 2.5OTADesignConsiderationsforReadChannelOTACFilters ...... 48 2.6Conclusions...... 54 3.DesignandSimulationofLinearPhaseMLFFLFandIFLFOTACLowpass FiltersforHDDReadChannels ...... 55 3.1Introduction...... 55 3.2TransistorlevelOTADesign...... 56 3.2.1SingleStageOTADesign...... 56 3.2.2MultipleOutputMultipleInputOTADesign...... 57

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 1 3.2.3SimulationResultsofTransistorlevelOTAs...... 61 3.3DesignofCurrentmode0.05°EquirippleLinearPhaseMLFFLFOTAC LowpassFilters ...... 66 3.3.1SynthesisofCurrentModeFLFLowpassOTACFilters...... 67 3.3.2DesignofSeventhorderCurrentmodeFLF0.05°EquirippleLinearPhase LowpassOTACFilter...... 70 3.3.3DesignofFifthorderCurrentmodeFLF0.05°EquirippleLinearPhase LowpassOTACFilter...... 72 3.4DesignofVoltagemodeSeventhorderIFLF0.05°EquirippleLinearPhase LowpassOTACFilter...... 73 3.5SimulationResultsofCurrentmodeFLFandVoltagemodeIFLFOTAC Filters ...... 75 3.5.1SimulationResultsofCurrentmodeSeventhorder0.05°equiripplelinear phaseFLFlowpassOTACfilter...... 75 3.5.2SimulationResultsofCurrentmodeFifthorder0.05°EquirippleLinear PhaseFLFOTACLowpassFilter ...... 78 3.5.3SimulationResultsofVoltagemodeSeventhorder0.05°EquirippleLinear PhaseIFLFOTACLowpassFilter...... 81 3.6Conclusions...... 84 4.SynthesisandDesignofCurrentmodeMLFLFOTACFilterswithApplicationin HDDReadChannels ...... 86 4.1Introduction...... 86 4.2AllpoleCurrentModeLFFeedbackOTACFilters...... 87 4.3CurrentmodeLFMLFOTACFilterswithInputDistributor...... 89 4.4CurrentModeLFOTACLowpassFilterswithOutputSummation...... 92 4.5DesignofCurrentmodeSeventhOrder0.05°EquirippleLinearPhaseOTAC LowpassFilterusingLFOutputSummation...... 94

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 2 4.5.1TheSynthesisofCurrentmodeSeventhorder0.05°EquirippleLinear PhaseOTACLFFilter...... 95 4.5.2TransistorlevelOTADesign...... 97 4.5.3SimulationResults ...... 99 4.6Conclusions...... 104 5.DesignandSimulationofFifthorder0.05°EquirippleLinearPhaseMLFLF OTACLowpassFiltersforHDDReadChannels...... 106 5.1Introduction...... 106 5.2TransistorlevelOTADesign...... 107 5.2.1SecondOrderEffectsoftheOTA ...... 111 5.2.2FrequencyResponseoftheOTA...... 112 5.3DesignofFifthorder0.05°EquirippleLinearPhaseLFOTACLowpassFilter ...... 114 5.3.1DesignofCurrentmodeFifthorder0.05°EquirippleLinearPhaseLF OTACLowpassFilter...... 114 5.3.2DesignofVoltagemodeFifthorder0.05°EquirippleLinearPhaseLF LowpassOTACFilter...... 116 5.4SimulationResultsofCurrentmodeLFandVoltagemodeLFOTACFilters ... ...... 118 5.4.1SimulationResultsofTransistorlevelOTA ...... 118 5.4.2.SimulationResultsofCurrentmodeFifthorder0.05°EquirippleLinear PhaseLFLowpassOTACFilter...... 120 5.4.3.SimulationResultsofVoltagemodeFifthorder0.05°EquirippleLinear PhaseLFLowpassOTACFilter...... 123 5.5Conclusions...... 127 6.AnalogueFilterDesignConsiderationsforHighlyIntegrated MultistandardReceivers ...... 129

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 3 6.1Introduction...... 129 6.2ReceiverAnalogueBasebandandChannelSelectionFilters ...... 132 6.3MultiStandardActiveRCFilters...... 136 6.4MultiStandardOTACFilters...... 137 6.5DesignandSimulationofMLFOTACFilterforMultistandards...... 140 6.6FutureDirections...... 143 6.7Conclusions...... 144 7.DesignandSimulationofMLFOTACFiltersforWirelessCommunication Receivers ...... 145 7.1Introduction...... 145 7.2TransistorLevelOTADesign...... 146 7.3FilterArchitectureandSynthesis...... 149 7.3.1CurrentmodeFLFConfiguration...... 150 7.3.2CurrentmodeLFConfiguration ...... 151 7.3.3VoltagemodeIFLFConfiguration ...... 153 7.3.4VoltagemodeLFConfiguration...... 154 7.4SimulationResults ...... 156 7.4.1SimulationResultsofCurrentmodeEllipticOTACLowpassFilters .... 156 7.4.2SimulationResultsofVoltagemodeEllipticOTACLowpassFilters.... 160 7.5Conclusions...... 163 8.Conclusions ...... 165 8.1SummaryoftheWork...... 165 8.2TopicsofFurtherResearch...... 168 8.2.1MLFOTACEqualiserswithHighGainBoostforComputerHDD Systemss...... 168 8.2.2MultistandardMLFLowpassOTACFiltersforMobileCommunication andTelevisionSystems...... 169

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 4 8.2.3ComparisonbetweenVoltageandCurrentmodeMLFOTACFilters.. 170 8.2.4DesignofMLFOTACBandpassFiltersforWirelessCommunications...... ...... 170 References: ...... 172 Appendix: ...... 186

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 5 List of Figures

Figure2.1Storagesystemsegmentation...... 25 Figure2.2Saturationrecording(a)Twolevelwritecurrent(b)Magnetizationontrack ...... …...27 Figure2.3NRZIrecording ………………………………………………………...... 27 Figure2.4Diagramofintersymbolinterference(ISI) …………………………...………28 Figure2.5(a)EyediagramwithoutISI(b)EyediagramwithISI...... 28

Figure2.6ArchitectureofHDDanaloguefrontend ...... 29 Figure2.7Commonpartialresponsetargetsusedinmagneticrecording...... 32 Figure2.8Magnituderesponsesoflowpassfilterwithandwithoutgainboost...... 33 Figure2.9(a)ActiveRC(b)MOSFETCintegrators ...... 36 Figure 2.10 Two integrator loop OTAC filter structures (a) canonical (b) TwoThomas ...... 36 Figure 2.11 Comparison of group delay of BesselThomson and Equiripple approximations ...... 43 Figure2.12Comparisonofgroupdelayrippleofidealseventhandfifthorder0.05° equiripplelinearphaseapproximation ...... 45 Figure 2.13 Differential CMOS OTAs (a) simple differential (b) balanced (c) fullydifferential (d) fullydifferential (with inherent CMFF) (e) pseudodifferential OTAs ...... 49 Figure2.14ImplementationsofthecrosscoupledOTA...... 51 Figure2.15Twopossibletopologiesofsourcedegenerationtechniques...... 51 Figure2.16CMFBbasiccircuitconcept(a)basiccommonmodedetector(b)CMFB implmentation...... 54 Figure3.1FullybalancedtwooutputOTA ...... 57 Figure3.2FullybalancedtwoinputfouroutputOTA ...... 58 Figure3.3FullybalancedfourinputtwooutputOTA ...... 61 Figure 3.4 Simulated and hand calculated differential output current versus

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 6 differentialinputvoltagefor2VOTAwithshortcircuitloaf...... 62 Figure 3.5 Simulated and hand calculated DC transconductance versus differential inputvoltageforthe2Vwithshortcircuitload...... 62 Figure3.6SimulatedandhandcalculatedACopencircuitfrequencyresponsesofthe 2VOTA...... 63 Figure3.7SimulatedTHDversusthedifferentialinputvoltageofthe2VOTA...... 63 Figure 3.8 Simulated and hand calculated differential output current versus differentialinputvoltagefor2.5VOTAwithshortcircuitload...... 64 Figure 3.9 Simulated and hand calculated DC transconductance versus differential inputvoltageofthe2.5VOTAwithshortcircuitload ...... 64 Figure 3.10 Simulated and hand calculated AC opencircuit frequency responses of the2.5VOTA...... 65 Figure3.11SimulatedTHDversusthedifferentialinputvoltageoftheOTAinFigure 3.3...... 65 Figure3.12GeneralallpolecurrentmodeMLFFLFOTACconfiguration ...... 67 Figure 3.13 The singleended currentmode MLF FLF structure with input distribution...... 68 Figure 3.14 The singleended currentmode MLF FLF structure with output summation ...... 69 Figure 3.15 Seventh −order current −mode FLF OTA −C lowpass filter with output summationOTAnetwork...... 70 Figure3.16FifthordercurrentmodeFLFOTACfilterwithoutputsummationOTA network...... 72 Figure3.17VoltagemodeseventhorderIFLFOTA −Cfilterwithinputdistribution OTAnetwork...... 74 Figure 3.18 Simulated magnitude response of the currentmode FLF seventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithoutandwithgainboost ..... 76 Figure3.19SimulatedgroupdelayresponseofthecurrentmodeFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilter ...... 76 DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 7 Figure3.20SimulatedTHDversusthedifferentialinputcurrentofthecurrentmode FLFseventhorder0.05°equiripplelinearphaseOTAClowpassfilter ...... 77 Figure3.21SimulatedTHDversusfrequencyofthecurrentmodeFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilter ...... 78 Figure3.22SimulatedmagnituderesponseofthecurrentmodeFLFfifthorder0.05° equiripplelinearphaseOTAClowpassfilter...... 78 Figure 3.23 Simulated group delay ripple of the currentmode fifthorder 0.05° equiripplelinearphaseFLFOTAClowpassfilterwithoutgainboost...... 79 Figure3.24SimulatedTHDversusthedifferentialinputcurrentofthecurrentmode FLFfifthorder0.05°equiripplelinearphaseOTAClowpassfilter...... 80 Figure 3.25 Simulated THD versus frequency of the currentmode FLF fifthorder 0.05°equiripplelinearphaseOTAClowpassfilter ...... 80 Figure3.26SimulatedmagnituderesponsesofthevoltagemodeIFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithoutandwithgainboost ... 81 Figure3.27SimulatedgroupdelayresponsesofthevoltagemodeIFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithoutandwithgainboost ... 82 Figure3.28SimulatedTHDversusthedifferentialinputvoltageofthevoltagemode IFLFseventhorder0.05°equiripplelinearphaseOTAClowpassfilterwithoutgain boost ...... 82 Figure3.29SimulatedTHDversusfrequencyofthevoltagemodeIFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithoutgainboost ...... 83

Figure4.1GeneralallpolecurrentmodeLFOTACconfiguration...... 87 Figure4.2UniversalcurrentmodeLFOTACfilterstructureswithinputdistribution

OTAnetwork...... 90 Figure4.3UniversalcurrentmodeLFOTACfilterstructureswithoutputsummation

OTAnetwork...... 92 Figure 4.4 Seventhorder currentmode LF MLF OTAC filters with output summationOTAnetwork...... 95 DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 8 Figure4.5ThesimulatedunitOTA ...... 97 Figure 4.6 Simulated DC transconductance versus differential input voltage for varyingbiasvoltage...... 99 Figure4.7SimulatedACopencircuitfrequencyresponsesofOTAwithdifferentbias currents ...... 99 Figure4.8SimulatedTHDasafunctionofdifferentialinputvoltageoftheOTAin

Figure4.5...... 100 Figure4.9SimulatedmagnituderesponseofthecurrentmodeLFseventhorder0.05° equiripplelinearphaseOTAClowpassfilterwithoutgainboost ...... 100 Figure 4.10 Simulated group delay response of the currentmode LF seventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithoutgainboost...... 101 Figure4.11SimulatedTHDversusthedifferentialinputcurrentofthecurrentmode LFseventhorder0.05°equiripplelinearphaseOTAClowpassfilter...... 102 Figure4.12SimulatedTHDversusfrequencyofthecurrentmodeLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilter ...... 102 Figure 4.13 Simulated frequency responses of the currentmode LF seventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithoutandwith10%mismatch ...... 103 Figure4.14SimulatedgroupdelayresponsesofthecurrentmodeLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithoutandwith10%mismatch ...... 103 Figure5.1FullybalancedunitOTA ...... 108 Figure5.2SmallsignalofFigure5.1withcapacitiveloads ...... 112 Figure5.3FifthordercurrentmodeLFOTAClowpassfilterwithoutputsummation network...... 115 Figure5.4FifthordervoltagemodeLFOTAClowpassfilterwithinputdistribution network...... 117 Figure5.5Simulateddifferentialoutputcurrentversusdifferentialinputvoltagefor DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 9 varyingbiasvoltagesoftheOTAwithshortcircuitload...... 118 Figure 5.6 Simulated DC transconductance versus differential input voltage for varyingbiasvoltagesoftheOTAwithshortcircuitload...... 119 Figure5.7SimulatedACopencircuitfrequencyresponsesoftheOTAwithdifferent biascurrents...... 119 Figure5.8SimulatedTHDasafunctionofdifferentialinputvoltageoftheOTAin Figure5.1...... 120 Figure5.9SimulatedmagnituderesponsesofthecurrentmodeLFfifthorder0.05° equiripplelinearphaselowpassOTACfilterwithoutgainboost...... 120 Figure5.10SimulatedgroupdelayresponsesofthecurrentmodeLFfifthorder0.05° equiripplelinearphaseOTAClowpassfilter...... 121 Figure5.11SimulatedTHDversusthedifferentialinputcurrentofthecurrentmode LFfifthorder0.05°equiripplelinearphaseOTAClowpassfilter...... 122 Figure5.12SimulatedTHDversusthefrequencyofthecurrentmodeLFfifthorder 0.05°equiripplelinearphaseOTAClowpassfilter ...... 122 Figure5.13SimulatedmagnituderesponsesofthevoltagemodeLFfifthorder0.05° equiripplelinearphaselowpassOTACfilter...... 123 Figure5.14SimulatedgroupdelayresponsesofthevoltagemodeLFfifthorder0.05° equiripplelinearphaseOTAClowpassfilter...... 124 Figure5.15SimulatedTHDversusthedifferentialinputvoltageofthevoltagemode LFfifthorder0.05°equiripplelinearphaseOTAClowpassfilter...... 124 Figure5.16SimulatedTHDversusthefrequencyofthevoltagemodeLFfifthorder 0.05°equiripplelinearphaseOTAClowpassfilter ...... 125

Figure6.1 Receiverchannels ...... 130 Figure6.2Filtercutofffrequency:standardsswitching ...... 134 Figure6.3(a)Addingswitchinserieswith(b)Addingswitchtothesignal inputpath...... 135 DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 10 Figure 6.4 (a) matrix, (b) ActiveRC integrator with band switching ...... 136 Figure6.5(a)Gmtuning,(b)Tuningusingswitchedcapacitance,(c)Tuningusing switchedOTAs...... 138

Figure6.6FourthordercurrentmodeButterworthlowpassfilter...... 140

Figure6.7Switchedarray ...... 142

Figure6.8SimulatedACresponsesofproposedfilter ...... 142

Figure7.1NoisesourceofpresentedOTA...... 147 Figure7.2Comparisonbetweenthefilter’sidealtransferfunctionandtherealonedue tolimitedoutputimpedanceofOTA ...... 148 Figure7.3SmallsignalmodelofOTAwithnegativeresistanceload...... 149 Figure7.4ThediagramofsimulatedOTAwithnegativeresistance...... 149 Figure7.5CurrentmodefifthorderLFellipticOTAClowpassfilter...... 150 Figure7.6CurrentmodefifthorderLFellipticOTAClowpassfilter...... 152 Figure7.7VoltagemodefifthorderIFLFellipticOTAClowpassfilter...... 153 Figure7.8VoltagemodefifthorderLFellipticOTAClowpassfilter ...... 155 Figure7.9SimulatedopencircuitDCgainofOTAwithandwithoutoutputresistance compensation ...... 156 Figure 7.10 Simulated magnitude response of currentmode fifthorder FLF elliptic lowpassfilter ...... 157 Figure 7.11 Simulated magnitude response of currentmode fifthorder LF elliptic lowpassfilter ...... 157 Figure7.12SimulatedtheripplesofcurrentmodefifthorderFLFelliptic lowpassfilter ...... 158 Figure 7.13 Simulated the passband ripples of currentmode fifthorder LF elliptic lowpassfilter ...... 158 Figure 7.14 Simulated THD versus the differential input current of currentmode fifthorderLFellipticlowpassfilter...... 159 DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 11 Figure 7.15 Simulated THD versus the differential input current of currentmode fifthorderFLFellipticlowpassfilter ...... 159 Figure7.16SimulatedmagnituderesponseofvoltagemodefifthorderIFLFelliptic lowpassfilter ...... 160 Figure 7.17 Simulated magnitude response of voltagemode fifthorder LF elliptic lowpassfilter ...... 160 Figure7.18SimulatedthepassbandripplesofvoltagemodefifthorderIFLFelliptic lowpassfilter ...... 161 Figure 7.19 Simulated the passband ripples of voltagemode fifthorder LF elliptic lowpassfilter ...... 161 Figure 7.20 Simulated THD versus the differential input voltage of voltagemode fifthorderLFellipticlowpassfilter...... 162 Figure 7.21 Simulated THD versus the differential input voltage of voltagemode fifthorderIFLFellipticlowpassfilter ...... 162

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 12 List of Tables

Table2.1SummarizedminimumrequirementsforeachblockinFigure2.6...... 31

Table2.2SummarizeddifferentPRMLschemes ...... 32

Table2.3Comparisonofotherlinearphaselowpassfilters ...... 38 Table3.1DesigntargetsoftheIFLFandFLFfiltersforcomputerHDDreadchannel

...... 56 Table3.2ThewidthofthetransistorsinFigure3.2 ...... 58

Table3.3Comparisonwithtargetspecifications ...... 83

Table3.4ComparisonwithotherseventhorderlinearphaseOTACfilterdesigns.. 83 Table4.1SimulatedresultsoftheseventhorderMLFLFlowpassfilterbasedona

TSMC0.18 µmCMOSprocess ...... 104

Table5.1Performancecomparisonofdifferentfilterconfigurations...... 126

Table6.1Wirelesscommunicationsystems ...... 133 Table 7.1 Comparison of the simulated currentmode LF filter with target specifications………………………………………………………………………..163 Table 7.2 Comparison of the simulated currentmode FLF filter with target specifications………………………………………………………………………..163

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 13 GLOSSARY

ADC Analoguetodigitalconverter BER Biterrorrate BJT Bipolarjunctiontransistor CMOS Complementarymetaloxidesemiconductor CM Currentmode CMFB Commonmodefeedback CMFF Commonmodefeedthrough CMRR Commonmoderejectionratio CT Continuoustime DO Dualoutput DSP Digitalsignalprocessing EPR4 Extendedpartialresponse4 E2PR4 Extendedextendedpartialresponse FBDDA Fullybalanceddifferentialdifferenceamplifier FLF Followtheleaderfeedback FOM Figureofmerit FIR Finiteimpulseresponse GDR Groupdelayripple GSM Globalsystemformobilecommunications GFSK Gaussianfrequencyshiftkeying GMSK Gaussianminimumshiftkeying HDD Harddiskdrive HF Highfrequency ISI Intersymbolinterference IFLF Inversefollowtheleaderfeedback LV Lowvoltage LP Lowpower LF Leapfrog LNA Lownoiseamplifier MLF Multipleloopfeedback MIMO Multipleinputmultipleoutput MO Multipleoutput NSDR Negativesourcedegeneration NMOS Ntypecomplementarymetaloxidesemiconductor OFDM Orthogonalfrequencydivision Op-amp Operationalamplifier OTA Operationaltransconductanceamplifier PRML Partialresponsemaximumlikelihood PMOS Ptypecomplementarymetaloxidesemiconductor PR4 Partialresponse4

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 14 PSRR Powersupplyrejectionratio PS Powersupply PC Powerconsumption RF Radiofrequency SC Switchedcapacitor SNR Signaltonoiseratio SoC Systemonchip SISO Singleinputsignaloutput UHF Ultrahighfrequency UWB Ultrawideband VCCS Voltagecontrolcurrentsource VHF Veryhighfrequency VGA Variablegainamplifier WCDMA Widebandcodedivisionmultipleaccess WLAN Wirelesslocalareanetwork

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 15 1. Introduction

1.1 Background

Filters are used in any electronic system where it is necessary to control the bandwidth of the signal path. Filters are frequencyselective electronic circuits designedtopassabandofwantedsignalsandstoporrejectunwantedsignals,noise orinterferenceoutsidethepassband[125].Filtersappearedattheearlieststagesof thedevelopmentof,andhaveplayedanessentialroleinmanyfields.In recent years, the rapid advances in computer hard disk drive (HDD) [2663] and wirelesscommunicationsystems[64103]inparticularhaveresultedinconsiderable demandforhigherperformancefilteringcircuits.

Ingeneral,filtersareclassifiedaccordingtothefunctiontheyperform.Overthe frequencyrangeofinterestofafilter,wedefinepassbandandstopband.Ideally,the passbandofafilteristherangeoffrequenciesoverwhichsignalsaretransmittedfrom inputtooutputwithoutattenuationorgain.Notethatinpractice,activedevicesmay be used to achieve gain or amplification. In the stopband, the transmitted signal is highlyattenuated.Thedispositionofandstopbandsleadtothefourmost common types of filter classification. These are lowpass, highpass, bandpass, and bandstop(oralsoreferredtoasnotch)filters.Thereareotherkindsoffilters,buttheir filtering actions are based on and can be described in terms of the four most basic types.

ActiveRCfiltershavebeenwidelyusedinlowfrequencyapplicationsforalong time [63, 7686]. Discrete activeRC filters were successful substitutes for passiveRLC filters at low audio frequencies for reasons of size and economy. However, they were found less suitable for highfrequency applications and fully integratedimplementationsduetothehighfrequencylimitationsofopampsandthe largechiparearequirementsofresistors.Consequently,manyalternativeactivefilter circuittopologieshavebeendevelopedtoovercomethesedrawbacks,forexamplethe DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 16 popular switchedcapacitor filter. In switchedcapacitor filter structures, MOS switchesandcapacitorseffectivelyreplacetheresistors(unsuitableforfullintegration) in activeRC filter structures. Nowadays, switchedcapacitor filters can be fully integratedusingallavailableICtechnologiesespeciallyCMOS.Inaddition,precision frequencyresponseisachievablewithoutonchiptuning,andhighdynamicrangecan beachieved.However,theyarestillnotsuitableforveryhighfrequencyapplications due to the sampling mode of their operation, which would require very high clock speeds,alongwiththeuseofextracontinuoustime(CT)inputantialiasingfiltersand outputsmoothingfilters.

CT filters based on the operational transconductance amplifier (OTA) (also referred to as VI converter, transconductor, or transconductance amplifier) and capacitors,thesocalledOTAC,orgmC,filtershavereceivedthegreatestinterest and attention in recent research [14, 31110]. OTAC filters offer advantages over traditionalactiveRCfiltersintermsofdesignsimplicity,highfrequencycapability, electronictunability,suitabilityformonolithicintegration,reducedcomponentcount, andpotentialfordesignautomation.AlthoughOTACfiltersareprimarilyaimedat highfrequencyoperation(uptoGHzrange),theyarealsosuitableforapplicationsat low frequencies. One of the most important recent applications of fully integrated OTACfiltersisasequalizersinHDDreadchannels.Also,fullyintegratedOTAC filtershavebeenwidelyusedincommunicationsystems[87103].

Theperformanceofafilterreliesstronglyonthecircuitcomponents,filterstructure, designmethods,andICtechnologyused.Inparticular,differentcircuitcomponents and IC technology can result in very different performances for the chosen filter topology.ThedesignofahighperformanceOTACfilterisacomplextask.Itmust simultaneously optimize different requirements, such as operating frequency range, power consumption, noise and dynamic range, sensitivity to device variations and fabrication tolerances, chip area, and cost. A number of IC technologies such as Bipolar[26,27],BiCMOS[2832,94],CMOS[3363,6569,7785,8793,95103],

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 17 GaAs, etc have been used for integrated filter design. Currently, there is great emphasis on implementing integrated filters using submicron digital CMOS technologies,eventhoughthesearenotoptimizedforanalogueapplications.Thisis because analogue filters are usually components of complex mixedsignal “systems onchips”,wherethemajorityofthechipareacontainsdigitalcircuits.Thereforethere isanoverwhelmingcasetouseanICtechnologythatislowcostandcompatiblewith high density digital logic, to achieve economy and maximum integration. CMOS provides favorable characteristics for high density integration such as low power supply voltage and low static power dissipation for digital circuits [6]. However, CMOS devices have a low driving current, which is a drawback for high speed applications.

Othertechnologiesofferpotentialadvantagesforhighspeedanaloguedesign.GaAs technologies offer very high speed. However, complementary N and Pchannel enhancement mode devices are not are not possible in current GaAs technologies, leading to logic circuit structures that require levelshifting and DC bias currents under static operating conditions. Therefore GaAs gates are more complicated than CMOS, and consume significant power under static conditions, making GaAs unsuitable for high density, low power mixed signal designs [135]. Bipolar technologies offer the advantages for high frequency operation of higher transconductanceandcurrentdriveforagivendevicesizeandbiascurrent.Themain limitations of Bipolar technologies include low integration density, high cost, and high power. BiCMOS combines some of the advantages of bipolar and CMOS technologies.HoweverBiCMOSprocessesarelesswelldevelopedthanpureCMOS, leading to lower integration density and higher cost. Therefore, CMOS has now become the preferred technology for analogue design. Practical analogue filters are typicallydesignedinCMOStechnologiesrequiringsupplyvoltagesatorbelow3.3V. Mostanalogueormixedsignalsystemsarepowercritical,andpowerconsumptionis limited to a few milliwatts. The frequency capability of integrated analogue active filters(dependingonthedesignandthetypeofactiveandpassivedevicesused)can DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 18 spanfromlowaudiofrequenciestotheGHzrange.Notethatthefrequencylimitsof active filters tend to improve as technology advances and faster active devices become available. In terms of sensitivity to component variations and fabrication tolerances,passiveRLCfiltersfeaturethelowestdegreeofsensitivity.However,they are not compatible with currently available integrated electronics. In most practical CT filters, an onchip automatic tuning system is incorporated to overcome performancedegradationduetodevicevariationsandfabricationtolerancesaswellas theeffectsofparasitics,temperature,andenvironmentchanges.Moreover,usingthe rightfilterstructurescanalsoreducesensitivity.Lowsupplyvoltageshaveadverse consequencesforactivefilterdesign.Asthesupplyvoltageshrinks,thelinearsignal rangeoftheactivedevicesalsodecreases.Consequently,theavailabledynamicrange (defined as the ratio of maximum over minimum signal level) is reduced. The minimum signal is restricted by noise, which is generated by active devices and resistors,anddoesnotshowacorrespondingreductionatlowersupplyvoltages.

1.2 Developments in High Frequency OTA-C Filters

MotivatedbytherapidlygrowingHDD,mobileandwirelesscommunicationmarket, fullyintegratedfiltersforveryhighfrequency(atthetimeofwritingupto800MHz) and low power consumption applications have received considerable worldwide attention. Increasing HDD data rates and density, and radio spectrum occupancy requiresthatotheraspectsoffilterperformancebeimproved,suchasdynamicrange and resistance to intermodulation. Design techniques must also utilize current IC technologies.ThemovetodeepsubmicronCMOStechnologiesincreasesthespeed capability of analogue circuits, but also introduces new problems. For example the reductioninsupplyvoltageswillleadtoreducedsignalvoltageswinganddynamic range,andreducedDCgainduetoshortchanneleffects. The most important filters for fully integrated high frequency applications are perhaps the OTAC filters, which have been extensively investigated and widely utilized.Structuregeneration,designmethods,performanceanalysisandcomparison

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 19 of OTAC filters have been extensively investigated. Many secondorder (biquad) OTAC filter circuits have been developed. Structure generation and design of highorderOTACfiltersbasedonthecascadesofbiquads,LCladdersimulation,and multiple loop feedback (MLF) methods have been explored. Practical design considerations for highfrequency OTAC filter structure generation lead to use of groundedcapacitorsandminimumcomponentcount.Notethatgroundedcapacitors require smaller chip area than their floating counterparts. In addition, all high impedance internal nodes of the filter structure have a grounded capacitor, within whichparasiticatthatnodecanbeabsorbed.Minimumcomponentor canonical filterstructures havetheadvantages ofreduced powerconsumption, chip area,noiseandparasiticeffectscomparedtotheirnoncanonicalcounterparts.Other considerationsrequirethedesignmethodandequationsshouldbesimple.Notethat noncanonicalfilterarchitecturesarerequiredinsomeapplicationstoachievesome designflexibilitiesortomeetspecialspecifications.Mostofthecurrentresearchis concernedwithrealizationofhighorderOTACfilters. OTAC filters also have significant limitations. Good overall linearity of the transfer function of OTAC filters is only achievable with highly linearized OTAs. Increased linear range will unavoidably decrease the available range of transconductancesoftheOTAsatagivensupplyvoltage,andincreaseOTAnoise . As withothertypesofactivefilter,errorsinthedesiredfilterresponsemayoccurathigh frequency, due to excess phase caused by device and layout parasitics at high frequencies.Incommonwithotherintegratedfilters,errorsinfilterresponsemaybe causedbydevicetolerances,process,temperatureandbiaseffects.Overcomingthis problem requires the use of onchip tuning circuits in most applications. Fullydifferential OTAC filter structures are normally used to reduce noise from onchipdigitalcircuitryandpowersupply.ManyOTAswithimprovedlinearityfor dynamic range enhancement of OTAC filters have been reported. Despite such advances,thestringentrequirements(LV/LP,VHF,higherDR,etc)posechallenging taskforOTACfilterdesigners.InanOTACfilter,thetransconductancevaluesof DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 20 OTA cells determine the pole frequencies of the filter together with the capacitor values.Unfortunately,theavailablerangeoftransconductancesbecomessmallasthe supplyvoltageisreduced,andtheparasiticcapacitancesbecomealargeproportionof thetotalnodalcapacitanceathighfrequencies.Thus,OTACfiltersareexpectedtobe limitedinVHFandUHFrangewithpureCMOStechnology. Inrecentyears,currentmodesignalprocessinghasreceivedconsiderableinterest due to the superior performance (bandwidth and dynamic range), LV/LP operation, and simple circuit structure, compared toits voltagemode counterpart. Dualoutput OTAs(DOOTAs)[105]andmultipleoutputOTAs(MOOTAs)[106,107]havebeen utilized to generate currentmode CT filters [43, 5560, 104108]. Early work was mainly concerned with currentmode DOOTARC filters, whilst more recent work involvescurrentmodebiquadraticandMLFfiltersusingDOOTAsandbiquadratic, MLF and ladder filters using MOOTAs. These currentmode DOOTAC and MOOTACfilters,whichhavethebenefitsofboththenormalOTACtechniqueand thecurrentmodeapproach,havegoodpotentialforfuturehighfrequencyintegrated filteringapplications.

1.3 Research Scope

OTAC filters designed using the biquad cascade method have high sensitivity whilst those using the LC ladder simulation method cost more power consumption and chip area due to the need for extra OTAs to convert floating capacitors to grounded ones [1]. It has been shown that the MLF OTAC filters have low sensitivity and are able to implement arbitrary zeros. Note that nonimaginaryaxis zerosarerequired,forexample,inequaliserdesignforHDDreadchannels.Thus,the research in this thesis is focused on the design and performance of highorder highfrequencyCMOSMLFOTACfilters.Specifically,designandapplicationsof currentmode leapfrog (LF), currentmode followtheleaderfeedback (FLF), voltagemodeinversefollowtheleaderfeedback(IFLF)andvoltagemodeLFMLF

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 21 filter structures are studied. Filter design and simulations of tunable linear CMOS OTAsarealsopresented. IntheareaofcurrentmodeMLFfilterdesign,LFandFLFfiltersareconsidered. Synthesis and design of the general allpole and arbitrary zeros currentmode LF OTAC filters are particularly studied. In order to implement these OTAC filters, threetunableCMOSOTAdesignsfeaturinghighfrequencyresponsesarepresented and their simulation results are obtained. Multiple differential output and multiple differentialinputOTAs weredevelopedfordesignoffullydifferentialcurrentand voltagemodefiltersrespectively.Performanceanalysisintermsoftransconductance range, noise, dynamic range, etc of the OTAs are also given. As examples, several specific OTAC filters realizing different filtering characteristics are designed and simulated,amongwhicharefifthandseventhorder0.05°equiripplelinearphaseLF, FLF and IFLF equalizers with programmable gain boost for computer HDD read channelapplications,andfifthorderellipticFLFandIFLFlowpassfiltersforwireless communicationreceiverbasebandapplications.

1.4 Original Contributions

Theresearchhasledtoseveralnovelcontributions. • Designs of a 400MHz seventhorder voltagemode IFLF and a 150MHz seventhorder currentmode FLF 0.05° equiripple linear phase filters with novel fullydifferentialOTAsforcomputerHDDreadchannelsareproposed. • The general design formulas for currentmode MLF LF structures and explicit designformulasforuptothesixthorderofthemarederived. • Two 750MHz fifthorder current and voltagemode MLF LF 0.05° equiripple linearphaselowpassfiltersforcomputerHDDreadchannelsareproposed. • TwofifthordercurrentmodeFLF,LFandvoltagemodeIFLF,LFellipticfilters forwirelesscommunicationbasebandaredesigned. Thefollowingisalistingofallpublicationsthathaveresultedfromthiswork:

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 22 • Y.SunandX.Zhu,“ExplicitdesignformulasforcurrentmodeLeapfrogGmC filtersand300MHzCMOSseventhorderlinearphasefilter,”Int.J.CircuitTheory andApplications,accepted.

• X.Zhu,Y.Sun,andJ.Moritz,“ACMOSFifthorder750MHzCurrent −ModeLF FilterforHardDiskReadChannels,” Proc.IEEEISCAS,Seattle,May2008.

• X.Zhu,Y.Sun,andJ.Moritz,“A0.18 µmCMOS300MHzCurrent −ModeLF Seventh −order Linear Phase Filter for Hard Disk Read Channels,” Proc. IEEE ISCAS,NewOrleans,May2007.

• X.Zhu,Y.Sun,andJ.Moritz,“ACMOSFifthOrder400MHzCurrentModeLF Linear Phase Filter for Hard Disk Read Channels,” Proc. IEEE ECCTD, Seville, August2007.

• X.Zhu,Y.Sun,andJ.Moritz,“ACMOS650MHzSeventhorderCurrentMode 0.05°EquirippleLinearPhaseFilter,”Proc.MWSCAS,Montreal,August2007.

• X.Zhu,Y.Sun,andJ.Moritz,“A0.18mCMOS9mWCurrentModeFLFlinear phasefilterwithgainboost”Proc.MWSCAS,Montreal,August2007.

1.5 Organization of this Thesis

Thisthesisconsistsofeightchapters.Theyareorganizedasfollows: Chapter1,thischapter,givesthebackgroundandscopeoftheresearch. Chapter2reviewsanaloguefiltersforcomputerHDDreadchannel,includingdesign considerationsandasummaryofthestateoftheartofOTACreadchannelfilters. Chapter 3 presents synthesis, design, and performance of currentmode FLF and voltagemodeIFLFOTACfiltersusinganovelfullydifferentialOTA. Chapter 4 includes the derivation of design formulas for currentmode allpole and arbitrarytransmissionzeroLFOTACfilterstructures,withadetaileddesignexample ofaseventhorder0.05°equiripplelinearphaselowpassfilterforcomputerHDDread channels. The design and simulation of a tunable fullydifferential CMOS OTA are alsogiven. Chapter 5 describes two UHF fifthorder 0.05° equiripple linear phase LF lowpass DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 23 OTAC filters, in current and voltagemode respectively, for next generation computerHDDreadchannelapplications. Chapter 6 reviews analogue filter design for wireless communication receivers; multistandardanaloguebasebandchannelselectfiltersareparticularlyinvestigated. ThesummaryofpreviousworksandcomparisonofactiveRCandOTACfiltersfor thisapplicationarealsodiscussed. Chapter7describesfourfifthorderellipticOTACfiltersbasedoncurrentmodeFLF, LF and voltagemode IFLF, LF configurations, which are intended for use in the receiverbasebandsectionofadvancedintegratedwirelesstransceivers. Chapter 8 contains conclusions to the thesis and suggests some further research topics.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 24 2. Review of Analogue Filters for Computer Hard Disk Drive Systems

2.1 Introduction

Storage devices have been divided on the basis of their performance, typically specifiedintermsoftheaccesstimetothestoreddata,andcostquotedintermsof $/Mbyte.Figure2.1showsthedivisionofsomecommonlyusedstoragedevices.Cost sensitive application such as data distribution and entertainment music use devices suchastheCDROM,whichhavehighaccesstimeandarelowpriced.Tapestorage andbackupsystemsuselowerperformingsystems;however,harddiskdrive(HDD) systemsarehighperformancesystemsandsupportnearrealtimeapplications[45]. HDD systems continue to develop at a rapid and deterministic pace to meet the emergingdemandsofhighperformancecomputingandperipheraldevices.

Figure2.1Storagesystemsegmentation[45] In this chapter, design considerations for very high frequency filters for next generation HDD read channels are addressed. The chapter is organized in the DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 25 followingway:Section2.2addressesthearchitectureofHDDreadchannels.Some previous work on analogue filters for computer HDD systems is summarized in Section2.3.InSection2.4,filterdesignconsiderationsforreadchannelOTACfilters suchasgroupdelayresponses,transferfunctionofthefilter,filterarchitectures,filter circuitsandtuningarediscussed.OTAdesignconsiderationsforreadchannelOTAC filtersarealsodiscussedinSection2.5.Finally,thechapterisconcludedinSection 2.6.

2.2 Architecture of Hard Disk Drives

ThereadchannelchipisaveryimportantpartofaHDDsystem.Advancesinread channeltechnologyhaveleadtoincreasesindensityoftheHDDbymorethan50% overthelastfewyears.Readchanneldesignisevolvingataveryfastpacetokeepup withotheradvancesinHDDtechnology.Thepeakdetectionmethodinreadchannel enjoyedwidespreaduseformorethan30years.Itwasreplacedbypartialresponse maximumlikelihood(PRML)method,whichwassubsequentlyreplacedbythemore powerful extended PRML. In computer data storage, PRML is a method for convertingtheweakanaloguesignalfromtheheadofamagneticdiskortapedrive intoadigitalsignal.PRMLattemptstocorrectlyinterpretevensmallchangesinthe analogue signal, whereas peak detection relies on fixed thresholds. Because PRML can correctly decode a weaker signal it allows higher density recording [132]. The currenttrendisbasedoncombiningchannelcodingandequalization.Themagnetic media and preamplifier stage of the HDD system can be considered as a bandwidthlimited channel. Data is recorded on the magnetic media using binary amplitude levels. The read back signal is analogue. This signal is corrupted by distortion, noise and interference. The read channel involves extensive signal processingtoassistextractionofreliablebinarydatafromthemagneticmedia.The corrupting noise in the signal includes electronic noise and media noise, but the biggest source of signal corruption is intersymbol interference (ISI). The magnetic material on a hard disk is divided in concentric, circular tracks. These tracks are

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 26 magneticallysaturatedinoneoftwodirections:clockwiseorcounterclockwisealong thetrack.Becausethemagneticmediumisalwayssaturated,itsmagnetichysteresis canbeignored.ThisapproachiscalledsaturationrecordingandshowninFigure2.2 [133].

(a)Twolevelwritecurrent

(b)Magnetisationontrack Figure2.2Saturationrecording(a)Twolevelwritecurrent(b)Magnetizationontrack The data is represented differentially: 1bits are indicated by a change in magnetization, for 0bits the magnetization is left untouched. This representation is referredtoasnonreturntozerowritecurrent(NRZI)modulation.Theconsequenceis thatwhenthediskisspinningunderthereadhead,a1bitgivesrisetoapulse,a0bit does not. The most straightforward scheme of data reconstruction is therefore peak positiondetection[48].

Figure2.3NRZIrecording However,asthebitdensityoftheharddiskincreases,thetimebetweentwopulses

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 27 becomes smaller. In that case, the overlap of the pulses increases. This is called intersymbol interference (ISI). Figure 2.4 shows ISI diagrammatically. An eye diagram,whichoverlaysmanysamplesofasignalcangiveagraphicalrepresentation of the signal characteristics. In Figure 2.5, eye diagrams with and without ISI are shown.

Figure2.4Diagramofintersymbolinterference(ISI)

(a) (b) Figure2.5(a)EyediagramwithoutISI,(b)EyediagramwithISI Athigherlineardensities,thelinearmodelofthemagneticrecordingchannelbreaks down.Sincethebinarysignaltransitionsareatcloserspacingsduetoeverincreasing data density, theread back signal amplitudecontains greaterISI.This degrades the signaltonoiseratio(SNR),resultinginahigherbiterrorrate(BER).BERistheratio ofthenumberofbitsincorrectlyreceivedtothetotalnumberofbitsreceivedduringa specified time interval. Signal processing can only marginally compensate for the effect of ISI. Hence ISI is by far the dominant source of errors in highdensity recording. The PRML technique, which helps in reducing ISI, is used widely in

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 28 industry [3842, 4752, 5459]. Most schemes use an analogue to digital converter (ADC), a finite impulse response (FIR) filter and a continuoustime (CT) filter for channel equalization. Most of the equalizer architectures use a CT OTAC filter, becauseoftheirhigherfrequencyandsimplicity,modularityandeasyprogramming ofthebiquadsinvolved. Inthisthesiswewillpresentthedesignofahighfrequency0.05°equiripplelinear phase OTAC based lowpass filter used for equalization in HDD systems. As mentioned earlier PRML technique allows us to increase the data density by up to 100%ascomparedtopeakdetectmethods.However,achievingthisincreaserequires better channel equalization and detection techniques. A large number of such techniques have been reported in the literature utilizing primarily analogue or analogue and digital methods. Some of them employ multiple chip [31] [34] or discreetexternalblock[29]solutions.Apredominantlyanaloguedesigncanhelpin reducingthecostandalsoavoidthenoiserelatedissuesinvolvedwithmixedmode design.OneofthecommonlyusedPRMLbasedmixedmodereadchannelpaths[40] isshowninFigure2.6.

Figure2.6ArchitectureofHDDanaloguefrontend The above figure shows the analogue frontend pulse processing with digital data detection.Thepreamplifierblockalongwithnoisereductionamplifiesthesignalfrom themagneticmediareadhead.Thissignalisthenfedintothevariablegainamplifier

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 29 (VGA).Theamplifiedsignalisthenappliedtoalowpassfilter.Oneroleofthefilter istominimizetheincomingnoisefromthemedia,preamplifier,andVGA,effectively increasingtheSNRofthesignalandthereforereducingtheBER.Asecondroleofthe filteristoperformsignalequalization,whichpartlycompensatesforthebandwidth limitations of the media and preceding amplifiers, in order to slim the data pulses, allowing higher bit densities. The signal then undergoes A/D conversion, typically with6bitresolution.Thedigitalsignalprocessor(DSP)corecanperformadditional equalizationinthedigitaldomain,ifnecessary,andimplementsthedatadetector.It also controls gain and timing as well as communication with the interface. The equalizationtaskinvolvestradeoffsbetweenthedesignoftheanaloguefilterandthe digital FIR filter. The analogue filter can be made more complex to improve the performance and this will relax the requirement on the power consumption, complexity and order of the digital FIR filter for a given silicon area. In certain applications,theanaloguefilterperformsonlythetaskofanoiseantialiasingfilter whiletheequalizationtaskisdonecompletelyinthedigitaldomain.However,if a significantamountofequalizationisdoneinthedigitaldomainthenthequantization noise produced by the ADC is enhanced by the digital FIR filter. This results in increased complexity and resolution of the ADC to reduce the quantization noise contribution .Thecutofffrequencyofthefiltershouldbetunableoverawiderangein order to take full advantage of read channels utilizing constant density recording techniques.Sincethediskrotatesataconstantspeed,datarecordedintheoutertracks, wherethediskismovingathigherspeedrelativetothereadhead,isreadatahigher ratethandataclosetothecenterofthedisk.Therefore,thelowpassfilterplaysavery important role in the analogue domain and researchers have made much effort to achieve improved performance, particularly to increase the system bandwidth. Therefore,theoverallperformanceofthecomputerHDDreadchanneldependsonthe individualsystemblocks.TheminimumrequirementsofeachblockinFigure2.6are summarizedinTable2.1. DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 30 Table2.1SummarizedminimumrequirementsforeachblockinFigure2.6

Block Minimumrequirements

VGA 40dBgainwithanominallevelof1V pp Filter 4th to8 th orderwith35dBdynamicrangeand2:1tuning range ADC 5or6bitresolution,16to22dBSNR DSPcore 3to10tapFIRfilter Presentlyinmostdesigns,equalizationisdonemostlyinanaloguedomain,asitis currentlyeasiertoimplementhighfrequencyanalogueequalizerdesignstoperform the equalization task. The analogue filter is used to perform some or all of the equalizationrequiredtomatchthepulseshapedataretrievedfromthemagneticmedia toatargetpulseshape.TheusualtargetpulseshapesarePartialResponse4(PR4), Enhanced Extended Partial Response 4 (EPR4) or Enhanced Extended Partial Response 4 (E2PR4). Different partial response schemes are often described using polynomials.Thesepolynomialshistoricallycamefromdigitalsignalprocessing.For example, for an input data pattern described in NRZ terms, "0" stands for one particulardirectionofmediummagnetizationand"1"foranother.Thedatapatternis givenbythesequenceofbits ak.Whenamagneticheadreadsthesignal,itresponds only to the changes of magnetization, i.e. it differentiates the signal. The differentiating function of the head can be described if a "delay operator" D is introduced,givenbyDak=ak1.TheheadactsontheNRZpatternas(1D)ak=a k ak1. This (1D) operation will result in +1 or 1 output samples, depending on the directionofthemagnetizationchange.The (1D) operatoristhesimplestpolynomial, correspondingtogeneratingpositiveornegativesamples.InaPR4systemeachpulse ofvoltagehas2samples.Inotherwords,ifatransitionofmagnetizationoccurs,it resultsinasampleequalto"1"atthetransitionlocationandanothersampleatthe next sample period. This is equivalent to "spreading" or delaying and adding the

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 31 currentsample,givenbyoperator (1+D) .Indeed,if ak=1,theoperator (1+D)a kwill resultinsequence"1,1".Therefore,aPR4systeminpolynomialtermsisdescribedas (1D)(1+D) = 1 D 2, where operator D2 is the result of a product D times D and

2 delaysthecurrentsampletwobitperiods:D ak=ak2.Ifwediscardthedifferentiating partofthepolynomialgivenby (1D) andlookonlyat (1+D) wewillgetthesamples of the isolated pulse: {1, 1}. In other words, the term (1+D) determines how the transitionsamplesare"spread"overthebitperiods.PR4isaparticularcaseofmore generalfamilyofPRpolynomials,givenbythegeneralequation:(1D)(1+D) n.PR4 correspondston=1.Ifwesetn=2thesamplesoftheisolatedpulsewillbegivenby the term (1+D) 2 =1+2D+D 2, which corresponds to (1,2,1). This type of PRML is calledEPR4.Whenn=3,thepolynomialisgivenby(1+D) 3 =1+3D+3D 2+D 3andthe isolated pulse has samples {1,3,3,1}.This type of partial responseis called E 2PR4. Figure2.7showstheshapeofanisolatedpulseandthenoftwoadjacentpulses[38, 48,133].Table2.2summarizesdifferentPRMLschemesusedinmagneticrecording.

Figure2.7Commonpartialresponsetargetsusedinmagneticrecording[48] Table2.2SummarizeddifferentPRMLschemes[133]

Name Polynomial IsolatedPulseSamples PR4 (1D)(1+D) 0110… EPR4 (1D)(1+D) 2 01210… E2PR4 (1D)(1+D) 3 013310…

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 32 Approximatepulsesymmetryisusuallyfoundinincomingpulsesfromthemagnetic media.Consequently,thegroupdelayofthefilterisrequiredtoexhibitarelatively flatcharacteristicinthebandofinterest.Notethat,forthecaseofHDDdesign,the read channel filters should have linear phase response to equalize data pulses and minimizepulsepeakshiftintime.Theamountofamplitudeequalizationprovidedby thefilterandthefiltergroupdelaymustbeindependentofeachother.Theimportance ofthisspecificationismotivatedbythefactthattheinformationcontentofthesignal atthereadheadofaharddiskisheldinthetimeatwhichpulsesoccur.Ifthegroup delay is not constant in the frequency band where the spectral components of the signalarelocated,thepulsemightshiftintimeduetotheequalizer.Thismeansthat the equalizer is affecting the information content of the signal. This is obviously unacceptable. The lowpass filter response is extended with a boost function. This consists of selective additional gain for the frequencies around the cutoff frequency of the equalizer. The amount of gain boost is defined as the additional gain at the cutoff frequencyrelativetothelowfrequencygain.Boostingisdonetoshapethespectrum ofthereceivedsignalaccordingtothedesiredclassofequalizationofareadchannel. Inthetimedomain,theisolatedreadpulsecanbeslimmedandmadesymmetrical. This is equivalent to highfrequency boost in the frequency domain [134]. The diagramofthelowpassfilterwithandwithoutgainboostisshowninFigure2.8.It consistsofaselectiveadditionalgainforthefrequenciesaroundthecutofffrequency of the filter. The amount of boost is defined as the extra gain relative to the low frequencygainatthecutofffrequency.Theboostfunctionshouldnotaffecttheripple onthegroupdelayspecificationofthefilter.Otherwisesaid,therippleonthegroup delayshouldbesmallerthan5%foreveryamountofboost[38].

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 33 Figure2.8Magnituderesponsesoflowpassfilterwithandwithoutgainboost[38] Higherspeedhigherdensitydatasystemsrequirehighergainboost.Themaximum gain boost in current practice may be as high as 24dB [49]. The programmable equalizationorgainboostisachievedbyusingafilterfunctionwithgainboostzeros. This feature is typically realized by adding two opposite real axis zeroes into the overallfrequencyresponse;inthiswayitispossibletomodifytheamplituderesponse withoutchangingthegroupdelayresponse.Insomeoftheapproaches[32,3640,42, 51,52]reportedintheliterature,seventhorderfiltershavebeenreportedtoachievea flatgroupdelayresponseupto1.75 fc ,where fc isthe3dBcutofffrequencyofthe filter.However,insteadofusingaBesselfilterforaflatgroupdelayresponsethese approaches are mostly based on a 0.05° equiripple linear phase response, which extendsthefrequencyrangeofthe flatgroupdelayresponse.InthecaseofBessel type transfer function the flatness of the group delay response normally degrades around1.2 fc .Atraditionalapproachindefiningthefilterpoleconstellationwhena flatgroupdelaycharacteristicisneeded[1]isbasedontheabovementioned0.05° equirippleapproximationofthephase.In[40]suchasevenpoleconstellation,which yields linear phase almost up to 2 fc was selected. However this scheme had two zeroesontherealaxisinthesevenpoleconstellationthusresultingeffectivelyina fifthorderrolloff.Theplacementoftheseleftandrighthalfzeroeswasexternally controlledandthisresultedinabettercorrectionofflatgroupdelayresponseinthe DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 34 band of interest, thus helping to equalize somewhat asymmetrical pulses from the media.

2.3 Previous Work in Analogue Filters for HDD Systems

HDD systems have developed rapidly in the last ten years to meet the emerging demands of high performance computing and peripheral devices. The hard disk industryiscontinuallydevelopingreadchannelchipstopushdatarateshigher,while simultaneouslyachievinglowpowerandlowcostsolutions.Themainrequirements fordesignofanaloguelowpassfiltersforfuturegenerationofreadchannelsarehigh cutofffrequency(200to800MHz),smallgroupdelayvariation(5%),highgainboost (20dB),verylowpowerandsmallchiparea.However,designingfiltersoperatingat veryhighfrequency(VHF)orultrahighfrequency(UHF)inpuredigitalCMOSis very challenging. Among different methodologies of filter design, the switchedcapacitor (SC), MOSFETC, and OTAC are the most popular in the literature.Theswitchedcapacitorfilterallowsforveryaccurateandtunableanalogue circuitstobemanufacturedwithoutusingresistors.Thisisusefulforseveralreasons. TheresistorstakeupalotofdieareaandtheresponseshapeoftheSCcircuitscanbe made to depend on ratios of capacitor values (which can be set accurately). The cutoff frequency of the filter is also precisely determined by the clock frequency. However,SCfiltersarenotwellsuitedtooperationatveryhighfrequenciesdueto therequirementforveryhighfrequencyswitchingclockandassociatedproblemswith aliasing,andtheneedforveryfastOpamps.MOSFETCfiltersareextremelywidely used for lowerfrequency applications where low distortion is important. The MOSFETCtechniquewasderivedfromactiveRCtechniques;indiscretecomponent designs, the useful frequency range of the activeRC filter is limited by parasitic capacitances to frequencies mostly below 1MHz. However, in a fully integrated design,circuitparasiticscanbereducedsufficientlytoallowsatisfactoryperformance atfrequenciesof10MHzorgreater.Toachieveafilterwithtunablecutofffrequency, the resistors of the activeRC design are replaced with MOSFETs operating in the

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 35 trioderegion,wherethechannelactsasavariableresistancewhichisdependenton the gate and substrate bias voltages. The cutoff frequency and Q of the filter are tunedbyvaryingthegatevoltages.AMOSFETusedinthiswayisusuallycalleda MOSresistor.ThebasicactiveRCintegratorisshowninFigure2.9(a).Figure2.9(b) showsabasicMOSFETCintegrator.

(a) (b) Figure2.9(a)ActiveRCand(b)MOSFETCintegrators TwomostpopulartwointegratorloopOTACfilterstructures[1]aregiveninFigure 2.9.ThestructureinFigure2.9(a)isacanonical(minimumnumberofcomponents) twointegratorloopOTACfilterwhichconsistsoftwosingleloopidealintegratorsin cascade.ThesocalledTowThomas(TT)OTACstructureinFigure2.10(b)consists ofanidealintegratorandalossyintegratorinasingleloop.Thisbiquadissimplein structure,andhaslowparasiticeffectsandverylowsensitivity(asitisasimulationof apassiveRLCprototype)[5].

g 2 Vo g1 Vi C2 C1

(a)

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 36 Vo2 g2 Vo1 g1

C2 C g3 1

Vi g0

(b)

Figure2.10TwointegratorloopOTACfilterstructures:(a)canonical,(b) TowThomas ThedevelopmentofHDDshasresultedinlowpassfiltercutofffrequencyincreasing fromtensofMHzintheearlyyearstoseveralhundredsofMHzmorerecently[2642, 4759]. However, neither the SC filter nor the activeRC filter is suitable for VHF operationasrequiredbycurrentHDDreadchannels.Althoughafewpapershavealso been published using other techniques, e.g. using the OTAOpampC technique to reduce parasitic effects [78, 85], the Opamp performance still limits their working frequency. The OTAC filter therefore becomes the only solution for modern HDD readchanneldesignduetoitsopenloopstructure. DuetotherequirementsofSoCtointegratebothanalogueanddigitalcircuits,itis currently necessary to design analogue parts using deep submicron digital CMOS processes. Among different IC technologies, Bipolar was one of the earliest technologies used in linear phase filter design [26, 27], to provide highspeed performance. Bipolar devices are attractive in terms of high speed, high driving capabilityandlownoise,allowinghighqualityanalogueperformance.Nevertheless, limitationsofBipolartechnologyincludelowintegrationdensity,highcost,andhigh power;thereforeitisnotusedformodernHDDsystems.BiCMOStechnologieshave alsobeenusedforHDDapplications[2832];thistechnologyhasplayedavitalpart inseveralSoCdesigns(e.g.,circuits).However,existingBiCMOS technology still suffers from low integration density compared to pure CMOS

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 37 technologies, although it combines the technical benefits of Bipolar and CMOS technologies. Therefore, for technological reasons (related to low integration and complexfabricationprocesses)CMOSnowhasovershadowedBipolarandBiCMOS forbothdigitalandanaloguedesign.CMOSprovidesfavoredcharacteristicsforhigh densitydigitalintegrationsuchaslowpower,negligiblestaticpowerdissipationand large noise margins with relatively low cost. However, CMOS devices have a low drivingcurrentcapability,whichisadrawbackforhighspeedapplications.Moreover, narrow gate width offers fast speed and low power consumption, but the smaller geometriesleadtopoorermatchingbetweentransistors.Therefore,itisachallenging task to design a high performance lowpass filter in HDD systems by using pure CMOS technology. This thesis will therefore focus on CMOS OTAC filters only, although discussions such as filter structures are also applicable to other IC technologiesandfiltercircuittechniques. AbriefsummaryofsomeofthepreviouslyreportedworkhasbeenshowninTable 2.3. Table2.3Comparisonofotherlinearphaselowpassfilters

fc range fc Boost Boost Type Process (MHz) accuracy range accuracy 7th order De 0.05 0 210 Veirman Bipolar ±5% 09dB ±0.5dB equiripple B:627 [26] linearphase

1.5 µm/4G Laber 6th order 4.720.3 Hz ±5% 010dB ±0.5dB [28] Bessel B:1455 BiCMOS 7th order Chiang 2µm 520 0.05 0 N/A 03dB ±0.5dB [42] CMOS B:1047 equiripple

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 38 linearphase 7th order 643 Mehr 0.05 0 0.6 µm B: < ±10% 012dB ±1dB [40] equiripple CMOS 15105 linearphase 7th order Dehaene 0.05 0 0.7 µm B:550 < ±10% 013dB N/A [38] equiripple CMOS linearphase 7th order Rezzi 0.05 0 0.7 µm B:750 N/A 013dB ±1dB [32] equiripple BiCMOS linearphase 7th order 10100 Rao 0.05 0 0.29 µm B: ±5% 013dB N/A [27] equiripple BiCMOS 30235 linearphase 7th order Martinez 0.05 0 0.35 µm 160220 N/A N/A N/A [39] equiripple CMOS linearphase 4th order Martinez 0.05 0 0.35µm 550 ≤10% N/A N/A [41] equiripple CMOS linearphase 8th order Bollati 0.25 µm 0.05 0 30120 N/A 614dB N/A [33] CMOS equiripple

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 39 linearphase 7th order Dosho 0.05 0 0.25 µm B: N/A 013dB N/A [52] equiripple CMOS 80200 linearphase

Gambhir 4th order 0.18 µm 350 15% 024dB ±0.5dB [49] Butterworth CMOS Groupdelay Total THD DR FOM Ripple outputnoise

<40dB (V id = 2V pp <2% 2.5mV RMS 49dB [26] with 12.6 @ f <2 fc B:4mV RMS B:45dB aninputattenuator) <2% [28] <52dB(V od =2V pp ) 2mV RMS N/A 117 @ fc/6< f< fc

<47dB (V id = 1V pp ≤5% [42] @ N/A N/A 390 @ f≤2fc 1MHz)

<40dB (V id = <2% [40] 640mV pp @ 2MHz, N/A >60dB 763 @ f<1.75 fc noB,any fcsetting) <2% <40dB(V id = [38] @ fc /5< f 3mV RMS N/A 154 200mV pp ) <1.5 fc

<40dB (V id =

<2.5%@ 500mV pp @ [32] 650 µVRMS 52dB 263 fc /10< f<1.5 fc 24MHz input, fc = 32MHz)

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 40 <46dB (V id =

<5% 100mV pp @ [27] N/A 48dB 256 @ f≤2fc 30MHz input, fc = 65MHz) <3%

[39] @ fc /5< f <46dB(V id =N/A) N/A 51dB 1628

<1. 2fc

[41] <15%@ f≤fc <40dB(V id =N/A) N/A N/A 3025

<40dB (V od =

200mV pp @ [33] N/A N/A B:45dB 250 120MHz input, fc = 120MHz)

<40dB (V id =

≤5% 800mV pp @200MHz [52] 562 µVRMS N/A 361 @ f<1.5 fc input,

fc =200MHz)

<40dB (V id = <15% BW = 315mV pp @ [49] @ fc /5 ≤ f 500MHz B:55dB 3324 1MHz input, fc = ≤1.1 fc B:300 µVRMS 100MHz)

Notes: fccutofffrequency, Bboost, Vid differentialinputvoltage, Vod differentialoutputvoltage,N/Anotapplicable, BW –bandwidth,FOMFigureof merit. These designs range over several different process geometries.In order to compare them in a meaningful way, a figure of merit (FOM) is used in Table 2.3 [41]. The cutofffrequency fcisingeneralintherangeof2–350MHz.Asstated,thereisa requirementintheharddiskindustryforevenhigherfrequenciesforhigherdatarates. DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 41 ItcanbeseenfromTable2.3thatpulseequalizersinthereadchannelarenormally realizedashighorderlowpassfilters.Besselfiltersand0.05°equiripplelinearphase responsesaremostlyused.

2.4 Considerations for Read Channel OTA-C Filters

Asmentionedbefore,VHF/UHFfilterdesignisoneofthemajorchallengesinthis work.FortheHDDreadchannelfilterdesignsdescribedinChapters3and4,avery highcutofffrequencyisaprimetarget.Thehighcutofffrequencywillenablethe highdataratesrequiredinastateoftheartHDD.Asaruleofthumb,afilterwitha cutofffrequencyofatleast500MHzwillberequiredfordataratesupto2 Gbp/s [40, 41, 45]. As well as specifying the system bandwidth, selecting the correct transfer function,includingtheequalizationfeature,thefiltercircuitarchitecture,andtheOTA designrequirementsareimportanttasksforsuchafilter.

2.4.1 Group Delay Response

One of the most important specifications of the analogue pulse equalizer is the rippleonthegroupdelay.Itshouldbegenerallysmallerthan5%[2661].Thegroup delayrippleisdefinedasthemaximumvariationofthegroupdelayrelativetothe nominalaveragegroupdelayinacertainfrequencyband.Theyaregivenbelow. Nominalgroupdelay: Max [tgr ( f )] − Min [tgr ( f )] tgr _ nom = 2 Groupdelayripple:

Max [tgr ( f )] + Min [tgr ( f )] ripple = 2tgr _ nom (2.1)

Where Min and Max aretakenovertherange0.2 fc < f<1.7 fc,fc isthefilter’scutoff frequency,and tgr(f) isthegroupdelay. Therefore,a0.05°equiripplelinearphasetransferfunctionwasselected.Analyzinga Chebyshev approximation of a magnitude function reveals an advantage in thatthe

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 42 permitted magnitude error is uniformly distributed over the passband rather than increasing monotonically towards the corner of passband as in the maximally flat response,leadingtoasmallermaximumerrorwithinthepassband.Whenconsidering possibledelayapproximationsfortheHDDfilterapplication,similaradvantagesare offered if we develop a filter with an equiripple delay, rather than maximally flat (BesselThomson) approximation. Figure 2.11 shows the performance we hope to obtainforadesiredspecificdelaywiththesetwodifferent5th orderresponses.Asthe figure illustrates, the 0.05° equiripple linear phase approximation achieves a delay error within a limit of 5% over a significantly wider total bandwidth than the maximallyflatapproximationofthesamecomplexity.

Figure2.11ComparisonofgroupdelayofBesselThomsonandEquiripple approximations

2.4.2 of the Filter

A detailed mathematical analysis of the 0.05° equiripple linear phase transfer functionisgiveninliterature[7,8].Analyzingthegenerictransferfunctionofa0.05° equiripplelinearphasetransferfunction,

E )0( a T (s) = = 0 (2.2) E n + n−1 + + + E(s) s an−1s L a1s a0 Wecanimposetheconditionthatthegroupdelayapproximatesaconstantvalue withuniformerroroverthedesiredbandwidth.Unfortunatelyaclosedformsolution for the equiripple delay transfer function has not been found. Since constant group delay is equivalent to linear phase, we can write the equation of phase as a linear DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 43 functionandassumeasinusoidalrippleforeaseofanalysis θ (ω ) = − D ω − ∆θ sin( ω T ) 0 (2.3) Thegroupdelayisthengivenby: dθ ω = − = + ∆θ ⋅π o ⋅ ⋅ ω DE ( ) D0 /180 T cos( T ) dω (2.4) where the θ was converted into radians. T is the period of the ripple; it is approximately equal to the constant delay bandwidth divided by n/2 , n being the degreeofthefunctionTE(s) determinethepolynomial TE(s) differentialequationscan be employed. The phase of equation (2.3) has exactly n locations where the slope equals D0 (some constant group delay). The delay error is given by the following equation: π ∆D = 2T ∆⋅ θ ⋅ 180o (2.5) Itistwicetheripplewidthandisindependentof n.Thedelayerrorisproportional tothephaseerrorasindicatedbyequations(2.4)and(2.5).For θ =0.05°theerroris

D ≈0.015. However the bandwidth ωE over which the delay error D remains constant and stays within the design specifications increases with n. Based on the above discussion we can then decide what order of filter response will be implemented.Sincetheprimarytargetofthedesignistoreachhighcutofffrequencies intherangeof500800MHz,thenumberofpolesplaysaveryimportantrole.Ideally, a higher order filter has maintains an accurate group delay response over a greater bandwidththanalowerorderdesign.However,thenumberofOTAsinthesystemis proportionaltothenumberofpoles.SinceeachOTAcontributessomephaseerrorto theoverallresponse,OTAswithlowerphaseerrorarerequiredtoachieveanaccurate responseinahigherorderfilter Therequiredcutofffrequencyof eachOTAcan becomeveryhigh(oftheorderofGHzinthecaseofaseventhorderfilter).Moreover, in order to achieve higher filter cutoff frequency, larger OTA transconductance and smallergroundedcapacitanceareneeded,increasingthepowerconsumptionandchip

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 44 area.Thispromptsustochoosearelativelyloworderlowpassfilter,suchasfourthor fifthorder. Apparently,alowerorderfiltercanminimizethepowerconsumption,chipareaand thedesigneffortrequired.Unfortunately,thegroupdelayripplecannotbemaintained over as wide a bandwidth as in a higher order design. In Figure 2.11, fifth and seventhorder equiripple linear phase filters are simulated using idealized OTAs. It can be seen from Figure 2.12 that the group delay response of the 7 th order filter remainsflatoverawiderbandwidth.

Figure2.12Comparisonofgroupdelayrippleofidealseventhandfifthorder0.05° equiripplelinearphaseapproximation

2.4.3 Filter Architectures

Filter structure plays a very important role in analogue filter design. Among different filter topologies, the cascade, LC ladder simulation, and multiple loop feedback (MLF) are the most popular in the literature. The cascade topology is possibly the most popular due to simplicity in design and tuning. However, the sensitivity of cascade filters is high, and increases as the filter order increases. LC ladder simulation based filters have low sensitivity, but the design methodology is relativelycomplex[1,2,5,7,8,10,51,52,65,and111].Insomeimplementations, LC ladder simulations contain some floating capacitors, which can seriously affect group delay ripple due to parasitic effects at UHF/VHF. The MLF methodology is

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 45 simple and it has sensitivity as low as LC ladder simulations. Therefore, it has received considerable attention [14, 36, 37, 4244, 5362, 105108, and 117121]. Moreover, as discussed previously, the parasitic capacitance can dominate the total nodal capacitance at UHF/VHF. The use of only grounded capacitors in MLF topologiescanminimizetheparasiticeffects,sincetheparasiticcapacitancescanbe absorbedintothese.Thisisveryimportantinachievinghighcutofffrequenciesfor modern fast HDD application. Any of these filter design methods can be used for linearphasefilterdesign.However,additionalcircuitsmaybeneededtoimplement gain boosting, which is realized bythe addition of real zeros to the basic low pass response. Severaltopologieshavebeenproposedtorealizethesesymmetriczeros.Manyof themmakeuseofadditionalcircuitsthatrequirealargeamountofpowertokeepthe parasiticpolesoutofthebandofinterest.Thecascadetopologycanbeutilizedby including additional biquads with real zeroes [33, 3841, 4650], or linear phase biquadscascadedwithaFIRfiltertoproducezeroes,[48]orcascadedbiquadswith crossstage feedforward connections [27, 49]. However, the LC ladder simulation topology cannot directly realize real zeroes. In the MLF circuit using feed forward input or output network structures, the zeros can be realized by adding additional OTAstothebasiclowpassstructure. The well known leap frog (LF), follow the leader feed back (FLF) and inverse followtheleaderfeedback(IFLF)MLFconfigurationshavealsobeenusedforHDD application. Comparisons of cascade, LF, and IFLF filters can be found in the literature[43,54,and61].TheFLFandIFLFtopologiesmaybemoresensitiveto parasiticsduetotheirglobalfeedbackpaths.TheLFbasedstructurehasbeenproved to have the best phase response. Therefore, linear phase lowpass filters based on voltagemode LF structure have been used for HDD application [36, 37, and 54]. Sinceanaloguesignalprocessinginthecurrentdomaincanofferadvantagesformany applications,includingsimplicity,highfrequencyoperationandwidedynamicrange, researchershavepaidmuchattentiontocurrentmodeCTfilters[104108,118].For DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 46 currentmode signal processing and filtering, circuits are normally based on current integrators, current amplifiers, and current feedback, with current inputs to circuit nodes and current outputs from OTA output terminals. Design formulae for the currentmodeFLFfilterconfigurationhasbeenproposedin[107].However,design formulae for currentmode LF configurations have not previously been proposed in the literature. Therefore, we will propose the design formulae of currentmode LF configurationinChapter4.

2.4.4 Filter Circuits and Tuning

Althoughtheabovefilterstructuresmaybesuitableforanycircuitimplementation, due to highspeed and economic requirements, CMOS OTAC filters are the only suitabletypeforimplementationofhighspeedCTfilters. Fromtheviewpointoftheanaloguedesigner,CMOSprocesses,whilstyieldingactive devicescapableofexcellenthighspeedperformance,aremediocrefromthepointof view of component value accuracy. Each type of component is fabricated during several process steps, each of which contributes variability to the final component value.Typically,initialcomponenttolerancesoftheorderofseveralpercenttotensof percentcanbeexpected.Itisinterestingtonotethat,inspiteofthegreatstridesmade insemiconductortechnologyduringthepastfewdecades,componenttoleranceshave improvedlittle.Itispossibletofabricateaccurateonchipcomponents,buttheneed forextensiveadditionalprocessingmakesthisimpracticalforapplicationswherehigh yield and low cost are of paramount importance. At high frequencies, parasitic capacitancesinthecircuitlayoutareanadditionalsourceofinaccuracyincomponent values, and have more poorly defined values than fabricated capacitors. While groundedcapacitorsmayreadilyabsorbparasiticcapacitanceatlowerfrequencies,at UHF/VHF parasitic capacitance may dominate the total capacitance, and indeed parasiticcapacitancesmaybeusedasfiltercapacitancesintheGHzrange.Thepole andzerofrequenciesofthefilteraredependentonthevaluesofatleasttwodifferent types of component, in the case of gmC filters transconductance and capacitance,

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 47 eachofwhichissubjecttouncorrelatedtolerancevariations.Therefore,toleranceson theinitialcutofforcentrefrequenciesofthefilterof50%ormorecanbeexpected. Inprinciple,thedesiredfilterresponsecouldbeobtainedbytrimmingcomponents onthedieafterfabrication.Withactivelasertrimming,thetotaldependenceonthe fabricationmanufacturingprocessescanbeeliminated.However,thisisimpractical foreconomicreasons.WhileinstandardICprocessing,alargenumberofchipsare processedinparallel,simultaneously,onasinglewafer.Thisisafundamentalfactor that allows production of complex ICs at very low cost. On the other hand, a postfabrication trimming process would have to be performed on each die individually,addingsignificantlytotesttimesandsotoproductioncost.Also,evenif accurate initial values could be achieved, the components on the IC are subject to furthersubstantialvariationsinvalueduetotheeffectsofageingandenvironmental variables,inparticulartemperature. Therefore,anautomaticonchiptuningsystemisnormallyneeded.FortheHDD read channel application, cutoff frequency tuning is the main requirement [2, 8, 3840,51,52].QtuningisnotgenerallynecessaryforHDDreadchannelfiltersdue to their low design Q. However, both frequency and Q tuning may be needed for analoguetransceiverfilterdesign.Themostpopulartuningmethodusedforlowpass filteringisthemasterslavemethod[3840,5052]basedonphaselockedloop[3840] or frequency locked loop [5052]. It is noted that the design of tuning system is excludedinthisthesis,althoughitisimportantforactualimplementation. 2.5 OTA Design Considerations for Read Channel OTA-C

Filters

For UHF/VHF applications, the voltage to current transducer must be able to operate properly at high frequencies. Although the use of small load capacitors, 0.20.4 pF , would be desirable, parasitic capacitance is typically larger than these values[41].Also,inarealfilter,severalOTAsaresharingthesamenode,increasing thetotalparasiticcapacitanceatthatnodetotherangeof0.40.8pF .Therefore,small

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 48 signaltransconductancesofaround0.8mS (fora100 MHzpole)andupto8mS (fora 1 GHz pole)arerequired.Theimplementationoflargetransconductancerequiresthe use of wider transistors and larger tail currents. The use of small transistor lengths pushestheparasiticpolestohigherfrequencies,buttheDCgainofOTAisreduced andmobilitydegradationeffectsbecomemoresevere.Ontheotherhand,theuseof large drain currents reduces the available DC gain even further and increases the powerconsumption.AnotherimportantdesignaspectistheeffectoftheOTAexcess phaseatthefiltercutofffrequency,duetotheOTAoutputresistanceandtheparasitic poles and zeros. Very often, large gatesource voltages are desirable in order to improveOTAlinearity,butthelowsupplyvoltageslimitthispossibility. Among different OTA topologies, the pseudodifferential and fullydifferential topologies are the most commonly used. Figure 2.13(a) shows a basic differential (unbalanced)OTAwithasimplecurrentmirrorandasingleoutput.Infact,itisthe wellknownsimplesingledifferentialpairOTA.Notethatthestructureofthecircuit is nonsymmetrical and thus generates excessive noise. The balanced version (symmetrical)oftheOTAisshowninFigure2.13(b)withthreecurrentmirrorsanda single output. Figures 2.13(c) and (d) show fullydifferential (fully symmetrical in architecture) OTAs without commonmode feedback (CMFB) and with inherent commonmodefeedforward(CMFF),respectively.NotethattheOTAsinFigure2.13 donothaveveryhighDCgain.ToobtainhigherDCgain,cascodestructuresmaybe usedastheoutputstageoftheOTA[110].

CMp

I V o o I + I - Io o o V + V - V - V + V V + V + V - - in in in in o o in in Vo M1 M2 M1 M2 M1 M2

I I I I TAIL TAIL b1 TAIL Ib1

(a) (b) (c)

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 49 - + - V + I Io in I o o V + A o + V + V - - V - Vo in in Vo + - o V Io M1 M2 in

B

ITAIL gmA = gmB

(d) (e) Figure2.13DifferentialCMOSOTAs:(a)simpledifferential,(b)balanced,(c) fullydifferential(withoutCMFB),(d)fullydifferential(withinherentCMFF),and(e) pseudodifferentialOTAs The architecture of thepseudodifferential OTA shown in Figure 2.13(e) is suitable for LV/LP operation. The circuit consists of two parallelinterconnected transconductors(labeledAandB)ofequalDCtransconductances.Thetransconductor A is a pseudodifferential transconductor, which can be implemented using two singleinput transconductors. The configuration of the transconductor A requires a CMFFcircuittoreduceitscommonmodesignal.TheCMFFcircuitcanberealized using an additional, nondifferential input and dual (equal) output transconductor (transconductor B). Topologies based on this pseudodifferential pair have been proposed in [30, 35]. This approach can be very efficient in terms of power consumption. The pseudodifferential OTA is based on two independent inverters withoutatailcurrentsource.Avoidingthevoltagedropacrossthetailcurrentsource, thisstructurecanachievewiderinputrangeandmakethearchitectureattractivefor reduced powersupply applications. However, removing the tail current source significantlyincreasethecommonmodegain.Noanaloguecircuitistotallyimmune tosupplynoise;anysignalornoiseonthesupplylineswillcoupleintothesignalpath throughthestraycapacitancesandgainofthebiasnetworkandbeamplifiedbythe active circuitry on the die. This power supply noise degrades the overall noise performance of the OTA.A high power supply rejection ratio (PSRR) is required DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 50 because, in mixedsignal SoC environments, digital switching noise signals will be injected into the analogue circuitry through the power supply rails, degrading the performanceoftheanaloguecircuits.Therefore,topologiesbasedonfullydifferential pair have been widely used for HDD applications due to better dynamic range, distortionperformance,andnoiserejection. AmongfullydifferentialOTAstructures,crosscoupled[36,37,4244]andsource degeneration[33,3841,5052]basedOTAsarecommonlyused,whichareshownin outlineinFigure2.14,2.15respectively.

Io1 Io2

Io1 Io2 V + - in Vin + - Vin Vin

VB V B VB

Figure2.14ImplementationsofthecrosscoupledOTA

I IB IB B IB + - + - Vin Vin Vin Vin

RR 2R

2IB IB IB

Figure2.15Twopossibletopologiesofsourcedegenerationtechniques In the source degeneration technique, nonlinearity is reduced by making transconductanceprimarilydependentonlinearsourceresistors.Onedrawbackofthe source degenerated OTA is that the transconductance tuning range of the OTA thereforeislimited;thetotaltransconductanceisalsoreduced,whichdependsonthe sizesofsourcedegeneratedtransistors.Ontheotherhand,althoughthecrosscoupled DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 51 OTA structure can also reduce nonlinearities [4244, 54], it is not usually used because the superior linearity is achieved at the expense of increased power consumption and noise. Currently, source degeneration technique attracts more attention.In[40],afullydifferentialOTAisproposed.Thiscellisdesignedtohavea significantsizeforimprovedmatchingofVT.Moreover,the VGS ofinputdifferential pair is maintained constant by using feedback loops which force constant current feedbacktotheinputdifferentialpair.However,thisstructureaddstwointernalnodes whichsignificantlyaffectthephaseresponseoftheOTAanditishardtomaintain lowgroupdelayrippleinthefilterathighfrequency.AnotherOTAbasedonsource degenerationtopologyispresentedin[51].In[51],atwoinputOTAwithcapacitive loadingusesafoldedcascodestructuretoobtainhighoutputimpedance.Alowoutput impedancereducestheDCgainoftheOTAandalsoproducesphaseerrors.Thisis especiallytruefordesignsusingsmallprocessgeometries.Fortunately,lowpassfilters forHDDsaregenerallylowQapplications,soamodestDCgainof20dBissufficient torealizetolerablegainandphaseerrors.Foldedcascodeortelescopicarchitectures providehighDCgainandgoodnoiserejection,butagainforhighfrequencydesigns thenondominantpolesduetointernalnodesdegradethefilterphaseresponse.Also thecostoflowerinputvoltagerange,orgreatersupplyvoltage,andgreaterchiparea must be paid. In order to achieve high frequency with low power consumption, simpler singlestage OTAs are preferred. Improved filter response can be expected duetoabsenceofinternalnodes.Also,singlestageOTAsreducepowerconsumption andarea.TheOTAproposedin[39]usescomplementarydifferentialpairswithsource degeneration transistors to increase the overall power efficiency. The frequency responseofthisOTAisverygoodduetotheabsenceoflowfrequencyparasiticpoles. UsingthesimilarOTAin[41],550MHzcutofffrequencycanbeachievedwithonly 140mW power consumption. However, the DC gain is relatively low, even for the fabricatedchipusinga0.35mprocess.Theeffectsmaybecomeevenmoresevere whenusingdeepsubmicronprocesses.ThetuningrangeoftheOTAisalsosmall. ConsideringthetuningrequirementsofHDDapplications,itisnotnecessarytouse DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 52 eithercapacitorarraysortransconductorarraystotunethecutofffrequenciesofthe lowpass filter. Transconductance tuning alone can achieve adequate tuning range. TuningtransconductanceisnormallyachievedbychangingDCbiasorsupplyvoltage, both of which are strongly related to power consumption. Moreover, the tuning rangeofmostOTAsislessthan1:2.However,theoverallfiltertuningrangerequired is 1:2 at least. Therefore, new techniques must be proposed in order to fulfill this requirement.In[33],a1:4tuningrangeisachievedbyexploitingadualloopcontrol overasourcedegenerationbaseddifferentialpair.However,theuseofalargenumber ofsourcedegenerationtransistorsswitchedonoroffoccupiesmorearea,particularly wherelargertransconductanceisrequired.Asmentionedbefore,itisdesirabletoonly usesimpleOTAstructuresinordertoachievebetterhighfrequencyperformancefor nextgenerationHDDanaloguefiltersolutions. Fullydifferentialfiltercircuitsareubiquitousduetotheirimprovednoiserejection. Howeverfullydifferentialcircuitsusuallyrequireacommonmodefeedback(CMFB) circuit to stabilize their DC operating point, and reduce commonmode gain in the circuit. In most fullydifferential OTAC filters [911, 110], an associated CMFB circuit is included to overcome this problem, either as an integral part of the OTA design,oractingontheoverallcircuit.ThebasicconceptoftheCMFBloopisshown in Figure 2.16 [110]. Figure 2.16(a) illustrates a basic differential OTA with a commonmode detector implemented using two identical resistors. Figure 2.16(b) shows a conceptual implementation of the CMFB loop. The sensed commonmode signalsaresummed,comparedwiththecommonmodereference(AC),and theresultantcurrentisfedbacktotheOTAtoadjustitsbiascurrent.Thebasicdesign constraintsofaCMFBcircuitaredescribedin [110].

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 53 Mp Mp IB I B Mp Mp V - R R o V + - + o Vo Vo CL + - + - Vin Vin V Vin Vcm in AC M M M ∑ M M n n n Mn cm cm GND CL

2I 2I B 2IB B

(a) (b) Figure2.16CMFBbasiccircuitconcept:(a)basiccommonmodedetectorand(b) CMFBimplementation

2.6 Conclusions

Design considerations for high performance analogue lowpass filters for HDD systemshavebeenpresentedinthischapter.ThechoiceofOTAs,filterorder,filter approximation, and filter architecture by considering their advantages and disadvantages have been addressed. Design tradeoffs in relation to power consumption,speed,groupdelayripplesandlargetuningrangehavebeendiscussed. Currently, filter architectures used to implement HDD analogue lowpass filters are mainlybasedthecascadestructure.Recently,thewellknownMLFstructurehasalso been proposed for HDD read channel applications. In [36], a singleended LF structure has been used, but it is not suitable for stateoftheart mixedsignal processing.Therefore,afullybalancedformhasbeenproposedin[37].Thepower consumptionofdesignedlowpassfilterishighformodernHDDsystemswhichuse thecrosscoupledtypeofOTA.ThelatestresearchshowsthatthecurrentmodeLF and FLF architectures can also achieve high speed with reasonable power consumption[57,59].Forthefuture,thehighefficiencysolutionsforreadchannel chiparemuchindemand.Thedesignconsiderationspresentedinthischapterserveas theguidelinesforthemultipleloopfeedbackOTACfiltersforHDDreadchannels describedinthenextthreechapters.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 54 3. Design and Simulation of Linear Phase MLF FLF and IFLF OTA-C Lowpass Filters for HDD Read Channels

3.1 Introduction

Theory and design methods of multiple loop feedback (MLF) operational transconductance amplifier (OTAC) topologies were developed in [14, 42, 43, 105107, 117126]. In recent years, the MLF followtheleaderfeedback (FLF) and inversefollowtheleaderfeedback(IFLF)OTACfilterconfigurationshaveattracted attentions due to simple design methodologies. The voltagemode MLF IFLF configurationhasbeenusedforcomputerharddiskdrive(HDD)readchannelssince 1996 [42]. However, the cutoff frequency of voltagemode MLF IFLF filters is relativelylow.Moreover,currentmodeMLFFLFconfigurationshavenotbeenused forHDDreadchannelsintheliterature.

For the solution of next generation HDD read channels, the power consumption needs to be further reduced. Although the easiest way to reduce the overall power consumptionistouseloworderfiltersinsteadofhighorderones[41,49,78,85,103], theoverallfilterperformanceisdegradedasthefilterorderdecreases.Usingreduced supplyvoltagecanalsocertainlyreducetotalpowerconsumptionofcircuits,butmost specifications of the continuoustime filter rely on supply voltage strongly. In particular,thespeedofafilterislimitedbyreducedsupplyvoltageseverely.Onthe otherhand,itischallengingtodesignaFLForIFLFlinearphasefilter,althoughthe FLFandIFLFstructureshavebeenusedtooptimizethefilterperformanceandpower consumption for HDD read channels [42, 59]. This is because they have a main intrinsic drawback in that their global feedback loops introduce hardtominimize phase errors, which severely affect the filter group delay responses. Therefore, our researchfocusesondesignoflinearphaseFLFandIFLFfiltersinthischapter.The targetspecificationforthefilterisgiveninTable3.1. DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 55 Table3.1DesigntargetsoftheIFLFandFLFfiltersforcomputerHDDreadchannel

Specification Cutoff Gainboost Group Dynamic Power frequency delayripple range consumption

Target 300MHz 10dB 5% 35dB 100mW

In the next section of the chapter, Section 3.2, the multiple output and multiple input OTAs are designed and simulated for filter implementation. The synthesis of currentmodeFLFfilterswithinputdistributionandoutputsummationispresentedin Section3.3,wherebothcurrentmodeseventhandfifthorder0.05°equiripplelinear phaseFLFOTAClowpassfiltersaredesignedusingproposedtwoinputfouroutput OTA. The seventhorder voltagemode 0.05° equiripple linear phase MLF IFLF OTAClowpassfilterisalsodesignedandsimulatedbyusingfourinputtwooutput OTAsinSection3.4.InSection3.5,thedetailedsimulationresultsofallpresented filtersaregiven.Finally,discussionandconclusionsareprovidedinSection3.6.

3.2 Transistor-level OTA Design

TheOTAisthedominantbuildingblockforhighfrequencyactivecircuitdesignin usetoday.ThefrequencyandlinearitycharacteristicsofanOTAdirectlyimpacton thefilterperformance.Inthissection,wedescribethedevelopmentoftwoinputfour outputandfourinputtwooutputOTAs.

3.2.1 Single Stage OTA Design

AnewOTAwhichtakesadvantageofthefullysymmetricalstructureispresented. The circuit implementation of the simplified proposed fullysymmetrical OTA is showninFigure3.1.Thepresentedstructureusesadifferentialpairintheinputstage. The output stages consist of four current mirrors. Instead of mirroring the output current to the other side of the circuit, then subtract with another output current to producethedifferentialoutputcurrent.TheoutputstagesoftheproposedOTAactas buffer.Theoutputcurrentcanbetakendirectlyfromeachside.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 56 Figure3.1FullybalancedtwooutputOTA Thetailcurrentsourceistakenoverbyapairofcurrentmirrors.Theinputstage currentsaredifferentiallymirroredthroughP −typecurrentmirrorsM 9,10 andN −type currentmirrorsM 5,6 totheoutputs.AswecanseethatthegatevoltagesofM R1 and

MR2 areconnectedtobebiasedwithacontrolvoltagesourceV bias .Inordertoshiftthe polestohigherfrequenciesandobtainthelargetransconductance,thechannellength usedforthesedevicesistheminimumlengthallowedbytheprocess.TheM R1 and

MR2 could be connected either in serial or in parallel. It depends on what kind of purposetheOTAisusedfor.Inordertoincreasethetotaltransconductancevalue,the widths of the two input stage transistors can be designed to be quite small. To optimizethepowerconsumption,parasiticeffectsandhighfrequencyresponse,the triodetransistorsshouldbeconnectedinparallel.Ifalargetuningrangeisneeded,the triodetransistorsshouldbeconnectedinserial.

3.2.2 Multiple Output Multiple Input OTA Design

ThepresentedtwoinputfouroutputOTAisshownbelowinFigure3.2;thesources oftheinputtransistorsareconnectedtotheirsubstrate,whichisacommonP−wellto reducebodyeffects.Thepresentedstructureusestwoparalleldifferentialpairsinthe input stage. The output stages consist of eight current mirrors. The input stage currentsaredifferentiallymirroredthroughPtypecurrentmirrorsM 9,11,12 ,M8,10,13 DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 57 and Ntype current mirrors M 14,16,18 , M 15,17,19 to the outputs. Assuming matching between transistors, the output differential current Iout = Ioutput1 Ioutput4 = Ioutput2

Ioutput3 .TheOTAusestwoseriesconnectedMOStransistorsM R1 andM R2 intriode region as source degeneration resistors. The gate voltages of M R1 and M R2 are connectedtotheseparatesourcefollowersM 6andM 7biasedwithacontrolcurrent I1, so that both DC level shifts are identical, and tuning is obtained via I1 without disturbingthebiascurrentoftheinputstage.

Figure3.2FullybalancedtwoinputfouroutputOTAwithbiascircuit The channel length used for these devices is the minimum length allowed by the processandthechannelwidthsarelistedas: Table3.2ThewidthofthetransistorsinFigure3.2

M1−M3 M4,M 5 M6,M 7 M8−M13 M14−M19 MR1 ,M R2 15 µm 30 µm 10 µm 25 µm 9µm 90 µm

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 58 ThedraincurrentofMOStransistorsM R1 andM R2 intrioderegionisgivenby:

1 2 I = K [(V − V )V − V ] (3.1) R 2,1 GS T DS 2 DS where K=0.5 µnCox (W/L )istheN −typetransconductanceparameter,andµn, Cox, Wand L are mobility, oxide capacitance per unit area, channel width and length, respectively.Then: = − = − − = I out I output 1 I output 4 I R 2,1 ( I R 2,1 ) 2 I R 2,1 (3.2)

Bysubstituting(3.1)into(3.2)weget:

1 I = 2 K [(V − V )V − V 2 ] (3.3) out GS T DS 2 DS

Assumingdeepsourcedegeneration,whichis2 VDS ≈V id and VDS <

Where Vid = V input1 V input2 , Vid is the differential input voltage and gm is the DC transconductanceoftheMOOTAgivenby: ≈ ⋅ g m K V B (3.5) where VB=V GS V T. From equation (3.4) and (3.5), we can see that the MO −OTA exhibitsalinearV −Icharacteristicwiththeassumptionsmade.Equation(3.5)shows thatthetransconductancevaluecanbecontrolledbyvaryingthebiasvoltageV B.The biasvoltageV Bcanbeadjustedbythebiascurrentsource I1. Thus,theallowedvalues of I1 (VB) determine the achievable transconductance tuning range. However, in practice, secondorder effects such as body effects, mobilityreduction, and channel lengthmodulationwilldegradetheV −IfunctionoftheMO −OTA.Forhighfrequency applicationsthesecondordereffectsaresevere,thereforeofteninimplementation,the bulks/substratesofmosttransistorsinFigure3.2aretiedtogroundor VDD ,apartfrom thefourinputstagetransistors.Forthiscase,thethresholdvoltageofM 1,3 ,M 2,4 will be modulated which results in so called body or threshold modulation effects. The thresholdvoltageofanNMOStransistorisdefinedby

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 59 = + γ φ − − φ V T V T 0 ( V BS ) (3.6)

Where VT0 is the threshold voltage with zero bias, γ is the body/bulk polarization factororbulkthresholdparameter,φisthestronginversionsurfacepotentialand VBS isthebulksourcevoltage[9,112]. WiththementionedthresholdmodulationeffectforFigure3.2,usingequation(3.6) themodified Iout canbeshownas I ' = g ' V out m id (3.7)

' = − − γ φ − − φ Where g m 2K(VGS VT 0 ( VBS )) isthemodifiedDCtransconductance

∆ = γ φ − − φ of the OTA. There is an error caused by VT ( VBS ) in gm’. Thus the bulkeffectscausenonlinearbehaviorsin gmwithrespecttoVid.Inpractice,thinner gateoxidesarerecommendedtominimizethebodyeffectsasγisdecreasedwitha smalleroxidethicknessattheexpenseofincreasedmobilityreduction.Thefirstorder modelofmobilityreductionordegradationinMOStransistorsisgivenby µ µ = 0 + θ − (3.8) 1 (VGS VT ) where µoisthezerofieldmobilityofcarriers, θ=1/t ox ECR isthecoefficientofthe effectoftheelectricfieldonthemobility, tox isthegateoxidethicknessand ECR isthe critical field. An ideal squarelaw MOSFET has a resistance Rsx in series with the source.The Rsx canbeexpressedas[9], 1 R = sx µ (3.9) E c 0C oxW

Therefore,the θcanalsobemodelledas 0Cox (W/L)R sx .Inrelationtotheproposed OTA, the mobility reduction µ causes the transconductance parameter K that is µ dependenttochange.ThisinturnscausesvariationingmorIout .Thus,the gm’canbe

' = + − − γ φ − − φ further modified as g m 2K /[1 2KRsx (VGS VT 0 ( VBS ))]. In fact, the draincurrentinaMOStransistorincreasesslightlyasaresultoftheextensionofthe depletionlayeratthedrainintothechanneltowardsthesourceoverashortdistance.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 60 Thus the channel length is reduced and it is called short channel effect. To characterizethiseffect,achannellengthmodulationparameter λisintroduced.The parameterdeterminestheslopeoftheoutputcharacteristic( IDversusVDS )ofaMOS device where VDS is the draintosource voltage. The resultant drain current in saturationisthusgivenby,

= − 2 + λ I D K (V GS V T ) 1( V DS ) (3.10)

Thisresultantdraincurrentasaresultoftheshortchanneleffectwillcause Iout tovary from its ideal expression as given in equation (3.4). Note that for shortchannel lengthsthe λparameterislargerthanforlongchannellengths.Thus, λiscriticalin deepsubmicron.Althoughusinglargegeometryprocesscanreducetheshortchannel effects, other performances such as the parasitic effects, power consumption, and speedaredegraded.Therefore,thereisatradeoffbetweentransistorsizes. For voltagemode MLF IFLF filter implementation, four input two output OTAs areneeded.ThefourinputtwooutputOTAbasedonthebasicstructureinFigure3.1 isgeneratedbyanadditionalinputpairinparallelandispresentedinFigure3.3.

Figure3.3FullybalancedfourinputtwooutputOTA

3.2.3 Simulation Results of Transistor-level OTAs

Figures3.4and3.5showthehandcalculatedandsimulatedDCcharacteristicsof theMO −OTAterminatedbyashort −circuitloadandwith2Vpowersupplyvoltage.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 61 The transconductance turning range is from 800 µS to 1.17mS, corresponding to valuesofI 1from1 µAto150 µA.

Figure3.4Simulatedandhandcalculateddifferentialoutputcurrentversus differentialinputvoltageforthe2VOTAwithshortcircuitload

Figure3.5SimulatedandhandcalculatedDCtransconductanceversusdifferential inputvoltageforthe2VOTAwithshortcircuitload

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 62 Figure3.6SimulatedandhandcalculatedACopencircuitfrequencyresponsesofthe 2VOTA

1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 160 180 200 220 240 260 Differential input voltage [mV] Figure3.7SimulatedTHDversusthedifferentialinputvoltageofthe2VOTA The THD of the presented OTA remains less than 1% at 260mV differential input voltage. Simulated and hand calculated results of OTA open −circuit responses are showninFigure3.6.ThesimulatedopencircuitcutofffrequenciesoftheOTAcell are about 612MHz and 652MHz for the minimum and maximum bias current, respectively.TheDCgainisaround27dB,whichisadequateforlow −Qapplications.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 63 Moreover, the higher cutoff frequency of the filter needs the larger OTA transconductance.

Figure3.8Simulatedandhandcalculateddifferentialoutputcurrentversus differentialinputvoltageofthe2.5VOTAwithshortcircuitload

Figure3.9SimulatedandhandcalculatedDCtransconductanceversusdifferential inputvoltageofthe2.5VOTAwithshortcircuitload In order to further enhance the cutoff frequency of the proposed OTAs, the power supplyvoltageisresetupto2.5VandthetransconductanceofOTAisredesignedas

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 64 1.3mS.ThesimulatedDCresponsesofthemodifiedOTAareshowninFigure3.8and 3.9,respectively.

Figure3.10SimulatedandhandcalculatedACopencircuitfrequencyresponsesof the2.5VOTA

1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 110 130 150 170 190 210 230 250 Differential input voltage [mV] Figure3.11SimulatedTHDversusthedifferentialinputvoltageoftheOTAinFigure 3.3 The turning range of transconductance is from 935 µS to 1.33mS, corresponding to

values of I 1 from 1 µA to 150 µA. Simulated and hand calculated results of OTA open −circuit responses is shown in Figure 3.10. The simulated opencircuit cutoff DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 65 frequenciesofthe2.5VOTAcellareabout635MHzand597MHzfortheminimum andmaximumbiascurrent,respectively.TheTHDofthepresentedOTAislessthan 1%at250mVdifferentialinputvoltage.

3.3 Design of Current-mode 0.05° Equiripple Linear Phase MLF FLF OTA-C Lowpass Filters

Designofanalogueintegratedandsignalprocessingcircuitsusingthecurrentmode approachhasbeenreceivingconsiderableinterest[1,2,4,5559,104108,114].This isbecausetheapproachoffershigherperformance(speed,bandwidth,accuracy,noise, anddynamicrange),ismoresuitableforlowvoltageandlowpoweroperations,and reduces circuit structure complexity compared with its voltagemode counterpart. Currentmode signal processing techniques have been widely used, in particular, in high frequency filtering applications. For example, mixed voltage and current equationsarescaledintocurrentonlyonesinthedesignofactivefiltersbasedonthe simulation of passive LC ladders [105]. To realize a voltage transfer function, it is nowpreferredtocascadeacurrenttransferfunction,atransadmittancefunction,anda transimpedancefunctionsectiontobenefitfromthecurrentmodeapproach. TheOTACfilterstructuresthathavebeendealtwithintheliteraturearemainly basedonvoltageintegratorsandvoltageamplifiers.Theyareusefulforvoltagesignal processingwithvoltageinputstoOTAinputterminalsandvoltageoutputsfromfilter circuitnodes.ForcurrentmodeOTACfilters,wecanexpectthesefiltersarebased oncurrentintegratorsandcurrentamplifiers.Thesecircuitscanperformcurrentsignal processingwithcurrentinputstocircuitnodesandcurrentoutputsfromOTAoutput terminals.The structuresof the basic currentmode building blocks:integrators and amplifierscanbeunderstoodfromthecurrentdescriptionpointofview.Forexample, acurrentintegratorhasacapacitorconnectedtooneoftheinputterminalsoftheOTA. Thecapacitoroftheintegratorconvertstheinputcurrentsignaltoavoltagesignaland the OTA does the conversion from the voltage to the output current. For a current amplifier,anOTAresistorreplacesthecapacitorinthecurrentintegrator.Dualand DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 66 multipleoutput OTAs (DOOTA and MOOTA) that are suitable and used for currentmodesignalprocessingandfilteringapplicationshavebeenreported[5659, 104108].ThestudyofthecurrentmodeDOOTAfiltersbeganinlate1970s,where currentmodefiltersbasedononeortwoDOOTAswerepresented.Recently,many currentmode biquads and highorder filters based on DOOTA or MOOTAs have beenreported.Inparticular,manynewmultipleloopfeedbackfilterstructuresbased onDOOTACorMOOTACintegratorshavebeenpresented.Thesestructuresare useful for both canonical and noncanonical realizations of various filtering characteristics.Thegeneralallpoleandtransmissionzerostructurespresentedinthis sectionaresingleended.Inpracticalfilterdesigns,toachievebettercommonmode rejection ratio (CMRR) and power supply rejection ratio (PSRR), fullybalanced topologywillbeused.

3.3.1 Synthesis of Current-Mode FLF Lowpass OTA-C Filters

Thecurrentmoden th ordertransferfunctionisgivenbelow:

A s n + ⋅⋅⋅ + A s 2 + A s + A H ( s ) = n 2 1 0 (3.11) n + ⋅⋅⋅ + 2 + + B n s B 2 s B 1 s 1

ThecurrentmodeallpoleMLFFLFconfigurationisshowninFigure3.10below.

Figure3.12GeneralallpolecurrentmodeMLFFLFOTACconfiguration Writing the circuit current transfer function and comparing this function with

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 67 equation3.11,whereτj=c j/g j.Wecanestablishthefollowingequations[119,123]: B τ = τ = n− j +1 = − − n B ,1 j ( j n ,1 n 2,..., )1 (3.12) Bn− j

The currentmode singleended n th order MLF FLF configuration with input distributionstructureisshowninFigure3.13.AscanbeseenfromFigure3.12,the input,outputandfeedbacksignalsallarecurrentsignals.Thestructureconsistsofa currentamplifiersandcurrentintegrators.Theinputcurrentisfirstlyconvertedbythe groundedOTAg rintovoltage.

Figure3.13ThesingleendedcurrentmodeMLFFLFstructurewithinput distribution Writing the circuit current transfer function and comparing this function with equation3.11,where βj=g aj /g j.Wecanestablishthefollowingequations:

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 68 n−2 β = An β = − β − β 0 , 1 A0 0 ∑ n−i , Bn i=0 B n− j−1 B β = n− j+1 − β − β j+i = − − j [ A j−1 0 B j−1 ∑ n−i ], ( j n ,1 n 2,..., )2 (3.13) Bn i=0 B1+i − β β = B1 ( An−1 0 Bn−1 ) n Bn The currentmode singleended n th order MLF FLF configuration with output summationstructureisshowninFigure3.14.

Figure3.14ThesingleendedcurrentmodeMLFFLFstructurewithoutput summation Writing the circuit current transfer function in Figure 3.14 above and comparing this function with equation 3.11, Where αj=g aj /g j, we can derive the following equations: A α = An α = n− j −α α = −α 0 , j 0, n A0 0 Bn Bn− j

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 69 ( j = n − ,1 n − 2,..., )2 (3.14)

3.3.2 Design of Seventh-order Current-mode FLF 0.05° Equiripple

Linear Phase Lowpass OTA-C Filter

The normalized characteristic of a seventhorder 0.05° equiripple linear phase lowpassfilterwithrealzerosatthecutofffrequencyisgivenby: 2 − = s 1 H d (s) (3.15) D(s) with

D(s) = .0 05561 s 7 + .0 291094 s 6 + .1 095656 s 5 + .2 554179 s 4 + .4 255922 s 3 + .4 676709 s 2 + .3 176156 s + 1 The fully balanced realization of the function in equation 3.15 using the current −modeMLFFLFstructurewithoutputsummationOTAsisshowninFigure 3.15.

Figure3.15Seventh −ordercurrent −modeFLFOTA −Clowpassfilterwithoutput summationOTAnetwork

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 70 Theoveralltransferfunctionofthecircuitcanbederivedas

I N ( s ) H ( s ) = output = (3.16) I input D ( s ) where

= α τ τ 2 + α N ( s ) 5 6 7 s 7 =τ τ τ τ τ τ τ 7 +τ τ τ τ τ τ 6 +τ τ τ τ τ 5 + D(s) 1 2 3 4 5 6 7 s 2 3 4 5 6 7 s 3 4 5 6 7 s τ τ τ τ 4 +τ τ τ 3 +τ τ 2 +τ + 4 5 6 7 s 5 6 7 s 6 7 s 7 s 1 whereτj=c j/g j, αj=g aj /g j.Thedesignformulaeforthelowpassfiltercanbeattainedby coefficientmatchingbetweenequations(3.15)and(3.16)[106,107]. B B B B B B τ = 7 ,τ = 6 ,τ = 5 ,τ = 4 ,τ = 3 ,τ = 2 , 1 B 2 B 3 B 4 B 5 B 6 B 6 5 4 3 2 1 A τ = α = 2 α = 7 B1 , 5 , 7 A 0 B 2 Theresultingpoleandzeroparameterscanbecalculatedas:

τ = .0 19106 ,τ = .0 26568 ,τ = .0 42897 ,τ = .0 60015 ,τ = .0 91002 , 1 2 3 4 5 τ = τ = α = α = 6 .1 47244 , 7 .3 17616 , 5 .0 213826 , 7 1

(3.17)

Thefilterisdesignedwithidenticaltransconductances gj( j=1to7)usingtheCMOS OTA cell in Figure 3.2, with selected transconductance of 800 µS, to improve OTA matching and facilitate design automation. The cut −off frequency of the filter is chosen as 150 MHz. Using the computed parameter values in equation (3.17), the capacitanceandtransconductancevaluescanbecalculatedas:

C = .0 3244 pF,C = .0 451pF,C = .0 7282 pF,C = .1 0188pF,C = .1 5449 pF, 1 2 3 4 5 = = = µ = µ C6 5.2 pF,C7 .5 392 pF, g a5 170 S, g a7 800 S

However, the parasitic capacitance must be taken into account. For the circuit of Figure 3.2, the parasitic capacitance is about 0.1 pF . Thus, the grounded capacitor valuescanberecalculatedas:

C = .0 2244 pF,C = .0 351pF,C = .0 6282 pF,C = .0 9188pF,C = .1 4449 pF, 1 2 3 4 5 = = C6 4.2 pF,C7 .5 292 pF

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 71 3.3.3 Design of Fifth-order Current-mode FLF 0.05° Equiripple

Linear Phase Lowpass OTA-C Filter

Thenormalizedcharacteristicofafifth −order0.05°equiripplelinearphaselowpass filterwithrealzeros(gainboost)isgivenby:

(s 2 − )1 H (s) = (3.18) d D (s) with

D(s) = .0 201926 s 5 + .0 822285 s 4 + .2 075924 s 3 + .3 033116 s 2 + .2 604527 s + 1

ThefifthorderFLFfilterconfigurationisshowninFigure3.16torealizethetransfer function.

Figure3.16FifthordercurrentmodeFLFOTACfilterwithoutputsummationOTA network Theoveralltransferfunctionofthecircuitcanbederivedas:

I N ( s ) H ( s ) = out = (3.19) I in D ( s ) DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 72 where =τ τ τ τ τ 5 +τ τ τ τ 4 +τ τ τ 3 +τ τ 2 +τ + D(s) 1 2 3 4 5s 2 3 4 5s 3 4 5s 4 5s 5s 1 = α τ τ +α N(s) 3 4 5 5 where τj = c j/g j, αj=g aj /g j. The design formulae for the filter can be attained by coefficient matching between equations 3.18 and 3.19 . The resulting pole and zero parametersare:

τ = τ = τ = τ = τ = 1 .0 2456 , 2 .0 3961 , 3 .0 6844 , 4 .1 1646 , 5 .2 6045 , α = α = 3 .0 213826 , 5 1 ThefilterisdesignedwithidenticalunitOTAsusingtheCMOSOTAcellinFigure 3.2, with 2.5V power supply voltage and selected transconductance of 1.2mS. The cutofffrequencyofthefilterischosenas300MHz.Usingthecomputedparameter values and taking into account the parasitic capacitance, the capacitance and transconductancevaluescanbecalculatedas: = = = C 1 .0 2127 pF , C 2 .0 4043 pF , C 3 .0 7714 pF , = = C 4 .1 3828 pF , C 5 .3 2162 pF , = µ = g a 3 260 S , g a 5 2.1 mS

3.4 Design of Voltage-mode Seventh-order IFLF 0.05° Equiripple Linear Phase Lowpass OTA-C Filter

The voltagemode IFLF MLF configuration has not been widely used for HDD systemsintheliterature.ThehighestspeedachievedsofarusingtheIFLFfilterfor readchannelsisabout20MHz,whichisfarbelowthespeedofcurrentmodeMLF FLF filters. In this section, we design a voltagemode seventhorder IFLF 0.05 ° equiripplelinearphaseOTAClowpassfiltertoachieveaveryhighfrequencyusing 0.18m CMOS technology. The normalized characteristic of a seventhorder 0.05° equiripplelinearphaselowpassfilterwithrealzerosisalreadygiveninequation3.15. Thefullybalancedrealizationofthefunctioninequation3.15usingthevoltagemode MLFIFLFstructurewithinputdistributionOTAsisshowninFigure3.17. DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 73 Figure3.17VoltagemodeseventhorderIFLFOTA −Cfilterwithinputdistribution OTAnetwork Theoveralltransferfunctionofthecircuitcanbederivedas:

I N ( s ) H ( s ) = out = (3.20) I in D ( s )

Where

= β τ τ 2 + β N ( s ) 3 1 2 s 1

D(s) = τ τ τ τ τ τ τ s 7 + τ τ τ τ τ τ s 6 + τ τ τ τ τ s 5 + τ τ τ τ s 4 1 2 3 4 5 6 7 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 + τ τ τ 3 + τ τ 2 + τ + 1 2 3 s 1 2 s 1 s 1 where τj=c j/g j, βj=g aj /g j. The design formulae for the filter can be attained by coefficientmatchingbetweenequations(3.15)and(3.20),givenby: B B B B B B τ = τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 1 B1 , 2 , 3 , 4 , 5 , 6 , 7 B1 B2 B3 B4 B5 B6

A β = 2 β = 3 , 1 A0 B2

Theresultingpoleandzeroparametersare: DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 74 τ = .0 19106 , τ = .0 26568 , τ = .0 42897 , τ = .0 60015 , τ = .0 91002 , 7 6 5 4 3 τ = τ = β = β = 2 .1 47244 , 1 .3 17616 , 1 .0 213826 , 3 1

(3.21)

ThefilterisdesignedwithidenticalunitOTAs gj( j=1to7)usingtheCMOSOTA cellinFigure3.3,withselectedtransconductanceof1.2mS.Thecutofffrequencyof the filter is chosen as 400 MHz. Using the computed parameter values in equation (3.21),thecapacitanceandtransconductancevaluesareobtainedas: = = = = C 7 .0 0824 pF , C 6 .0 1537 pF , C 5 .0 3096 pF , C 4 .0 4731 pF , = = = C 3 .0 769 pF , C 2 .1 3061 pF , C1 .2 933 pF , = µ = g a1 260 S , g a 3 2.1 mS

3.5 Simulation Results of Current-mode FLF and Voltage-mode IFLF OTA-C Filters

3.5.1 Simulation Results of Current-mode Seventh-order 0.05° equiripple linear phase FLF lowpass OTA-C filter

ThefiltercircuitinFigure3.15wassimulatedusingthecomponentwhichdesigned insection3.3.2andOTAinFigure3.2,usingBSIM3v3SpicemodelsforaTSMC 0.18 µm CMOS process available from MOSIS [112, 113]. Figure 3.18 shows the magnituderesponseofthecurrentmodeseventhorder0.05°equiripplelinearphase lowpassfilterwithandwithoutthegainboostwith2Vpowersupply.Ascanbeseen fromFigure3.18,thegainboostofthefilterisabout5dB.Byvaryingthebiascurrent

I1oftheunitOTAcell,thetuningrangeofcut −offfrequencywithoutgainboostis 55−160MHz.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 75 Figure3.18SimulatedmagnituderesponseofthecurrentmodeFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithoutandwithgainboost AscanbeseenfromFigure3.18,althoughthereisanunwantedzerofortheproposed filterduetothehardtocontrolphaseerrors,thecutofffrequencystillmatchesour targetspecification.

Figure3.19SimulatedgroupdelayresponseofthecurrentmodeFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilter Thefilterphaseresponsewithoutgainboostisfairlylinear,ascanbeseenfrom Figure3.19.Thegroupdelayhasverysmallvariationuptothecut −offfrequencyand

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 76 itisshownthatthegainboosthasminimaleffectonthegroupdelayrippleofthefilter, withtworealzerosaddedintothefilterresponse.Thefilter’sgroupdelayripplefor0

≤f ≤fcisapproximately4%withthegroupdelaybelow ±250psoverthewholetuning range. This is well within the limit of the read channel filter specification. The simulatedTHDversusthedifferentialinputcurrentoftheproposedfilterisshownin Figure3.20.Thedynamicrangeofthefilter,definedastheRMSoftheoutputcurrent signal at 1% THD divided by the total RMS output noise current integrated over

160MHz, which is 240nA RMS , is 45dB. The maximum power consumption of the proposedfilterisonly15mWat160MHzcutofffrequency.

1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 20 25 30 35 40 45 50 55 60 65 Differential input current (uA)

Figure3.20SimulatedTHDversusthedifferentialinputcurrentofthe currentmodeFLFseventhorder0.05°equiripplelinearphaseOTAClowpassfilter

ItisshowninFigure3.20that1%THDoftheproposedfilterinFigure3.5canbe achievedforthedifferentialinputcurrentupto65uA.TheTHDversusfrequencyis alsosimulatedandshowninFigure3.21.Ascanbeseen,theTHDremainslessthan 1%upto135MHz.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 77 1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 50 60 70 80 90 100 110 120 130 140 Frequency [MHz] Figure3.21SimulatedTHDversusthefrequencyofthecurrentmodeFLF seventhorder0.05°equiripplelinearphaseOTAClowpassfilter

3.5.2 Simulation Results of Current-mode Fifth-order 0.05°

Equiripple Linear Phase FLF OTA-C Lowpass Filter

Using the OTA in Figure 3.2 with 2.5V supply voltage and computed values obtainedinsection3.3.3,thesimulatedmagnitudeandgroupdelayrippleresponses of the fifthorder currentmode 0.05° equiripple linear phase lowpass FLF filter in Figure3.16aresimulatedin0.18mCMOSandareshowninFigure3.22and3.23, respectively.

Figure3.22SimulatedmagnituderesponseofthecurrentmodeFLFfifthorder0.05° equiripplelinearphaseOTAClowpassfilter

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 78 AscanbeseenfromFigure3.22and3.23,althoughtheparasiticcapacitancehasbeen extractedfromthegroundedcapacitors,therearestillsomedeviationbetweenideal andpracticalsimulationresults.

Figure3.23Simulatedgroupdelayrippleofthecurrentmodefifthorder0.05° equiripplelinearphaseFLFOTAClowpassfilterwithoutgainboost Thegroupdelayrippleisrelativelyhigherthanitsseventhordercounterpart,which has been proved in chapter 2. The filter group delay ripple up to twice the cutoff frequency is approximately 12%, which is higher than the read channel filter specification(≤5%).Figure3.24showsTHDversusthedifferentialinputcurrentof the proposed fifthorder filter. Less than 1% THD has been achieved at 500uA differential input current. Also, the THD versus frequency has been simulated in Figure3.25.ItisshownfromFigure3.25;theTHDoftheproposedfilterinFigure 3.6islessthan1%forthefrequencyupto290MHz.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 79 1.4

1.2

1

0.8

THD [%] THD 0.6

0.4

0.2

0 150 200 250 300 350 400 450 500 550 Differential input current [uA]

Figure3.24SimulatedTHDversusthedifferentialinputcurrentofthecurrentmode FLFfifthorder0.05°equiripplelinearphaseOTAClowpassfilter

1.4

1.2

1

0.8

THD [%] THD 0.6

0.4

0.2

0 250 260 265 270 284 294 Frequency [MHz] Figure3.25SimulatedTHDversusfrequencyofthecurrentmodeFLFfifthorder 0.05°equiripplelinearphaseOTAClowpassfilter As is expected, the cutoff frequency of the fifthorder filter can be tuned up to 350MHz;thegainboostisaround8dB.Pspicesimulationalsoshowsthatthepower consumptionofthefilterisabout53mWatcutofffrequencyof300MHz.Usingthe samedefinitionfromthesection3.5.2,theTHDislessthan1%withasingletoneof 400 µAat300MHzanddynamicrangeof54dBisobtainedat fc =300MHz.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 80 3.5.3 Simulation Results of Voltage-mode Seventh-order 0.05°

Equiripple Linear Phase IFLF OTA-C Lowpass Filter

UsingtheOTAinFigure3.3withpowersupplyvoltageof2.5V,idealVCCSand component values calculated in section 3.4, the voltagemode seventhorder 0.05 ° equiripplelinearphaseIFLFlowpassfilterinFigure3.17isalsosimulated.Ascanbe seen from Figure 3.26, there is only a small deviation in the magnitude frequency responsebetweentheresultsusingtheidealVCCSandOTAinFigure3.3withpower supplyvoltageof2.5V,whichisduotoparasiticeffects.Thecutofffrequencyofthe seventhorder filter is tunable from 290 −430MHz. The total power consumption of the filter is about 78.7mW at 400MHz cut −off frequency for a single 2.5V power supply;thegainboostisaround8dB.

Figure3.26SimulatedmagnituderesponsesofthevoltagemodeIFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithoutandwithgainboost

Thefilterphaseresponseisfairlylinear,asshowninFigure3.27.Thefiltergroup delayrippleuptocutofffrequencyisapproximately6%(±100ps),whichisslightly higherthantheminimumreadchannelfilterspecification(≤5%).Simulationsofthe filterhavealsoshownatotalharmonicdistortion(THD)oflessthan1%withasingle toneof220 µAat400MHz.Thedynamicrangeisabout52dBatthecutofffrequency of400MHz.Thenoisespectrumisabout17.5nV RMS /√Hz.Approximatingintegration

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 81 ofnoiseoverabandwidthof400MHzofthedensitiesisabout550nV RMS .

Figure3.27SimulatedgroupdelayresponsesofthevoltagemodeIFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilterwithandwithoutgainboost The THD of the proposed voltagemode filter versus differential input voltage and frequencyarealsosimulated,whichareshowninFigures3.28and3.29,respectively. As can be seen from Figure 3.28, the simulated THD is less than 1% for the differential input voltage up to 485mV. The simulation result in Figure 3.29 also showsthattheTHDislessthan1%atfrequencyupto325MHZ.

1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 300 320 350 370 400 420 450 470 500 Differential input voltage [mV]

Figure3.28SimulatedTHDversusthedifferentialinputvoltageofthevoltagemode IFLFseventhorder0.05°equiripplelinearphaseOTAClowpassfilter

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 82 1.4

1.2

1

0.8

THD [%] THD 0.6

0.4

0.2

0 250 260 270 275 280 300 320 340 Frequency [MHz] Figure3.29SimulatedTHDversusfrequencyofthevoltagemodeIFLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilter AcomparisonofthesimulatedvoltagemodeIFLFfilterswithtargetspecificationsis presentedinTable3.3below.AcomparisonofthelinearphasevoltagemodeIFLF andcurrentmodefilterdesignedandsimulatedinthischapterwithotherpublication intheliteratureisalsopresentedinTable3.4.

Table3.3TheComparisonofthesimulatedfilterwithtargetspecifications

Specification DR PC fc GB GDR

Target 35dB 100mW 300MHz 10dB 5%

Simulation 54dB 79mW 290400MHz 8dB 6% Table3.4ComparisonwithotherseventhorderlinearphaseOTACfilterdesigns Filter Filter Process fc range GB DR FOM GDR type configuration VM 7th order TSMC 290430MHz 8dB 54dB 3927 6% IFLF 0.05° 0.18m upto (This equiripple fc work) linearphase CM 7th order TSMC 55160MHz 9dB 45dB 2761 5% FLF 0.05° 0.18m upto [59] equiripple fc DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 83 (This linearphase work) VM 7th order MOSIS 520MHz 9dB ? 71 2.5% IFLF 0.05° 2m upto [42] equiripple 2fc linearphase VM 7th order TSMC 832MHz 3dB 55dB 8.5 7% LF 0.05° 0.25m upto [36] equiripple 1.1 fc linearphase VM 7th order TSMC 50150MHz 6dB 65dB 272 5% LF 0.05° 0.25m upto [37] equiripple 1.5 fc linearphase CM 7th order TSMC 260320MHz 5dB 66dB 810 4.5% LF 0.05° 0.18m upto [56] equiripple 1.5 fc linearphase

Notes: fc–cutofffrequency,GB–gainboost,VM–voltagemode,CM– currentmode,DR–dynamicrange,PS/PC–powersupply/powerconsumption,GD– groupdelay,N/Anotapplicable.

3.6 Conclusions

Fullydifferential currentmode FLF and voltagemode IFLF OTAC filters have beenstudiedinthischapter.Thesynthesisandperformancesofcurrentmodefifth and seventhorder FLF and voltagemode seventhorder IFLF 0.05° equiripple OTAClowpassfiltersaredescribed.Thefilterstructuresarecanonicalanddonot have any node that is without any capacitor to ground. Allpole filters are realized usingthebasicFLFandIFLFstructuresandfilterswitharbitrarytransmissionzeros are realized using output summation and input distribution OTA networks for currentmodeandvoltagemodestructures,respectively.Tomeettherequirementsof current and voltagemode MLF filter design, a multiple input and multiple output CMOS OTA with high frequency capability, lowvoltage/lowpower operation, sufficient transconductance tuning range and low excess phase is proposed. The proposedOTAis basedonsourcedegenerationtopology.Thesimulationiscarried

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 84 outusingstandardTSMC0.18mCMOS.Thelargesignalanalysisshowsthatthe transconductance can be easily tuned by changing the gate voltage of degeneration transistors.Usingasingle2Vsupplyvoltage,150MHzcutofffrequencyandlessthan 15mW power consumption were obtained for currentmode seventhorder 0.05° equiripple linear phase OTAC lowpass filter with only manual fine adjustments (withoutonchiptuning)oftransconductancesandpredistortionofcircuitcapacitor values.Inparticular,reasonablegroupdelayripple(thekeydesignspecification)has been achieved, although it was previously reported that MLF based OTAC filters sufferfromrelativelylargegroupdelayerrors.Thus,thecurrentmodeFLFfiltercan be expected to be suitable for portable electronic systems, especially for hard disk read/writechannelswithinclusionofapracticalautomatictuningcircuit. Designofa voltagemode400MHzIFLFlinearphasefilterusingthesameOTAwith2.5Vsupply voltage has also been investigated. The filter phase response of the seventhorder IFLF filter is fairly linear; the filter group delay ripple up to cutoff frequency is approximately 6%, which is slightly higher than the minimum read channel filter specification(≤5%).Thisismainlyduetoparasiticeffectsandinternalnodesofthe OTA. The group delay ripple can be further improved by decreasing the widths of OTAinputstageandincreasingthewidthsofOTAoutputstage,butdecreasingthe widthsoftheOTAinputstagewillreducethetransconductancevalueandincreasing the widths of the output stage will increase power consumption and chip area. Therefore,therearetradeoffsbetweenthegroupdelayripple,powerconsumptionand chip area. The next generation HDD read channel also requires larger gain boost. However, the group delay ripple will be increases as the gain boost is increased; therefore,thegainboosttendstoberealizedindigitaldomain.Thesimulationresults haveshownclearlythatevenwitharelativelyhighersupplyvoltage,theMLFIFLF andFLFconfigurationsstillhavelowerpowerconsumptionthanmanyotherfiltersin theliterature.MLFIFLFandFLFconfigurationscanbeausefulalternativeoflinear phasefilteringfornextgenerationHDDreadchannels.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 85 4. Synthesis and Design of Current-mode MLF LF OTA-C Filters with Application in HDD Read Channels

4.1 Introduction

The MLF LF structure is no doubt one of the most popular choices in CT filter design[1].Ithassomeobviousadvantagescomparedwithotherstructuressuchasthe cascade, MLF FLF and IFLF [54], especially in terms of sensitivity and is widely usedforhighperformancefilterapplicationswithstringentrequirements[118127]. TraditionalfilterdesignsbasedontheLFstructurearetoocomplex,astheyarebased on the simulation of passive RLC ladder prototypes [1, 120122] or using a MLF theory [1, 123, 124]. The RLC ladder simulation approach requires some good knowledgeofpassiveRLCfiltersandtheactivesimulationprocess,whilsttheMLF approach involves nontrivial matrix manipulation. Furthermore, none of the two methodshassimpleexplicitdesignformulasforLFactivefiltersandtheRLCladder basedmethodalsohasrestrictiononrealizablezeros.Ageneraltransferfunctionmay be realized using the direct signal flow graph (SFG) method [106]. The resulting filtershaveeithertheregularFLForIFLFconfigurationoralsosimpleexplicitdesign formulas. However, the direct SFG method is not suitable for the LF filter design. WhilesimpleexplicitformulasdoexistfortheFLFandIFLFconfigurationsbasedon theMLFmethod[105107]andtheSFGmethod[108],aniterativecomplexprocess isrequiredfortheLFsynthesis.Straightforwardexplicitformulasforthemostoften usedordersofthemostattractiveLFfiltersareneededforreadyuse.Veryrecently, synthesisofvoltagemodeLFOTACfiltershasbeenconducted[127].Inthischapter wepresentthreecurrentmodefilterstructuresusingtheLFconfigurationandderive simple explicit formulas for the realization of arbitrary filter characteristics using thesestructures.Thus,thenextsectionofthischapter,Section4.2,thesynthesisof allpole currentmode LF configuration is derived. The input distribution system is DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 86 added to the allpole configuration is introduced in Section 4.3. In Section 4.4, the output summation system is also derived. Section 4.5 presents the design of seventhorder 0.05° equiripple lowpass filter by using MLF LF output summation system.Finally,thediscussionandconclusionsaregiveninSection4.6.

4.2 All-pole Current-mode LF Feedback OTA-C Filters

ThegeneralallpoleLFfeedbackOTACfilterconfiguration[118,119]isshownin Figure 4.1. It has the minimum number of components and uses only grounded capacitors.Withtimeconstant τj=C j/gj,byinspectionwecanwritetheequationsof thecircuitas = − − τ I o1 ( I input I o1 I o 2 /) 1 s , = − τ I o 2 ( I o1 I o 3 /) 2 s , = − τ I oj ( I o ( j − )1 I o ( j + )1 /) j s , = − τ I o ( n − )1 ( I o ( n − 2 ) I on /) n −1 s, = τ I on I o ( n − )1 / n s = I output I on (4.1) where Iinput istheoverallinputcurrentand I output istheoveralloutputcurrentofthe filterrespectively, Ioj istheoutputcurrentofthe jth integratorand s isthecomplex frequency.

Figure4.1GeneralallpolecurrentmodeMLFLFOTACconfiguration

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 87 Theoveralltransferfunction H(s)oftheLFfilterinFigure4.1canbederivedusing equation(4.2)as

I output 1 H (s) = = (4.2) I input D (s) wherethedenominatorpolynomial D(s) ofrespectiveoveralltransferfunctionsfor n =3to6aregivenbelow. n=3:

=τ τ τ 3 +τ τ 2 + τ +τ + D(s) 1 2 3s 2 3s ( 1 3 )s 1

n=4:

=τ τ τ τ 4 +τ τ τ 3 + τ τ +τ τ +τ τ 2 + τ +τ + D(s) 1 2 3 4s 2 3 4s ( 1 2 1 4 3 4 )s ( 2 4 )s 1

n=5: =τ τ τ τ τ 5 +τ τ τ τ 4 + τ τ τ +τ τ τ +τ τ τ +τ τ τ 3 D(s) 1 2 3 4 5s 2 3 4 5s ( 1 2 3 1 2 5 1 4 5 3 4 5 )s + τ τ +τ τ +τ τ 2 + τ +τ +τ + ( 2 3 2 5 4 5 )s ( 1 3 5 )s 1 n=6: =τ τ τ τ τ τ 6 +τ τ τ τ τ 5 + τ τ τ τ +τ τ τ τ +τ τ τ τ + D(s) 1 2 3 4 5 6s 2 3 4 5 6s ( 1 2 3 4 1 2 3 6 1 2 5 6 τ τ τ τ +τ τ τ τ 4 + τ τ τ +τ τ τ +τ τ τ +τ τ τ 3 + 1 4 5 6 3 4 5 6 )s ( 2 3 4 2 3 6 2 5 6 4 5 6 )s τ τ +τ τ +τ τ +τ τ +τ τ +τ τ 2 ( 1 2 1 4 1 6 3 4 3 6 5 6 )s + τ +τ +τ + ( 2 4 6 )s 1 (4.3) TorealisethegeneralunityDCgainallpoletransferfunction 1 H )s( = d n + n−1 + + + (4.4) Bn s Bn−1s L B1s 1 Theexplicitexpressionsfordeterminingparametervaluescanbeobtainedfromthe coefficientmatchingequationsbasedonthecomparisonbetweenthecoefficientsof H(s)andthoseinequation(4.3).Thefollowingarethederiveddesignformulas.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 88 n=3:

B B τ = 3 , τ = 2 , τ = B −τ 1 2 −τ 3 1 1 B2 B1 1

n=4:

B B B − B τ τ = 4 , τ = 3 , τ = 2 1 1 , τ = B −τ (4.5) 1 2 − τ 3 −τ 4 1 2 B3 B2 B1 1 B1 2

n=5:

B B B − B τ B − (B −τ )τ τ = 5 , τ = 4 , τ = 3 2 1 , τ = 2 1 5 2 , 1 2 − τ 3 − −τ τ 4 −τ −τ B4 B3 B2 1 B2 (B1 1) 2 B1 1 3 τ = −τ −τ 5 B1 1 3

n=6:

B B B − B τ B − (B − B τ )τ τ = 6 , τ = 5 , τ = 4 3 1 , τ = 3 2 1 1 2 , 1 2 − τ 3 − − τ τ 4 − −τ τ − τ B5 B4 B3 1 B3 (B2 B1 1 ) 2 B2 (B1 2 ) 3 B1 1

B − (B −τ )τ − B τ τ = 2 1 2 3 1 1 , τ = B −τ −τ 5 −τ −τ 6 1 2 4 B1 2 4

IntheabovethesynthesisofthegeneralallpoleLFstructurehasbeenpresented. In the following we will present the general MLF LF OTAC structures with transmissionzeros.Arbitrarytransmissionzerosarerealizedbyusingeitheraninput distributororanoutputsummer[107,127].Thefiltertransferfunctionsanddesign formulasoftherespectivestructureswillbeformulated.

4.3 Current-mode LF MLF OTA-C Filters with Input Distributor

The desired general transfer functions in equation. (4.6) can be realised by addinganinputdistributionOTAnetworktotheallpoleLFstructureinFigure4.1to producezeros.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 89 A s n + A s n −1 + + A s + A H (s) = n n −1 L 1 0 d B s n + B s n −1 + + B s + 1 n n −1 L 1 (4.6) TheresultantgeneralcurrentmodeLFOTACfilterstructureisshowninFigure 4.2.

Figure4.2UniversalcurrentmodeLFOTACfilterstructureswithinputdistribution

OTAnetwork.

Denoting βj= gβj /g r,thecircuitequationsofthefilterinFigure4.3canbewrittenas = β − − τ I o1 ( 1I input I o1 I o2 /) 1s, = β + − τ I o2 ( 2 I input I o1 I o3 /) 2 s, = β + − τ I oj ( j I input I o( j− )1 I o( j+ )1 /) j s, = β + − τ I o(n− )1 ( n−1I input I o(n− )2 I on /) n−1s, = β + τ I on ( n I input I o(n− )1 /) n s I = β I + I output (n+) input on (4.7) Using the equations in equation (4.7), we can derive the numerators N(s) of the transfer functions and the corresponding explicit design formulas to determine the distribution parameters βj, when realizing the general function in equation (4.8) for DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 90 order n=3to6,as: n=3:

= β τ τ τ 3 + β τ τ + β τ τ 2 + β τ +τ + β τ + β τ + β + β + β + β N(s) 4 1 2 3s ( 3 1 2 4 2 3 )s [ 4 ( 1 3) 3 2 2 1]s ( 1 2 3 4 )

β = β = − β τ τ β = − β − β τ τ β = − β + β + β 4 A3 / B3, 3 (A2 4B2 /) 1 2 , 2 (A1 4B1 3 2 /) 1, 1 A0 ( 2 3 4 )

n=4:

= β τ τ τ τ 4 + β τ τ τ + β τ τ τ 3 + β τ τ +τ τ +τ τ + β τ τ + β τ τ 2 N(s) 5 1 2 3 4s ( 4 1 2 3 5 2 3 4 )s [ 5 ( 1 2 1 4 3 4 ) 4 2 3 3 1 2 )s + β τ +τ + β τ +τ + β τ + β τ + β + β + β + β + β [ 5 ( 2 4 ) 4 ( 1 3 ) 3 2 2 1]s ( 1 2 3 4 5 ) β = β = − β τ τ τ β = − β − β τ τ τ τ 5 A4 / B4 , 4 (A3 5 B3 /) 1 2 3 , 3 (A2 5 B2 4 2 3 /) 1 2 , β = [A − β B − β (τ +τ ) − β τ /] τ , β = A − (β + β + β + β ) 2 1 5 1 4 1 3 3 2 1 1 0 2 3 4 5 n=5: = β τ τ τ τ τ 5 + β τ τ τ τ +β τ τ τ τ 4 + β τ τ τ +τ τ τ +τ τ τ +τ τ τ N(s) 6 1 2 3 4 5s ( 6 2 3 4 5 5 1 2 3 4)s [ 6( 1 2 3 1 2 5 1 4 5 3 4 5) +β τ τ τ +β τ τ τ 3 + β τ τ +τ τ +τ τ +β τ τ +τ τ +τ τ +β τ τ +β τ τ 2 4 1 2 3 5 2 3 4]s [ 6( 2 3 2 5 4 5) 5( 1 2 1 4 3 4) 4 2 3 3 1 2]s + β τ +τ +τ +β τ +τ +β τ +τ +β τ +β τ + β +β +β +β +β +β [ 6( 1 3 5) 5( 2 4) 4( 1 3) 3 2 2 1]s ( 1 2 3 4 5 6) β = β = − β τ τ τ τ β = − β − β τ τ τ τ τ τ 6 A5 / B5 , 5 (A4 6 B4 /) 1 2 3 4 , 4 (A3 6 B3 5 2 3 4 /) 1 2 3 , β = − β − β τ τ +τ τ +τ τ − β τ τ τ τ 3 [A2 6 B2 5 ( 1 2 1 4 3 4 ) 4 2 3 /] 1 2 , β =[A − β B − β (τ +τ ) − β (τ +τ ) − β τ /] τ , β = A −(β + β + β + β + β ) 2 1 6 1 5 2 4 4 1 3 3 2 1 1 0 2 3 4 5 6 n=6: =β τ τ τ τ τ τ 6 + β τ τ τ τ τ +β τ τ τ τ τ 5 + β τ τ τ τ +τ τ τ τ +τ τ τ τ N s)( 7 1 2 3 4 5 6s ( 6 1 2 3 4 5 7 2 3 4 5 6)s [ 7( 1 2 3 4 1 2 3 6 1 2 5 6 +τ τ τ τ +τ τ τ τ +β τ τ τ τ +β τ τ τ τ 4 + β τ τ τ +τ τ τ +τ τ τ +τ τ τ 1 4 5 6 3 4 5 6) 5 1 2 3 4 6 2 3 4 5]s [ 7( 2 3 4 2 3 6 2 5 6 4 5 6) +β τ τ τ +τ τ τ +τ τ τ +τ τ τ +β τ τ τ +β τ τ τ 3 + β τ τ +τ τ +τ τ +τ τ 6( 1 2 3 1 2 5 1 4 5 3 4 5) 4 1 2 3 5 2 3 4]s [ 7( 1 2 1 4 1 6 3 4 +τ τ +τ τ +β τ τ +τ τ +τ τ +β τ τ +τ τ +τ τ +β τ τ +β τ τ 2 + β τ +τ +τ 3 6 3 5) 6( 2 3 2 5 4 5) 5( 1 2 1 4 3 4) 3 1 2 4 2 3]s [ 7( 2 4 6) +β τ +τ +τ +β τ +τ +β τ +τ +β τ +β τ + β +β +β +β +β +β +β 6( 1 3 5) 5( 2 4) 4( 1 3) 2 1 3 2]s ( 1 2 3 4 5 6 7) β = β = − β τ τ τ τ τ β = − β − β τ τ τ τ τ τ τ τ 7 A6 / B6 , 6 (A5 7 B5 /) 1 2 3 4 5 , 5 (A4 7 B4 6 2 3 4 5 /) 1 2 3 4 , β = − β − β τ τ τ +τ τ τ +τ τ τ +τ τ τ − β τ τ τ τ τ τ 4 [A3 7 B3 6 ( 1 2 3 1 2 5 1 4 5 3 4 5 ) 5 2 3 4 /] 1 2 3, β = − β − β τ τ +τ τ +τ τ − β τ τ +τ τ +τ τ − β τ τ τ τ 3 [A2 7 B2 6 ( 2 3 2 5 4 5 ) 5 ( 1 2 1 4 3 4 ) 4 2 3 /] 1 2 , β = − β − β τ +τ +τ − β τ +τ − β τ +τ − β τ τ 2 [A1 7 B1 6 ( 1 3 5 ) 5 ( 2 4 ) 4 ( 1 3 ) 3 2 /] 1, β = A −(β + β + β + β + β + β ) 1 0 2 3 4 5 6 7

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 91 Note that the denominators of the corresponding transfer functions have already beengiveninSection4.2andthedesignformulasforthepoleparameters τj ofthe respectiveordershavealsobeengiveninequation(4.3).Also,ifthemaximumorder inthenumeratorisrequiredtobe n1,thenwecanremovethe ga(n+1) OTAandsimply output the current Ion directly. For realization of specific filter characteristics the outputOTAnetworkmaybesimplifiedaccordingly.

4.4 Current-mode LF OTA-C Lowpass Filters with Output Summation

Similarly, by adding the output summation OTA network to the allpole LF structureinFigure4.1thegeneraltransferfunctioninequation(4.6)canberealised andtheresultingcurrentmodeLFOTACfilterstructureisshowninFigure4.3.

Figure4.3UniversalcurrentmodeMLFLFOTACfilterstructureswithoutput summationOTAnetwork

Denotingαj=g αj/g j, γ=g 0/g γwecanattainthecircuitequationsofthefilterinFigure 4.3asshownbelow.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 92 = γ − − τ I o1 ( I input I o1 I o 2 /) 1s, = − τ I o 2 (I o1 I o3 /) 2 s, = − τ I oj (I o( j− )1 I o( j+ )1 /) j s, = − τ I o(n− )1 (I o(n− )2 I on /) n−1s, = τ I on I o(n− )1 / n s n = α γ + α I output 0 I input ∑ ( i I oi ) i=1 (4.8)

Usingequation(4.8)wecanderivethenumerators N(s)ofthetransferfunctions and the corresponding explicit design formulas of summation parameters αj when realizingthegeneralfunctioninequation(4.3)fororder n=3to6,givenbelow. n=3:

N(s) = α τ τ τ s3 + (α +α )τ τ s 2 +[α (τ +τ ) +α τ ]s + (α +α +α ) 0 1 2 3 0 1 2 3 0 1 3 2 3 0 1 3 α = A / B , α = A / B −α , α = (A −α B /) τ , α = A − (α +α ) 0 3 3 1 2 2 0 2 1 0 1 3 3 0 0 1 n=4:

= α τ τ τ τ 4 + α +α τ τ τ 3 + α τ τ +τ τ +τ τ +α τ τ 2 N(s) 0 1 2 3 4 s ( 0 1 ) 2 3 4 s [ 0 ( 1 2 1 4 3 4 ) 2 3 4 ]s +[(α +α )(τ +τ ) +α τ ]s + (α +α +α ) 0 1 2 4 3 4 0 2 4 α = α = −α α = −α τ τ 0 A4 / B4 , 1 A3 / B3 0 , 2 (A2 0 B2 /) 3 4 , α = [A −α B −α (τ +τ )]/τ , α = A − (α +α ) 3 1 0 1 1 2 4 4 4 0 1 2 n=5: = α τ τ τ τ τ 5 + α +α τ τ τ τ 4 + α τ τ τ +τ τ τ +τ τ τ +τ τ τ N(s) 0 1 2 3 4 5 s ( 0 1 ) 2 3 4 5 s [ 0 ( 1 2 3 1 2 5 1 4 5 3 4 5 ) +α τ τ τ 3 + α +α τ τ +τ τ +τ τ +α τ τ 2 2 3 4 5 ]s [( 0 1 )( 2 3 2 5 4 5 ) 3 4 5 ]s +[α (τ +τ +τ ) +α (τ +τ ) +α τ ]s + (α +α +α +α ) 0 1 3 5 2 3 5 4 5 0 1 3 5 α = α = −α α = −α τ τ τ 0 A5 / B5 , 1 A4 / B4 0 , 2 (A3 0 B3 /) 3 4 5 , α = − α +α −α τ τ 3 [A2 ( 0 1 )B2 1B2 /] 4 5 , α = [A −α B −α (τ +τ )]/τ , α = A − (α +α +α ) 4 1 0 1 2 3 5 5 5 0 0 1 3

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 93 n=6: =α τ τ τ τ τ τ 6 + α +α τ τ τ τ τ 5 N(s) 0 1 2 3 4 5 6s ( 0 1) 2 3 4 5 6s + α τ τ τ τ +τ τ τ τ +τ τ τ τ +τ τ τ τ +τ τ τ τ +α τ τ τ τ 4 [ 0 ( 1 2 3 4 1 2 3 6 1 2 5 6 1 4 5 6 3 4 5 6 ) 2 3 4 5 6 ]s + α +α τ τ τ +τ τ τ +τ τ τ +τ τ τ +α τ τ τ 3 [( 0 1)( 2 3 4 2 3 6 2 5 6 4 5 6 ) 3 4 5 6 ]s + α +α τ τ +τ τ +τ τ +α τ τ +τ τ +τ τ +α τ τ 2 [( 0 2 )( 3 4 3 6 5 6 ) 0 ( 1 2 1 4 1 6 ) 4 5 6 ]s +[(α +α )(τ +τ +τ ) +α (τ +τ ) +α τ ]s + (α +α +α +α ) 0 1 2 4 6 3 4 6 5 6 0 2 4 6 α = α = −α α = −α τ τ τ τ 0 A6 / B6 , 1 A5 / B5 0 , 2 (A4 0 B4 /) 3 4 5 6 , α = − α +α τ τ τ 3 [A3 ( 0 1 )B3 /] 4 5 6 , α = −α −α τ τ +τ τ +τ τ τ τ 4 [A2 0 B2 2 ( 3 4 3 6 5 6 )]/ 5 6 , α = [A − (α +α )B −α (τ +τ )]/τ , α = A − (α +α +α ) 5 1 0 1 1 3 4 6 6 6 0 0 2 4 Againnotethatthedenominatorsofthecorrespondingtransferfunctionshavebeen given in Section 4.2 and design formulas for the τj of the respective orders can be determined using equation (4.3). Also, Note that if the maximum order in the numeratorisrequiredtobe n1,thenwecanremovethe ga0 , g0,and grOTAsandthe inputcurrentcanbeappliedtotheinputofthefirstintegratordirectly.Forrealization of specific transmission zeros the OTAs in the output network may not be all necessary.

4.5 Design of Current-mode Seventh-Order 0.05° Equiripple Linear Phase OTA-C Lowpass Filter using LF Output Summation

Thevoltage −modeLFfilterstructurehasbeenusedin[36,37].However,in[36], onlythesingleendedstructurewasimplementedandthegroupdelayrippleisabout 7%.In[37],thegroupdelayrippleislessthan5%,butthespeedislowandpower consumption is high. In last section, the currentmode FLF structure have been investigatedforequalizers,butthegroupdelayrippleisnotquitesatisfied,duetothe hard to control feedback. Therefore, we design another high performance equalizer basedoncurrentmodeLFconfigurationforHDDsystemsinthissection.Insection 4.5.1,thefiltersynthesisofseventhordercurrentmodeLFconfigurationisderived. DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 94 Inordertoincreasethespeedofequalizer,thesimplyOTAisneeded.Therefore,a modifiedsimpleOTAispresentedinsection4.5.2.Insection4.5.3,wepresentthe detailsimulationresultsoftheproposedhighperformanceequalizer.

4.5.1 The Synthesis of Current-mode Seventh-order 0.05° Equiripple

Linear Phase OTA-C LF Filter

Torealizethefollowingdesiredlowpasscharacteristicwithzeros,forexample,

A s 2 + A H (s) = 2 0 d 7 + 6 + 5 + 4 + 3 + 2 + + B7 s B6 s B5 s B4 s B3 s B2 s B1s 1

(4.9) ThecurrentmodeLFOTACfilterstructurewithoutputsummationOTAsshown inFigure4.4canbeutilized.

Figure4.4SeventhordercurrentmodeLFOTACfilterswithoutputsummation network

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 95 Theoveralltransferfunctionofthecircuitcanbeobtainedas:

I N (s) H (s) = output = (4.10) I input D(s) where

= α τ τ 2 + α + α N(s) 5 6 7 s ( 5 7 )

=τ τ τ τ τ τ τ 7 +τ τ τ τ τ τ 6 + τ τ τ τ τ +τ τ τ τ τ +τ τ τ τ τ +τ τ τ τ τ D(s) 1 2 3 4 5 6 7s 2 3 4 5 6 7s ( 1 2 3 4 5 1 2 3 4 7 1 2 3 6 7 1 2 5 6 7 +τ τ τ τ τ +τ τ τ τ τ 5 + τ τ τ τ +τ τ τ τ +τ τ τ τ +τ τ τ τ +τ τ τ τ 4 1 4 5 6 7 3 4 5 6 7)s ( 2 3 4 5 2 3 4 7 2 3 6 7 2 5 6 7 4 5 6 7)s + τ τ τ +τ τ τ +τ τ τ +τ τ τ +τ τ τ +τ τ τ +τ τ τ +τ τ τ +τ τ τ +τ τ τ 3 ( 1 2 3 1 2 5 1 2 7 1 4 5 1 4 7 1 6 7 3 4 5 3 4 7 3 6 7 5 6 7)s + τ τ +τ τ +τ τ +τ τ +τ τ +τ τ 2 + τ +τ +τ +τ + ( 2 3 2 5 2 7 4 5 4 7 6 7)s ( 1 3 5 7)s 1 Thedesignformulasofthefiltercanbeattainedbycoefficientmatchingbetween equation(4.9)andequation(4.10)as: B B B − B τ τ = 7 , τ = 6 , τ = 5 4 1 , 1 2 − τ 3 − − τ τ B6 B5 B4 1 B4 (B3 B2 1) 2 B − (B − B τ )τ B − B τ −[B − (B −τ )τ ]τ τ = 4 3 2 1 2 , τ = 3 2 1 2 1 1 2 3 , 4 − τ − − −τ τ τ 5 − −τ −τ τ − −τ τ B3 B2 1 [B2 (B1 1) 2 ] 3 B2 (B1 1 3) 4 (B1 1) 2 B − (B −τ −τ )τ − (B −τ )τ τ = 2 1 1 3 4 1 1 2 , τ = B −τ −τ −τ , 6 −τ −τ −τ 7 1 1 3 5 B1 1 3 5 A α = 2 , α = A −α (4.11) 5 τ τ 7 0 5 6 7

Forthenormalizedcharacteristicofaseventhorderlowpass0.05°equiripplelinear phasefilterwithrealzerosatthecutofffrequency,wehave[1]

A = − A = ,1 B = .0 055617 , B = .0 291094 , B = .1 095656 , 2 0 7 6 5 = = = = B4 .2 554179 , B3 .4 255922 , B2 .4 676709 , B1 .3 176156

Usingequation(4.11),thepoleandzeroparametersτ’sandα’ scanbecomputedas: τ = τ = τ = τ = τ = 1 .0 19106 , 2 .0 47905 , 3 .0 64409 , 4 .0 74214 , 5 .0 84224 , τ = τ = α = α = 6 .1 00706 , 7 .1 49877 , 5 .0 662536 , 7 .0 337464

(4.12)

Furtherdesigncanbeconductedbasedontheseresults.Forexample,wecanassign g7 = g6= g5 = g4 = g3 = g2 = g1. Using the computed parameter values given in DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 96 equation(4.12),the gaj ,and Cjvaluescanbecalculatedusing gaj =g jαand Cj= gjτj respectively. Thegroundedcapacitancecanthenbecalculatedas:

= = = = C1 .0 3646 pF , C 2 .0 1403 pF , C 3 .1 5848 pF , C 4 .1 9989 pF , = = = C 5 .2 1185 pF , C 6 .2 5624 pF , C 7 .3 8868 pF

4.5.2 Transistor-level OTA Design

The use of small load capacitors is advisable, even the parasitic capacitors are typicallylargerthanthesevalues.Thetimeconstant τisequaltoC/g,increasingthe totaltransconductancevaluecanreducetheparasiticeffectbutitcostsmanyamount ofpower.Decreasingthetotaltransconductancevaluecanachieveminimumpower consumption. However, the parasitic effects can be critical in some circumstances. Moreover,suchasnoise,THD,DRneedstobeconsideredaswell.Fortunately,for HDD applications, DR need not be very high, typically 40dB is sufficient and requirement on DC gain is also not stringent due to the lowQ operation. In this design,asimpleonestageOTAbasedonsourcedegenerationtopologyandwithout internal nodes is thus utilized as shown in Figure 4.5 [39, 41], mainly to meet the UHFrequirement.

Figure4.5ThesimulatedunitOTA

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 97 Inthissection,thefollowingsquarelawequationisused:

µ C W µ C W I = n ox ⋅ (V −V )2 = n ox (V )2 (4.13) D 2 L GS T 2 L DSAT where, n and Cox are the mobility of the carriers in the channel and gatesource capacitancepersquare,respectively. VDSAT isthesaturationvoltage,and Wand Lare thewidthandlengthofthetransistorgate,respectively.Forthestructuresshownin Figure4.5,thesmallsignaltransconductanceisapproximatelygivenby:

g V I = m1 1 − [ in ] 2 (4.14) out + + N 1 2V DSAT ( N )1

Therefore,theOTAlowfrequencysmallsignaltransconductanceis:

g m1 G = (4.15) m N + 1 where g m1 is matched with g m2 is the lowelectricfield transconductance of the differentialpair. Nisthesourcedegenerationfactor.Thetwodegeneratedtransistors

MR1 and M R2 can be tuned by bias current I1, in order to achieve different transconductance. If the second order effects are taken into account, the source degenerationfactorwillbemodifiedas: g + g 1[ + K R (V −V )] N ≅ m1 mb1 R1 sx GS1 Tn + K R (V −V ) − R1 sx GS1 Tn (4.16) K R1 (VGSR1 VTn ) where θ(VGS1 VTn )accountsforthemobilitydegradationoftheNMOSdevices.An idealsquarelawMOSFEThasaresistance Rsx inserieswiththesource,the θcanbe modelled as 0Cox (W/L)R sx and g mb1,2 models the body effects. K is equal to

nCOX (W/L). As shown in equation (4.16), the larger θ the larger N. However, the larger Nleadsthesmaller Gm.Whilesourcedegenerationfactorreducestheoverall transconductance,theoutputimpedanceisboostedbythesamefactor.Infact,thereis acascodeeffectinherentlypresentinthesourcedegeneratedtopologies.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 98 4.5.3 Simulation Results

ThefiltercircuitinFigure4.4wassimulatedusingthecomponentvaluesdesigned insection4.5.1andtheOTAinFigure4.5usingBSIM3v3SpicemodelsforaTSMC 0.18 µmCMOSprocess[112,113].With2.5VsupplyvoltageandterminatetheOTA withshortcircuit,simulatedDCresponsesoftheOTAareshowninFigures4.6.

Figure4.6SimulatedDCtransconductanceversusdifferentialinputvoltagefor varyingbiasvoltagesoftheOTAwithshortcircuitload The simulated opencircuit cutoff frequencies of the OTA cell are presented in Figure4.7.

Figure4.7SimulatedACopencircuitfrequencyresponsesoftheOTAwithdifferent biascurrents DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 99 1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 390 410 430 450 470 490 510 530 550 Differential input voltage [mV] Figure4.8SimulatedTHDasafunctionofdifferentialinputvoltageoftheOTAin Figure4.5 Lessthan1%THDcanbeguaranteedforthedifferentialinputvoltageoflessthan 530mV.

Figure4.9SimulatedmagnituderesponseofthecurrentmodeLFseventhorder0.05° equiripplelinearphaseOTAClowpassfilter TheFigure4.9showsthesimulatedmagnituderesponseofthefilterwithidealVCCS

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 100 andOTAinFigure4.5.Itisshownthatthereis9dBdropbetweenusingidealVCCS and practical OTA simulation results at the passband of the proposed filter. It is because that the single stage OTA is used in Figure 4.5, which has low output resistance and leads low DC gain of the OTA. The group delay ripple of proposed filterwithidealVCCSandOTAinFigure4.5arealsoshowninFigure4.10.

Figure4.10SimulatedgroupdelayresponseofthecurrentmodeLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilter

Thegroupdelayrippleofthelowpassfilterwithoutgainboostfor fc/5 ≤f ≤1.4fcis approximately5%overthewholetuningrange.Althoughthereisdeviationbetween theidealgroupdelayrippleofthelowpassfilterandthatusingtheOTAinFigure4.5, thegroupdelayrippleofthelowpassfilterusingtheOTAinFigure4.5isstillless than5%.SimulationresultsalsoshowthattheDRofthefilter,definedastheRMSof theoutputcurrentsignalat1%THDdividedbythetotalRMSoutputnoisecurrent integrated over the bandwidth, which is 500nA RMS , is 54dB. The gain boost of the filterisabout10dB.SimulatedTHDversusdifferentialinputvoltageandfrequency areshowninFigures4.11and4.12,respectively.TheTHDlessthan1%isobtained forthedifferentialinputcurrentupto250mVandthefrequencyupto675MHz.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 101 1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 50 80 100 120 150 170 200 220 250 Differential input current [uA]

Figure4.11SimulatedTHDversusthedifferentialinputcurrentofthecurrentmode LFseventhorder0.05°equiripplelinearphaseOTAClowpassfilter

1.4

1.2

1

0.8

THD [%] THD 0.6

0.4

0.2

0 586 600 610 630 650 670 690 Frequency [MHz] Figure4.12SimulatedTHDversusfrequencyofthecurrentmodeLFseventhorder 0.05°equiripplelinearphaseOTAClowpassfilter AscanalsobeseenfromFigures4.13and4.14,themismatchoftheinputtransistors affects both the filter magnitude frequency response and group delay. With 10% mismatchoftheinputtransistors,thegroupdelayrippleoftheproposedfilterdoes notremainlessthan5%,whichcannotbeacceptedforcomputerHDDreadchannels.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 102 Therefore, on chip automatic tuning is needed to correct the effects due to process mismatch.

Figure4.13Simulatedfiltermagnitudefrequencyresponseswithandwithout10% mismatch

Figure4.14Simulatedfiltergroupdelayresponsewithandwithout10%mismatch

ThesimulationalsoshowsthatvaryingthebiascurrentI 1oftheunitOTAcell,the tuningrangeofcutofffrequencywithoutgainboostis590690MHz.Thetotalpower DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 103 consumption of the filter is about 370mW. The summary of proposed is given in Table4.1. Table4.1SimulatedresultsofthecurrentmodeseventhorderLF0.05°equiripple linearphaselowpassfilterbasedonaTSMC0.18 µmCMOSprocess Nominal3dBcutofffrequency 650MHz Tunable3dBcutofffrequencyrange 590690MHz Groupdelayripple 5%upto1.4fc Dynamicrange(THD=1%) 54dB Gainboostrange 010dB Nominalpowerdissipation@2.5V 370mW

4.6 Conclusions

The synthesis and general performance analysis of lowsensitivity currentmode MLF LF OTAC filters have been presented and design of an equalizer using the currentmode LF outputsummation OTAC filter structure for HDD read/write channel applications has been particularly investigated. The filter structures are canonicalanddonothaveanynodethatiswithoutanycapacitortoground.Allpole filtersarerealizedusingthebasiccurrentmodeLFstructureandfilterswitharbitrary transmissionzerosareestablishedusingeitherinputdistributionoroutputsummation OTA networks. Unlike the synthesis based on the matrix method of MLF OTAC filters that has been reported in [65], the demonstrated iterative synthesis approach does not require the knowledge of the general MLF theory. The explicit design formulasalsoderived(for n=3,4,5,and6)aresimpleandusefulforquickdesignof LF based allpole and arbitrary transmission zero filters without the need of reformulation.Inordertofurtherdemonstratetheproposedsynthesisandstructure,a currentmode seventhorder 0.05° equiripple OTAC lowpass filter with a 650MHz nominalcutofffrequencyhasbeendesignedwiththepresentedOTAasabuilding

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 104 block. Simulation results in a 0.18 µm CMOS process with a 2.5V supply have revealedthatthefiltercanachieve650MHzofcutofffrequencywithmaximum10dB of gain boost; the group delay ripple is about 5%. The maximum total power consumptionis370mW.Thefilterresultshavealsoverifiedthefunctionalityofthe presented OTA in filter applications. Analysis has shown that CMOS OTA nonidealities affect the filter frequency performance. In actual IC filter design, onchiptuningcircuitryisusedtocompensatethefilterresponsedeviationscausedby theOTAnonidealities.Althoughnotuningwasusedforthefilter,itisemphasized thatautomatictuningschemesareimportant.Theycanreducefiltergroupdelayripple as well as filter performance deviation caused by the effects due to the process variationsanddevicemismatchinMOStransistorsoftheOTAs.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 105 5. Design and Simulation of Fifth-order 0.05° Equiripple Linear Phase MLF LF OTA-C Lowpass Filters for HDD Read Channels

5.1 Introduction

The fifthorder and seventhorder currentmode 0.05° equiripple linear phase lowpass filters based on currentmode LF, FLF configurations and voltagemode IFLFconfigurationhavebeendescribedinChapter4and3,respectively.Ithasshown that LF configuration has better group delay responses than FLF and IFLF ones. Therefore, the LF configuration has received more attention in past a few years. However, the currentmode FLF and voltagemode IFLF configuration can achieve relatively lower power consumption than LF ones. Therefore, there is a tradeoff between group delay ripple performance and power consumption. The extensive research has been doing on HDD read channels by using MLF structures recently [5460]. Although the currentmode FLF and voltagemode IFLF configuration can achievesomegoodperformancesandmaybeoneofthefilteringsolutionsfornext generationHDDsystem,itistoohardtopushthedataratestoevenfurtherdueto their global feedback loops introduce hardtominimize phase errors and parasitic effects.TheHDDsystemsarehighperformancesystemsandsupportnearrealtime applications[45],whichcontinuetodevelopatarapidanddeterministicpacetomeet the emerging demands of high performance computing and peripheral devices. Moreover,theindustrialareseekingforthesolutionsfornextgenerationHDDread channels,thedatarateisupto2Gb/satleast.Thusafilter,whosecutofffrequency withatleast750MHzisdemanding. On the other hand, portable consumer electronics embedded with HDD chipsets havebeengettingmore and morepopular.Powerconsumption,supplyvoltageand chip area are all critical factors and bring along with many advantages as well as challenges in the design of these highperformance HDD chipsets . Low power DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 106 consumption helps to increase the battery lifetime and to reduce the operating temperature, which means performance of whole system is more stable due to less electrical parameter shift. sinks can also be shrunk or even removed, which resultsinsmallerdimensionandlowercost.However,challengeslieincompensating thedegradationintheperformance,inordertomeetthesystemspecifications.Inthe digitaldomain,dynamicpowerdecreasesquadraticallywithsupplyvoltage.Onthe contrary,analoguecircuitstypicallyneedtoconsumemorepoweratalowersupply voltageinordertomaintainthesameperformance,becausethelargebiascurrentmay beneededtoadjustthetransistorinactiveregion.Usingthesamelowsupplyvoltage for both analogue and digital part reduces the overall power consumption and also reducesthecomplexityoftheinterface.Unfortunately,thescalingdownofthreshold voltage does not follow the drop in the nominal supply voltage. As the available voltage headroom becomes limited, many existing circuit techniques in analogue domaincannotbeapplied.Thischapter,thereforeourdesignistargetedforfifthorder 0.05°equiripplelinearphaseOTAClowpassfilter,whichhascutofffrequencyof 750MHz with minimized power consumption with accurate linear phase and gain boost. Thischapterisorganizedinthefollowingway.Thetransistorleveldesignofthe fullydifferentialOTAisdiscussedinSection5.2.Filterarchitectureandsynthesisof currentandvoltagemodefiltersaredescribedinSection5.3.Thesimulationresults aregiveninSection5.4,andfinallyconclusionsaregiveninSection5.5.

5.2 Transistor-level OTA Design

Theperformancesoffilterarenotonlyrelyingonthefilterstructure,butalsorely strongly on the performances of OTA. Therefore, the design of highperformances OTAisverydemand.ThesourcedegenerationOTAshavereceivedmoreattention thananyothertechniquesbasedOTAduetothetradeoffsbetweenthelinearityand power consumption [3941, 47, 50, 51]. However, it has to pay the expense of the reduced overall transconductance. Moreover, the tuning range of the source

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 107 degeneration OTA relies strongly on the triode region transistors and thus it leads relativelysmalltuningrange.AnalterativeOTAtherefore,whichisshowninFigure 5.1, is present in this section to optimize the tuning, group delay and power consumption.TheCMOSOTAinFigure5.1isusedforthefilterdesign.Intheunit

OTAcell,M1andM 2aretheinputtransistors.M3–M6actasactivebiasingcircuitry insuchawaythatthetotalcurrentdrawnbyM3–M6isrequiredforlargersignals.The activebiasingsharesthesamebiascurrentsourcewiththedifferentialpairM 1M2.

Whenthesignalamplitudeissmall,M 3andM 4areinsaturationwhileM 5andM 6are in triode region. The M 3M6 branches remove some of the bias current. When the signalamplitudeispositiveandlarge,M 6willbecomesaturatedandM5willbecut off. A smaller proportion of the total bias current will be drawn by M 3M6. This results in larger currents in M1 and M 2 to compensate for the drop of the transconductance. The sizing of the transistors must be optimized for maximum linearity [115]. In addition, differential active loading [67] has been employed to achievehigheroutputimpedancewithoutincreasingthedcvoltagedrop.Inaddition, thedifferentialloadingismadewithtwotrioderegiontransistorsforbetterlinearity.

Figure5.1FullybalancedunitOTA

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 108 Inequation(5.1)thetransistorworksattrioderegion.Thetransistorworksatactive regionisalsoexpressedasequation(5.2).

W 1 I = µ C ( )[(V −V ) ⋅V − V 2 ] D n ox L GS T DS 2 DS

(5.1)

1 W I = µ C ( )(V −V )2 D 2 n ox L GS T

(5.2)

Weassume K3tobe Xtimesof K5and Knequalsto nCOX (W/L). Theanalysisstarts form ID3 and ID5 :

V V 1 I = I ⇒ X ⋅ K ( in −V −V )2 = 2K [−( in +V +V )V − V 2 ] D3 D5 5 2 D5 T 5 2 CM T DS5 2 DS5

(5.3)

Let VCM +V T=V CM ’,thefollowingrelationshipisobtained:

V (X + )1 V 2 −[(X − )1 V − (2 X + )1 V ' ]⋅V + X( in −V ' )2 = 0 DS5 in CM DS5 2 CM

(5.4)

Therefore,the VDS5 isexpressedbelow:

Vin ' 2 ' 4X ⋅( −V ) X −1 1 (X − )1 V − (2 X + )1 V CM V = V −V ' + [ in CM ]2 − 2 DS5 (2 X + )1 in CM 2 X +1 X +1

(5.5)

Then ID3 canbeexpressedas: V I = K [ in − (V +V ' )]2 D3 3 2 DS5 CM K = 3 2[ V − 1( − 3X)V 2 + (4 X + )1 V ⋅V ' + (4 X + )1 V 2' ]2 (4 X + )1 2 in in in CM CM

(5.6)

ID4 has a similar expression, with Vin replaced by –Vin . Therefore, the ID3 +I D4 are expressedas: DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 109 K I + I = 4,3 [(5 − 3X + 4 ( X + ))1 ⋅V 2 + (4 X + )1 V 2' ] D3 D 4 (2 X + )1 2 in cm

(5.7)

The ID1 +I D2 arealsoexpressedbelow:

V I + I = 2 K [V 2' + ( in ) 2 ] D 1 D 2 2,1 CM 2

(5.8)

Therefore,thetotalcurrentof ID1 toI D4 canthenbeexpressedas:

4 K K = 2,1 − 4,3 − − + 2 + + + ⋅ + 2 ∑I Dn [ 2 5( 3X 4 X 1)]Vin [2 K 2,1 (X )1 K 4,3 ] (VD5 VT ) n=1 2 (2 X + )1

(5.9)

2 In equation (5.9), the bias current is a given constant and the coefficient of Vin

2 depends on the size of the various transistors involved. If the coefficient of Vin becomes zero, thenthecommon source voltage becomes constant independently of theinputvoltagechange. K K I −[ 2,1 − 4,3 5( −3X − 4 X +1)]V 2 B 2 (2 X + )1 2 in I = K V out 2,1 + + in [2 K 2,1 (X )1 K 4,3 ] (5.10) UsingTylerseries,thentheequation(5.10)canbeexpandedasfollow, K ⋅ K K 2 − 2,1 4,3 3( X + 4 X +1 − )5 K 2 I 2,1 (X + )1 2 I ≈ 2,1 B V − V 3 out + + in + + ⋅ in [2 K 2,1 (X )1 K 4,3 ] 12 [K 2,1 (X )1 K 4,3 ] 2I B (5.11) Notethattheevenorderharmonicdistortionsareideallyzeroduetothesymmetryof fully differential OTA. The total harmonic distortion is mainly determined by the thirdorderharmonicdistortion(HD3).WemayhaveacompleteHD3cancellationas longasthefollowingconditionismet,

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 110 K ⋅ K K 2 = 2,1 4,3 3( X + 4 X + 1 − )5 2,1 + 2 ( X )1 (5.12) The above equation gives us an insight into how to design the OTA meeting the specificationoflinearity.Therefore,thetransconductanceofOTAcanbeexpressed as:

K 2 I G ≈ 2,1 B m [2 K + ( X + )1 K ] 2,1 4,3 (5.13)

5.2.1 Second-Order Effects of the OTA

Secondorder effects, such as mobility reduction, body effect causing deviations from the ideal squarelaw behaviour of MOS devices have been neglected in the aboveanalysis.However,highfrequencyfiltersrequiretheuseofhighelectricfields, thusthemobilityreductioneffectsmustalsobetakenintoaccount.Asafirstorder approximation,mobilityreductioninMOStransistorsmaybemodelledas, µ µ = 0 + θ − 1 (VGS VT )

(5.14) where 0isthezerofieldmobilityofcarriers.AnidealsquarelawMOSFEThasa resistance Rsx inserieswiththesource[9]. θisequalto 0Cox (W/L)R sx .Ontheother hand,thedependenceonthebulksourcevoltageresultinginbodyeffectisanother potential cause of nonlinear behaviour in the voltagetocurrent conversion of the

OTA in Figure 5.1. If the transistors are not connecting to VDD or ground, the bulksource voltages VBS are not equal to zero and the threshold voltage can be expressedas,

V = V + γ ( φ −V − φ ) T T 0 BS (5.15) where VT0 is the threshold voltage for VBS is equal to zero, γ is the bulk threshold

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 111 parameter,andøisthestronginversionsurfacepotential.Includingtheequation(5.14) inequation(5.15),theequation(5.13)canbeapproximatedbyequation(5.16),

K 2,1 I B 1+ K R [V − (V + γ ( φ −V − φ ))] G ' ≈ 2,1 sx GS T 0 BS m (X + )1 3 [2 + ]1 4 X +1 + 3X − 5 (5.16) Thus,themobilityreductionlimitedthetransconductanceoftheOTA.

5.2.2 Frequency Response of the OTA

Owing to the absence of internal nodes, the OTA in Figure 5.1 has excellent highfrequency performance. Figure 5.2 shows the smallsignal model of the equivalenthalfcircuitoftheOTAinFigure5.1withcapacitiveloadsforfrequency analysis.Usingthismodel,thevoltagetransferfunctionoftheOTACintegratorcan beshownas V (s) g A (s) = out = m v V (s) s(C + C ) + G id L p out (5.17) whereCLand CparetheloadcapacitanceandparasiticoutputcapacitanceoftheOTA, respectively,and Gout istheOTA’soutputconductance.Thetwoparameters: Cpand

Gout ofthemodelaregivenby = + + + C p C DS 1 C DS 9 CGD1 CGD 9 = + (5.18) Gout g o1 g o9 where goi istheoutputconductanceoftheMOStransistorsoftheOTA.

-

gmVid/2 Cp CL Gout Vout/2 Vid/2

+ Figure5.2SmallsignalofFigure5.1withcapacitiveloads

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 112 From equation (5.17), the differential openloop DC gain of the OTA can be obtainedas: g A = m v 0 G out (5.19) Equation(5.19) reveals that the OTA in Figure 5.1 does not have very high DC gain.WemayseethattheDCgainoftheOTAcanbeincreasedbyincreasingeither gm or reducing Gout . Gm can be increased by increasing the W/L ratios of the input transistors.However,theDCdraincurrentsoftheinputtransistorsarealsoincreased proportionally,thusresultinginincreasedoutputconductanceoftheinputtransistors. Consequently,nosignificantincreaseinDCgainisexpected.Moreover,thepower consumption is increased as the W/L ratios are increased. Fortunately, the lowpass filterislowDCgainapplication,thusthemoderateDCgainisenoughtoadjusttheQ location.TheOTA'sbandwidthisdeterminedbyitsdominantpole,whichislocated at the output nodes (as the highest impedance occurs at these nodes) and is approximatelygivenby: G BW ≈ f ≈ out d 2π(C + C ) L p (5.20) where fd is the dominant pole frequency of the OTA. Thus, the openloop gainbandwidth product of the OTA is the multiplication of equations (5.19) and (5.20). g GBW = m 2π(C + C ) L p (5.21) Notethat BW canbewrittenasafunctionof GBW as GBW BW = A v 0 (5.22)

Itiscrucialtonotethatthereisatradeoffbetween BW and Av0 ascanbeseenfrom equation (5.22). In other words, high bandwidth can be obtained at the expense of reducedDCgainandviceversa. DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 113 5.3 Design of Fifth-order 0.05° Equiripple Linear Phase LF OTA-C Lowpass Filter

The low power consumption designs of analogue circuits are challenging. The powerconsumptionofanaloguesystemscanbereducedbyusinglowpowersupply voltage.However,itisnotlikedigitalsystemsdesign,theperformanceofanalogue systemsisrelativelypoorbyusingtheadvancednanometresmodelssuchas90nm, 60nmduetomismatchandnoiseissues.Therefore,thefilterstructureplaysavery important role to reduce the power consumption. Certainly, the minimum power consumptioncanbeachievedbyusinglessnumberofOTAs.Therefore,cascadeand MLF configurations have been widely used. However, the cascade configuration suffersfromthehighsensitivity,thustheMLFstructureshavebeenusedforHDD application recently. They achieve good performance at very high frequency with filterarereducedparasiticeffectsandsimpledesignmethodologies.Inlastchapter,a currentmodeseventhorder0.05°equiripplelinearphaseOTAClowpassfilterhas beenpresented.Thecutofffrequencyoffiltercanbetunedupto650MHzwithlarge amountofpowerconsumption.FornextgenerationHDDreadchannels,notonlythe UHF is essential, but also the lower power consumption needs to be considered. Therefore,weproposefifthordercurrentandvoltagemode0.05°equiripplelinear phaseOTAClowpassfilterbasedonLFconfiguration,whichmaybeusedfornext generationHDDreadchannels.

5.3.1 Design of Current-mode Fifth-order 0.05° Equiripple Linear

Phase LF OTA-C Lowpass Filter

ThecurrentmodeLFfifthorderOTACfilterdiagramisshowninFigure5.3.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 114 Figure5.3FifthordercurrentmodeLFOTAClowpassfilterwithoutputsummation network Forn=5,thedesignformulaeofallpolewithoutputsummationnetworkwere demonstratedinequation(4.3),(4.5)and(4.8):

N (s) H (s) = D(s)

D (s) = τ τ τ τ τ s 5 + τ τ τ τ s 4 + (τ τ τ + τ τ τ + τ τ τ + τ τ τ )s 3 1 2 3 4 5 2 3 4 5 1 2 3 1 2 5 1 4 5 3 4 5 + τ τ + τ τ + τ τ 2 + τ + τ + τ + ( 2 3 2 5 4 5 )s ( 1 3 5 )s 1

= α τ τ 2 + α − α N ( s ) 3 4 5 s ( 3 5 )

Thesimplifieddesignformulaeforcurrentmodefifthorder0.05°equiripplelinear phaselowpassOTACfilterareshownbelow: B B B −B τ B −(B −τ )τ τ = 5 ,τ = 4 ,τ = 3 2 1 ,τ = 2 1 1 2 ,τ = B −τ −τ , 1 B 2 B −B τ 3 B −(B −τ )τ 4 B −τ −τ 5 1 1 3 4 3 2 1 2 1 1 2 1 1 3 A α = 2 ,α = A −α 3 τ τ 5 0 3 4 5 (5.23)

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 115 2 − = (s )1 H d (s) D d ( s ) with

D = .0 201926 s 5 + .0 822285 s 4 + .2 075924 s 3 + .3 033116 s 2 + d ( s ) .2 604527 s + 1 (5.24) Usingthecoefficientmatchingbetweenequations(5.23)and(5.24),theresultingpole

τj=C j/g jandzero αj=g αj/g jparameterscanbecalculatedas: τ = τ = τ = τ = τ = 1 .0 24557 , 2 .0 61776 , 3 .0 84468 , 4 .1 04066 , 5 .1 51427 , α = α = 3 .0 36544 , 5 .0 63456

ThefilterisdesignedwithidenticalunitOTAsusingtheCMOSOTAcellinFigure 5.1toimproveOTAmatchingandfacilitatedesignautomation.Thecutofffrequency ofthefilterischosenaround700MHz.Usingthecomputedparametervaluesinabove equations and choosing identical transconductances of 12mS for gj ( j =1 to 5), the transconductances ga3 and ga5 canbecalculatedfromaboveequationas4.38 mS and 7.61 mS , respectively. The capacitor values can also be calculated, but the parasitic capacitancemustalsobetakenintoaccount.ForthecircuitofFigure5.1,theparasitic capacitance is about 0.2 pF . The capacitance and transconductance of zero OTAs valuesarerecalculatedbelow: = = = C 1 .1 14 pF , C 2 .3 171 pF , C 3 .4 4092 pF , = = α = C 4 .5 6786 pF , C 5 .8 063 pF , 3 .4 38 mS , (5.25) α = 5 .7 61 mS

5.3.2 Design of Voltage-mode Fifth-order 0.05° Equiripple Linear

Phase LF Lowpass OTA-C Filter

ThevoltagemodeLFlowpassOTACfilterdiagramisshowninFigure5.4.For n=5, the design formulae of allpole with input distribution networks were demonstratedin[55,119,127]:

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 116 =τ τ τ τ τ 5 +τ τ τ τ 4 + τ τ τ +τ τ τ +τ τ τ +τ τ τ 3 D(s) 5 4 3 2 1s 4 3 2 1s ( 5 4 3 5 4 1 5 2 1 3 2 1 )s + τ τ +τ τ +τ τ 2 + τ +τ +τ + ( 4 3 4 1 2 1 )s ( 5 3 1 )s 1

= β τ τ 2 + β − β N (s ) 3 2 1 s ( 3 1 )

Figure5.4FifthordervoltagemodeLFOTAClowpassfilterwithinputdistribution network Thesimplifieddesignformulaeforvoltagemodefifthorder0.05°equiripplelinear phaseOTAClowpassfilterareshownbelow: B B B −B τ B −(B −τ )τ τ = 5 ,τ = 4 ,τ = 3 2 5 ,τ = 2 1 5 4 ,τ = B −τ −τ , 5 4 − τ 3 − −τ τ 2 −τ −τ 1 1 5 3 B4 B3 B2 5 B2 (B1 5 ) 4 B1 5 3 A β = 2 ,β = A −β 3 τ τ 1 0 3 2 1 (5.26) Usingthecoefficientmatchingbetweenequations(5.24)and(5.26),theresulting pole τj=C j/g jandzero βj=g βj/g jparameterscanbecalculatedas: τ = .0 24557 ,τ = .0 61776 ,τ = .0 84468 ,τ = .1 04066 ,τ = .1 51427 , 5 4 3 2 1 β = β = 3 .0 36544 , 1 .0 63456

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 117 Followingthesameprocedurewithlastsection,thecapacitance, gβ1,and gβ3values arealsocalculatedbelow: = = = C 5 .1 14 pF , C 4 .3 171 pF , C 3 .4 4092 pF , = = = C 2 .5 6786 pF , C1 .8 063 pF , g β 1 .7 61mS , (5.27) = g β 3 .4 38 mS

5.4 Simulation Results of Current- and Voltage-mode LF OTA-C Filters

5.4.1 Simulation Results of Transistor-level OTA

TheOTAcircuitwassimulatedusingBSIM3v3Spicemodelsfora1.8VTSMC 0.18 µm CMOS process available from MOSIS [112, 113]. The currentmode and voltagemodefilterscircuitsweresimulatedusingthecomponentvaluesdesignedin section5.3.1and5.3.2,respectively. ThesimulatedOTAinFigure5.1isterminated by a shortcircuit load. The simulated differential output current versus differential inputvoltageandDCtransconductanceversusdifferentialinputvoltageforvarying biasvoltagesoftheOTAisshownin Figure5.5and5.6, respectively.

Figure5.5Simulateddifferentialoutputcurrentversusdifferentialinputvoltagefor varyingbiasvoltagesoftheOTAwithshortcircuitload DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 118 Figure5.6SimulatedDCtransconductanceversusdifferentialinputvoltagefor varyingbiasvoltagesoftheOTAwithshortcircuitload TheDCtransconductancecanbetunedfrom9.2to12.5 mS with0.58Vand0.72Vbias voltage.ThesimulatedopencircuitcutofffrequenciesoftheOTAcellarealsoshown in Figure 5.7. The bandwidth of presented OTA is fairly large due to absence of internal node. Unity gain bandwidth can exceed 10GHz. However, the DC gain of presentedOTAisrelativelylowduetothefiniteoutputresistance.

Figure5.7SimulatedACopencircuitfrequencyresponsesoftheOTAwithdifferent biascurrents Figure5.8showstheTHDasafunctionofdifferentialinputvoltageoftheOTAin

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 119 Figure5. 1. Ascanbeseen,theTHDislessthan1%forthedifferentialinputvoltage upto220mV.

1.6

1.4

1.2

1

0.8 THD [%] THD 0.6

0.4

0.2

0 130 150 170 190 210 230 250 Differential input voltage [mV] Figure5.8SimulatedTHDasafunctionofdifferentialinputvoltageoftheOTAin Figure5.1

5.4.2. Simulation Results of Current-mode Fifth-order 0.05°

Equiripple Linear Phase LF Lowpass OTA-C Filter

ThemagnituderesponsesofthepresentedfilterusingidealVCCSandOTAinFigure 5.1areshowninFigure5.9.

Figure5.9SimulatedmagnitudefrequencyresponsesofthecurrentmodeLF fifthorder0.05°equiripplelinearphaselowpassOTACfilter

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 120 AscanbeseenfromFigure5.9,thecutofffrequencyof720MHzisachievedbythe filter. The 6dB gain boost of the filter is also realized by using output summation configuration.The filter phase responses are shown in Figure 5.10; the group delay ripple of the filter are fairly linear, although, using the OTA in Figure 5.1 causes 100psgroupdelaymorethanusingidealVCCS.Ascanalsobeseen,theripplehas verysmallvariationupto1.7timesofthecutofffrequency.Thegainboosteffectson thegroupdelayripplesoffilterduetothefiniteDCgainofthepresentedOTA,but thegroupdelayrippleisstilllessthan5%.Thefilter’sgroupdelayripplefor0≤f ≤

1.7 fcisapproximately4%withthegroupdelaybelow ±25psoverthewholetuning range.Thisiswellwithinthelimitofthereadchannelfilterspecification.

Figure5.10SimulatedgroupdelayresponsesofthecurrentmodeLFfifthorder0.05° equiripplelinearphaseOTAClowpassfilter The simulated THD as a function of differential input current and frequency are showninFigures5.11,5.12,respectively.Lessthan1%THDcanbeachievedforthe inputamplitudeupto870uA,andforthefrequencyupto730MHz.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 121 1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 350 400 450 500 550 600 650 700 750 800 870 Differential input current [uA] Figure5.11SimulatedTHDversusthedifferentialinputcurrentofthecurrentmode fifthorderlinearphasefilter

1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 660 675 680 693 700 708 719 725 732 Frequency [MHz] Figure5.12SimulatedTHDversusfrequencyofthecurrentmodefifthorderlinear phasefilter Simulation of the filter has shown that the cutoff frequency of the filter without gainboost can be tuned from 410MHz to 770 MHz with 90mW and 240mW, respectively.Moreover,thecutofffrequencyof720MHzisachievedwith190mWof

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 122 power consumption. The total RMS output noise current integrated over the bandwidthis1.1uA RMS .TheDRisabout58dBat fc=720MHzforthe1%THD.

5.4.3. Simulation Results of Voltage-mode Fifth-order 0.05°

Equiripple Linear Phase LF Lowpass OTA-C Filter

Figure 5.13 shows that the magnitude responses of proposed voltagemode filter usingidealVCCSandOTAinFigure5.1.

Figure5.13SimulatedmagnitudefrequencyresponsesofthevoltagemodeLF fifthorder0.05°equiripplelinearphaselowpassOTACfilter The filter phase responses using ideal VCCS and OTA in Figure 5.1 are shown in Figure5.14.Thefilter’sgroupdelayripplefor0≤f≤2fc isapproximately4%with thegroupdelaybelow ±30psoverthewholetuningrange.AsmentionedinSection 5.4.2, the finite DC gain of the OTAs also affects the group delay ripple of the voltagemodefilter.However,thegroupdelayrippleswithandwithoutgainboostare stilllessthan5%.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 123 Figure5.14SimulatedgroupdelayresponsesofthevoltagemodeLFfifthorder0.05° equiripplelinearphaseOTAClowpassfilter

1.4

1.2

1

0.8

THD [%] THD 0.6

0.4

0.2

0 180 200 220 240 260 280 300 320 Differential input voltage [mV] Figure5.15SimulatedTHDversusthedifferentialinputvoltageofthevoltagemode fifthorderlinearphasefilter The simulated THD as function of differential input voltage and frequency of the proposed voltagemode filter are shown in Figures 5.15, 5.16, respectively. The simulated THD is less than 1% at differential input voltage up to 300mV. It also remainslessthan1%forthefrequencyupto750MHz.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 124 1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 600 630 665 690 725 744 780 Frequency [MHz] Figure5.16SimulatedTHDversusfrequencyofthevoltagemodefifthorderlinear phasefilter

Thehighestoutputvoltagenoisedensityappearsatalevelofabout2.6nV RMS /√Hz. Approximation integration of noise over a bandwidth of 700MHz of the noise densitiesisabout70uV RMS .SimulationalsoshowsDRisabout51dBat fc =700MHz. Thecutofffrequencyofthevoltagemodefilterwithoutgainboostcanbetunedfrom 455MHz to 800 MHz with the same power consumption as their currentmode counterpart 90mW and 240mW, respectively. The 750MHz cutoff frequency is achievedwith190mWpowerconsumption. Comparingthepresentedfilterswithothersintheliterature,theperformancesof thefiltersoffersignificantimprovements;especiallythepowerconsumptionismuch smaller than other designs, making the filter well suitable for portable electronics products.Tocomparetheproposedsolutionwithpreviouspublications,theFigureof Merit(FOM)isdefinedinequation(5.28);alloftheparameterssuchasbandwidthin MHz,geometryinm,gainboost(GB)coefficient1.5,andpowerconsumptionper poleinmWaretakenintoaccount.

GB ⋅[Bandwidth ]2 ⋅ Geometry FOM = Power per pole

(5.28) DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 125 Theproposedfilterhas3164ofFOM,whichismuchhigherthananyotherMLF structuresbasedfiltersintheliterature.AcomparisonofthelinearphaseLFlowpass OTAC filters designed and simulated in this chapter with other published in the literatureispresentedinTable5.1. Table5.1Performancecomparisonwithdifferentfilterdesigns Filter Filter Tech fc range GB DR FOM GD type configuration CMLF 5th order TSMC 410770MHz 6dB 58dB 3164 4%up (This 0.05° 0.18m to work) equiripple 1.7 fc linearphase CM 7th order TSMC 55160MHz 9dB 45dB 2430 5%up FLF 0.05° 0.18m to fc [59] equiripple linearphase CM 7th order TSMC 290430MHz 8dB 54dB 3927 6%up FLF 0.05° 0.18m to fc [chapter equiripple 3] linearphase CMLF 7th order TSMC 260320MHz 5dB 66dB 810 4.5% [56] 0.05° 0.18m upto equiripple 1.5 fc linearphase VMLF 7th order TSMC 832MHz 3dB 55dB 8.5 7%up [36] 0.05° 0.25m to equiripple 1.1 fc linearphase VMLF 7th order TSMC 50150MHz 6dB 65dB 272 5%up [37] 0.05° 0.25m to equiripple 1.5 fc linearphase VM 4th order TSMC 550MHz N/A 40dB 3025 10% Cascade 0.05° 0.35m SNR upto [41] equiripple 1.7 fc linearphase VM 5th order TSMC 330MHz 24dB 40dB 3324 20% Cascade Butterworth 0.18m upto [49] fc DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 126 VM 4th order TSMC 80200MHz N/A 52dB 770 4%up Cascade 0.05° 0.35m to [50] equiripple 1.4 fc linearphase VM 4th order TSMC 100MHz N/A 45dB 455 3%up Cascade 0.05° 0.5m to fc [35] equiripple linearphase VM 7th order TSMC 160220MHz N/A 50dB 1628 4%up Cascade 0.05° 0.35m to2 fc [39] equiripple linearphase VMLC 7th order TSMC 80200MHz 13dB 43dB 361 5%up ladder 0.05° 0.25m THD to [52] equiripple 1.5 fc linearphase VM 8th order TSMC 30120MHz 614dB 45dB 250 5%up Cascade 0.05° 0.25m to [33] equiripple 1.5 fc linearphase

5.5 Conclusions

ThedesignedequalizersareCMOScurrentandvoltagemode750MHzfifthorder 0.05 o equiripplelinearphaselowpassLFOTACfilterwithgainboost.Theequalizers have been synthesized using the proposed iterative approach. To meet the current stringent requirements for read/write channel equalizer design, the use of a CMOS OTA with UHF capability, lowervoltage/lowerpower operation, sufficient transconductancetuningrange(tomeettherelativelywiderprogrammablegainboost), and lower excess phase (important for reducing filter group delay ripple) is also described. The equalizer utilizes the CMOS OTA was presented whose simulation resultsbasedonastandardTSMC0.18 µmCMOSprocess,standardsimulationresults wereobtainedfortheequalizerswithonlymanualfineadjustments(withoutonchip tuning) of transconductances and predistortion of circuit capacitor values. In particular, reasonable group delay ripple (the key design specification) has been achieved,althoughitwaspreviouslyreportedthatMLFbasedOTACfilterssuffer relativelylargegroupdelayerrors[42,43,53,and61].Furthermore,theequaliserhas DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 127 the lowest power consumption compared with previous designs as a result of relativelylargetransconductancevalueusedinthedesign.Thus,CMOScurrentand voltagemodefifthorderLF0.05°equiripplelinearphaselowpassOTACfilterscan beexpectedtobesuitablefornextgenerationread/writechannelswithfullybalanced implementationandinclusionofapracticalautomatictuningcircuit.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 128 6. Analogue Baseband Filter Design Considerations for Highly Integrated Multi-standard Receivers

6.1 Introduction

The growing economic and social impact of mobile telecommunication devices with the evolution of protocols and interoperability requirements among different communicationstandardsforvoiceanddataiscurrentlydrivingworldwideresearch towards the implementation of fullyintegrated, multistandard receivers. Moreover, there is also a great demand for lighter and smaller communication devices with longerbatterylifetime;hencecompact,lowvoltageandlowpowerconsumptionIC design solutions must be developed. This is particularly true as mobile, wireless communicationisintegratedincommunicationsystems[3,64,66,7075].Therefore, miniaturization without any degradation of performance is demanded for these multistandard terminals. These new terminals should support both horizontal handovers,i.e.,switchingbetweendifferentmodesofthesamesystem,andvertical handovers,i.e.,switchingbetweendifferentsystems,inthemostcompact,efficient and economical way. Therefore, a high degree of flexibility not only in the digital basebandandRFfrontendbutalsointheanaloguebasebandisneeded.Furthermore, the terminal should adapt itself to the changing channel conditions and user requirements to provide the required quality of service with the minimum power consumption. Traditionally multistandard terminals have used a separate radio channelforeachofthestandardssupported.Thisbecomesincreasinglyunfeasibleas the terminal becomes more diversified. A new model, therefore, emerges based on maximumhardwarereusefromendtoendcoupledwithafullCMOSimplementation with the ultimate goal of a single chip solution. It is found; the direct conversion architecture is well suited for these terminals, because it does not need IF SAW channelselectfiltersandsubsequentdownconversionstages,sincethechannelselect functionisachievedusinglowpassfiltersandbasebandamplifiersthatareamenable

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 129 tomonolithicintegration.Therefore,directdownconversionarchitectureshavebeen attracting worldwide attention in recent years. With direct downconversion architectures,severalstandardssuchasBluetooth,GSM,WCDMA,WLANs,canbe accommodated using a single receiver. This has obvious advantages in terms of reductioninpowerconsumptionandsiliconarea.Theintermediatefrequencyfiltering requirement is changed from bandpass filtering to lowpass filtering in the direct conversionreceiver.Althoughthereareanumberofhighperformancebandpassfilter designsintheliterature[65,67,and99],itisstillamajorchallengetoachievehighQ andguaranteetheaccuracyoffiltertuning[68].Moreover,theintermediatefrequency may significantly vary depending on the different systems. Therefore, the direct conversionarchitectureiseasiertointegrateinstandardsemiconductortechnologies. Implementation of an integrated multistandard receiver that is competitive with solutions based on separate devices for the different standards must take various pointsintoaccount.Firstofall,bothsiliconareaandstaticpowerconsumptionmust be minimized, thus requiring the maximum possible hardware sharing among the receivers for the different standards. Based on these considerations, multistandard receiverarchitecturecanbedefined,asshowninFigure6.1[70,72,7583,93].

Figure6.1Receiverchannels

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 130 AftertheRFsignalisselectedbytheexternalRFfilterandamplifiedbytheLNA, thesignalismixeddirectlytoDCbyaquadraturemixer.Theanaloguebasebandfilter performsthechannelselectionbeforeA/Dconversion.Theanaloguebasebandblock of the receiver is composed of variable gain amplifiers (VGA) and lowpass filters. TheVGAsincreasethesignalamplitude,whilethelowpassfilterreducestheamount of the outofband signal in order to increase the dynamic range available for the usefulsignal.Thedesignofthereceiverbasebandchannelimpliesatradeoffbetween lowpass filter selectivity and circuit complexity. The higher filter selectivity would resultinalowernumberofstages. ThekeybuildingblocksforacompleteRFfrontendforpersonalcommunication systemapplicationshavebeendemonstratedinCMOS[69,70].Thebasebanddigital circuitryiscurrentlyimplementedinstandardsubmicronCMOS,thereforethereisa tendencytousethesamedigitalCMOSprocessesforbasebanddataconvertersand analogue filters. Traditionally in CMOS, baseband filters are realized using switchedcapacitor(SC)techniques.However,biasingMOSswitchesfullyonoroff and maintaining proper operational amplifier (Opamp) operation is difficult to achieveinSCcircuitswithreducedsupplyvoltage.Moreover,theSCfilterneedsa samplingfrequencythatismuchhigherthanthecutofffrequency.Thisrequiresthe useofopampswithverywidebandwidths,demandinglargebiascurrents.Therefore, in highspeed analogue systems such as HDD applications and systems such as CDMAwithsignalbandwidthsoverseveralhundredsofkilohertz,continuoustime activeRC,andOTACfilterstructurestendtobeimplemented.OTACfiltershave theadvantagesthattheydonotrequireextraprocessingstepscomparedtoactiveRC filters, and their frequency tuning is easily achieved by using dc bias currents, but they have poor linearity and automatic onchip tuning circuits are needed. On the other hand, the activeRC filter has a very good linearity characteristic, but high power consumption and large chip area compared with OTAC type filters due to having integrated resistors; it is also more difficult to achieve very high cutoff frequency using activeRC filters. Therefore, the tradeoffs between activeRC and DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 131 OTACfiltersmustbeconsideredcarefullyandtheoverallsystemdesignisaffected bychoiceoffilterstructures. This Chapter focuses on the design issues of different types of filter for multistandard receivers. The Chapter is organized into seven Sections. Design challengesofreceiveranaloguebasebandandchannelselectfiltersareaddressedin Section6.2.TheSection6.3andSection6.4discussactiveRCandOTACfiltersfor multistandard applications, respectively. In Section 6.5, a fourthorder OTAC baseband filter for Bluetooth, WCDMA and WLAN is designed using MLF LF configuration. Future directions of multistandard filter design are given in Section 6.6andconclusionsareshowninSection6.7.

6.2 Receiver Analogue Baseband and Channel Selection Filters

Thesignalspectrumattheinputofthereceiverbasebandblockincludesunwanted componentssuchasinbandandoutofbandblockers,andadjacentchannelsignals which can dominate the signal to be processed. For this reason analogue baseband blocks are required to exhibit not only a target inband dynamic range, but also excellentlinearityforoutofbandsignals.Thisisbecausenonlinearbehaviorwith outofbandsignalswouldresultinintermodulationproductsfallingwithinthesignal band,corruptingthesignal.Animportantfunctionoftheanaloguebasebandcircuitry is channel selection and antialias filtering of signals from the I/Q downconverter. Therefore,in multistandardreceivers,theanaloguebasebandcircuitmusthandlea rangeofsignalbandwidths.Thebasebandsignalbandwidthsvary,forexample,from 500 kHz for the Bluetooth to 12 MHz for an 802.11b receiver. A summary of different standards is given in Table 6.1. Moreover, the specifications of different systemsvary,whichmayresultindifferentrequirementsforinbandandoutofband attenuation.Bothofdigitalandanaloguefilterscanbeusedtoachievethechannel selection functions. From the channel selection point of view, the digital channel selection filter is well suited to multistandard applications, because of the ease of

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 132 changing the specifications of the filter [71]. However, the linearity and resolution requirementsoftheanaloguetodigitalconverter(ADC)arethencritical;duetothe wide dynamic range of signals at the ADC input. The ADC must be able to accommodate the received signal and high level blocking signals simultaneously. Therefore, △Σmodulatorsaretypicallyusedwithdigitalchannelselectionschemes forADCdesign.However,analoguebasebandfilteringhasattractedmoreattention thandigitalfilteringduetopowerefficiencyissues.Inparticular,forsystemswitha widechannelbandwidth,relyingonahighresolutionADCtendstobepowerhungry. Table6.1Wirelesscommunicationsystems Standar GSM Bluetoo WCDMA 802.15/Zi 802.11/ 802.16 UWB

d th CDMA2000 gBee WLAN WiMax

Applica Voice Voice/ Voice/ Data Data Data Data

tion Data Data

Bandwi 200kHz 500 2.115 2.5MHz 1012 30MHz 250MHz

dth kHz MHz MHz

Modula GMSK GFSK QPSK QPSK OFDM OFDM OFDM

tion

Therefore, in many applications, it is more economical to implement an analogue filterandvariablegainamplifier(VGA)torealizechannelselectionfunctionswithan ADC requiring a reasonable dynamic range. However, design of the analogue basebandsectionofreconfigurablereceiverisacomplextask.Itrequiresoptimization of bandwidth, linearity, power consumption, silicon area, and noise [72]. Theoretically,onecoulddesignafilteroptimizedforthemoststringentrequirement ofeachstandard.However,thisapproachisnormallynotefficientintermsofpower consumptionandsiliconarea.Thereareanumberofcompromiseapproacheswhich have been described in the literature; some examples are reported in the following

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 133 sections. The most important function of a multistandard analogue baseband filter is to controlthecutofffrequenciesovertherequiredrangeofbandwidths.Anumberof alternativecontinuoustimefiltertechniqueshavebeenproposed,suchasactiveRC, OTAC,andSC.AmongthesedifferenttechniquesactiveRCandOTACtechniques have been widely used. In continuoustime analogue filters, the cutoff frequencies canbetunedbychangingbiasvoltagesorcurrents;inordertorealizemultistandard functionality.However,somespecifications,suchaspowerconsumption,noise,and especiallylinearityarealsochangedwhenvaryingbiasvoltageorcurrent.Thetuning principleisdepictedinFigure6.2.Ascanbeseen,thecutofffrequencycontrolis oftenimplementedinswitchedstandardsratherthanbysimplyextendingthetuning range.

Figure6.2Filtercutofffrequency:standardsswitching The cutoff frequency of an activeRC filter is changed by tuning either the capacitors or resistors, or both. In the OTAC filter case, tuning of the transconductanceorcapacitorscanbeused.Thediscussioninthissectionismostly focusedonthesetwofiltertechniquesformultistandardapplications.Asmentioned, thedigitalcontrolledswitcheshavetobeused,whichcanbeimplementedastriode regionMOSFET.AscanbeseenfromFigure6.3,oncetheMOSFETison,itactslike a resistor due to the limited onresistance R on . Therefore, adding switches in series with integrating capacitors causes a phase lead in the integrators, while adding

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 134 switchestothesignalpath,whetherattheinputoroutputoftheintegrators,causesa phaselag.Asaresultthefilterfrequencyresponsebecomespoorlycontrolled.

(a)

(b)

Figure6.3(a)Addingswitchinserieswithcapacitor,(b)Addingswitchtothesignal path Therefore, it is needed in switch design to minimize these effects. Although the effectsonthefiltercutofffrequencyareideallythesame,thenoiseproducedbythe filter is affected in different ways, by the tuning approach which is chosen. If the resistance or transconductance is changed to perform cutoff frequency tuning, the integratedthermalnoiseofthefilterwillremainroughlythesame.However,thenoise voltagedensitywillbeinverselyproportionaltothecutofffrequencymakingthespot noise figure of the baseband filter dependent on the mode. Moreover, transconductance tuning normally achieved by changing dc bias or gate voltage of trioderegiontransistors,bothofthemisstronglyrelatedwithpowerconsumptionand linearity. Alternatively, if only the capacitor values are tuned, the noise voltage density and spot noise figure remain approximately constant, while the integrated noise voltage is directly proportional to the cutoff frequency. The capacitors in

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 135 particulartendtodominatethefiltersiliconareafornarrowbandsystems;therefore,a pure capacitortuning approach may not be viable, depending on the capacitance densityofthetechnology[73,74].Therefore,thedesignofanaloguemultistandard filtersinvolvecomplextradeoffsbetweenpowerconsumption,siliconarea,linearity, andspeed.

6.3 Multi-standard Active-RC Filters

Most proposed activeRC filters use capacitor arrays, resistors array or a combinationofthesetwomethodstocontrolthecutofffrequency[73,75,and76]. ThetuningtechniquesareshowninFigure6.4.

(a) (b) Figure6.4(a)Capacitancematrix,(b)ActiveRCintegratorwithbandswitching resistors The capacitance and resistance values can be changed by switching on and off switches at each branch. In principle, either switching approach can be used to achieve the same tuning range. However, constantcapacitance scaling keeps the dynamic range constant, irrespective of the bandwidth. Hence, no overdesign is needed,whichmeansthelesspowerconsumptionandsmallerchipareaisguaranteed. Iftheoriginalfilterisdesignedoptimallyintermsofwhitenoiseanddistortion,then anyconstantcapacitancescaledversionofitwillalsobeoptimal,irrespectiveofits bandwidth.Inaddition,constantcapacitancescalingcanresultinadesigntechnique thatisremarkablyimmunetoeffectsofparasiticcapacitances;forexample,in[87, 88].In[82],theintegratorcapacitors,whichweredisconnectedinawidebandmode (WCDMA),werereusedinaDCoffsetcancellationlooptooffsettheareacost.The

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 136 main drawback of both switching methods is the difficulty of avoiding parasitic effectsduetoCMOSswitchesinthesignalpath.Withswitchedintegrationcapacitors, thephaseleadintroducedbytheswitchedonresistancetendstocompensateforthe finite Opamp unity gain bandwidth product (GBW) and this effect may even be utilizedtosavepoweriftheswitchresistanceisproperlycontrolled.Withresistors,a majorconcernisnonlineareffectsduetotheswitch,whichhasledtothepracticeof connectingtheswitchestotheOpampinput.Iflargerswitchesareusedtoachieve better linearity, this has the effect of adding capacitance to opamp input and degradingthephasemarginoftheopamp.Reconfigurableactiveblockscanbeused tominimizeanaloguebasebandpowerconsumption,whenreducedsignalbandwidth is selected. Theoretically, the power consumption of an opamp is reduced in proportiontoitsrequiredGBWwhichissmallerfornarrowerbandwidths.Theeasiest waytoaccomplishGBWcontrolistosimplychangethebiascurrentofoperational amplifier[75,81].However,linearityandphasemarginscanbebetteroptimizedfor different operating modes if input and output stage transistor dimensions are also changed [72]. Other techniques, such as the grounded amplifier and fully balanced differential difference amplifier (FBDDA) are also found in the literature [89]. References[83,85]designedchannelselectionfiltersusingacompensatedonepole Opamp, similar to [84].A multistandard baseband filter reported in [90] realizes integratorsasacombinationofcurrentandvoltagebuffers.Itachievesaverywide tuning range by using an R2R network in place of input resistors, and digitally controlledcurrentdividernetworksinsidethecurrentbufferswhichyieldatotalof14 bitsresolutionforthefrequencycontrol.Theperformanceofthisfilteriscomparable to activeRC based filters. However, the internal current divider network in the currentbuffermakesitdifficulttoadjustthecurrentconsumptionoffilter,depending onthefiltercutofffrequency.

6.4 Multi-standard OTA-C Filters

TheOTACtechniqueofferstheadvantagethatthetransconductancecanbetuned

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 137 continuously,asshowninFigure6.5(a).

(a) (b) (c) Figure6.5(a)Gmtuning,(b)Tuningusingswitchedcapacitance,(c)Tuningusing switchedOTAs Thisisaccomplishedeitherbycontrollingthebiascurrentoftheinputtransistors,or their drainsource voltage in the case of trioderegion MOS transconductors. A transconductordesignwithaverywidetuningrangeisneededtorealizetherequired cutoff frequency tuning range. Such an approach has been adopted in [92] for implementingafilterwithacutofffrequencytunablefrom0.5MHzto12MHz.The mainlimitationofusingthetransconductancecontrolonlyisthatthelinearityofthe transconductorisdependentonthetuningbias;normally,thelargerbiascurrentthat isused,thebetterthelinearitythatisachieved.Moreover,thelinearityisnotconstant. In [33, 91], the transconductancecontrolonly circuit makes it difficult to meet linearity requirements for filter cutoff frequencies close to the minimum while achieving high power efficiency for cutoff frequencies close to the maximum. Transconductance tuning can be combined with switched tuning for selecting the operatingstandard,whichgreatlyrelaxestherequiredtransconductancetuningrange. Either the capacitors, as shown in Figure 6.5(b) [93], or the transconductors, as depictedinFigure6.5(c)[93,94]canbeswitchedtomakealargestepinthecutoff frequency. Analogue circuits based on the operational transconductance amplifier (OTA)andcapacitor(OTAC)techniqueispromisingfor highfrequencyoperation [41]. Having an OTA of programmable transconductance and a programmable capacitor,itispossibletodesignfiltersforawidefrequencytuningrange.Formost CMOS processes, it is not possible to create a capacitor with a wide range of

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 138 programmabilitywhichcanoperateathighfrequencies.Therefore,thetransconductor musthaveawidetuningrange.TheproposedOTAin[95]hastransconductancethat canbeadjustedbyafactorof700.Thisresultsinthepossibilityofdesigningfilters with cutoff frequencies from several kilohertz to several megahertz. The OTAC techniqueisconsideredtooffersuchadvantagesashighspeedandlowpower[87,92, and 41] but also has limited applicability because of low dynamic range and poor linearity compared with the activeRC technique [86]. In order to increase the dynamicrangeofOTACfilters,transistorleveldesignismostimportant,becausethe linearityofthefilterisdirectlyrelatedtothelinearityoftheOTA.Therefore,awide range of techniques have been proposed in literature to improve the linearity of transconductors.Usingcurrentconveyors[96]andresistorsasbuildingblocks,itis possibletodesignhighlylineartransconductors,thusextendingtheusefulnessofthe technique to applications requiring high linearity. There is a tradeoff between linearity and power consumption. Source degeneration OTA circuit topologies are widely used in HDD applications in order to optimize the linearity and power consumption. In [94, 97], low power consumption and large dynamic range is achieved. The drawback is relatively small tuning range. To avoid this problem, a socalled negative source degeneration resistor (NSDR) OTA circuit topology is proposedin[92].Inaddition,anewadaptiveDCblocking,triodebiasedMOSFET (ADTM) transconductor is proposed in [91], which enables wide and continuous frequency tuning with low power consumption. A single OTA integratorbased OTACfiltermaybeneededtofurtherreducepowerconsumptionandchiparea[98]. TheOTACtechniqueisvulnerabletoallparasiticcomponents;thisincludesthe effectofswitchesinserieswithcapacitorsorelsewhereinthesignalpath.Thefilter circuitstructureplaysanimportantroleindeterminationoffilterperformance.The cascade structure can be implemented with lower power consumption and smaller siliconareathanladdersimulationmethods,butsensitivityisrelativelyhigh.Onthe other hand, ladder simulation structures have low sensitivity, but cost more power consumptionandchipareaduetotheneedforextraOTAconvertfloatingcapacitors DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 139 togroundedones.IthasbeenprovedthattheMLFstructurehaslowersensitivitythan the cascade and less complexity than ladder simulations. Recently, multiple loop feedback (MLF) structures have been used for HDD applications [36, 37, 5559]. Theyachievegoodperformanceatveryhighfrequencywithreducedparasiticeffects andsimpledesignmethodologies.Therefore,theMLFfiltersarepotentiallysuitable for multistandard analogue baseband filter design. However, use of this type of structurehasnotbeenfoundintheliterature.

6.5 Design and Simulation of MLF OTA-C Filter for Multi-standards

Although the cascade and LC ladder simulation methods have been used for multistandardsanaloguebasebandfilteringdesign[6983,8587,9099,102,103], the MLF method has not been used for this application. Therefore, a fourthorder currentmode Butterworth lowpass filter based on the MLF LF configuration is proposedasanexampleinthissection,withcutofffrequencycanbetunedfrom500 KHzto12MHztocoverBluetooth,WCDMAandWLAN.

Figure6.6FourthordercurrentmodeButterworthLFOTAClowpassfilter TheOTACimplementationofthefilterisshowninFigure6.6.Thestructurewithall

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 140 switchesoff,thatis,with CjisforWLANs,whilewhenallswitchesareclosed,or with Cj+C j’,itisforBluetoothandWCDMA. ThenormalizedcharacteristicofafourthorderlowpassButterworthfilterisgiven by:

1 H (s) = d 4 3 2 s + .2 61313 s + .3 41421 s + .2 61313 s + 1 (6.1) Theoveralltransferfunctionofthecircuithasbeenderivedas[Chapter4]: I 1 H(s) = out = τ τ τ τ 4 +τ τ τ 3 +τ τ 2 +τ + Iin 1 2 3 4 s 2 3 4 s 3 4 s 4 s 1 (6.2) wherethetimeconstant τj=C j/g j,C jisthecapacitanceofcapacitorjandg jisthe transcendenceofOTA j The design formulae for the multistandard filter can be attained by coefficient matchingbetween(6.1)and(6.2).Forn=4,thedesignformulaecanbeobtainedas: B B B − Bτ τ = 4 , τ = 3 , τ = 2 1 1 , τ = B −τ 1 2 − τ 3 −τ 4 1 2 B3 B2 B1 1 B1 2 Thereforetheresultingpoleparametersare: τ = τ = τ = τ = 1 .0 3827 , 2 .1 0824 , 3 .1 5772 , 4 .1 5307

Selectingidenticaltransconductanceg mof50 µSandthecutofffrequencyofthe filterischosenas5MHz,usingthecomputedτjvalues,thecapacitorvaluescanbe calculatedas:

C = .1 22 pF , C = .3 45 pF , C = .5 02 pF , C = .4 87 pF , 1 2 3 4 ' ' ' ' C 1 = 1.6 pF , C 2 = 17 .23 pF , C 3 = 25 1. pF , C 4 = 24 .37 pF ,

MOSFETswitchesareusedinthecapacitorarraysofFigure6.6,whichisshownin Figure6.7.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 141 Figure6.7Switchedcapacitorsarray The CMOS OTA in Figure 5.1 is used for the filter design. The circuit was designed and simulated using BSIM 3v3 Spice models for a 2.5V TSMC 0.18 µm CMOS process available from MOSIS [112, 113]. In Figure 6.8, the simulated AC responsesofthedesignedfilterareplotted.Thecutofffrequencyofthefiltercanbe tunedfrom510kHzto11.2MHz.Thepowerconsumptionofthefilteris9.8mWfor BluetoothandWCDMAapplications,and11.9mWforWLANapplications.TheIIP3 is21.8dBVforWLANsand17.3dBVforBluetoothandWCDMA.Inthesimilarway, other MLF filters such as the FLF and IFLF [14, 59, 127] can be used for multistandardsanaloguebasebandapplications.

Figure6.8SimulatedACresponsesofproposedfilter

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 142 6.6 Future Directions

Thedemandisdrivingtheneedformultiradioplatformsthatincludenewlicensed andunlicensedairinterfacetechnologies,suchasZigBee[99],WLAN,UWB,WiBro andWiMax.Furthermore,theapplicationslikemultibandTVtunersareneededas well[100].Finally,evenmoremobileTVstandardsareemergingworldwide,suchas MediaFLO™intheUnitedStatesandDMBTinChina.SincemobileTVsubsystems will be battery operated and will need to fit in the crowded cellular phone case, implementations that are small in size and consume low power are required. In addition,multistandardcapabilityisdesirablesinceitwillreducecostforintegrators andwillallowuserstoreceivemobileTVintheirdevicesastheytravel[101].The information society is moving toward a merge between communication, computing andmultimediawiththegoalofabroadbandwidthconnectionforallatanytimeand anyplace.Withinthisframework,the3G,4Gmobiletelephonesystemsandvarious differentkindsofwirelessnetworks(forexampleWAN,WLANandPAN)willbe seamlesslyinterconnectedtosuituserneeds.Tooperateinasmoothandtransparent way between all these different wireless access systems on a common IPbased platform,newmultistandardmultimodeterminalsarerequired.Researchtowardsthis goalaimstodevelopthekeyblocksofareconfigurableterminalthatsupportsmany standards,suchasBluetooth,WCDMA,andWLAN,thatareabletooperateasnearly simultaneouslyaspossible.Thekeycharacteristicsofoverallresearcharetoachieve reconfigurability across the entire transceivers. The baseband bandwidths of Bluetooth,GSM,3GandWLANstandardsrangefromafewhundredsofkilohertzto a few tens of megahertz. With rapid developments, more and more standards and technologies will be used for future communications, such as WiMax, WiBro, and ultra wide band (UWB) [103]. All of these emerging standards have bandwidth requirementsfromafewtensmegahertztoacoupleofhundredmegahertz.Itisstilla majorchallengetoimplementananaloguebasebandfilterwhosetuningrangecanbe aslargeas1:500inordertocoverallexistingandfuturestandards,althoughatuning

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 143 rangeof1:20iscurrentlypossible.

6. 7 Conclusions

Design considerations for analogue baseband lowpass filters, for use in multistandard receivers based on the direct conversion architecture, has been presentedinthischapter.Designtradeoffsinrelationtopowerconsumption,linearity, silicon area, and large tuning range have beendiscussed. In the literature, different filterarchitectureshavebeenusedtoimplementanaloguebasebandfilters.ActiveRC and OTAC based filters are most popular [69, 94, and 99]. Although, activeRC structures exhibit excellent linearity at the cost of high power consumption, it is difficultforactiveRCfilterstoachievehighcutofffrequencies,whichmeansthat activeRC filter structures are not very suitable for future wideband and mobile communications.Ontheotherhand,OTACfiltersfeatureareducedlinearrangebut with low power consumption and small silicon area. Therefore, OTAC filter structures will attract more attention in the near future, especially for wideband wirelessapplicationsduetotheirhighfrequencycapability.Thelimitedlinearitycan be further improved by integrated resistors or other OTA linearization techniques [102].Moreover,althoughsuitablelowpassfilterscanbeimplementedbyBiCMOS, SiGeoracombinationofthesetechnologies,monolithicimplementationsusingpure CMOStechnologyremainshighlydesirableforfuturecommunicationsystemsdesign. ACMOSfourthordercurrentmodeButterworthOTAClowpassfilterwasdesigned as an illustrative example. The simulation results well match the desired goals for operationwiththeBluetooth,WCDMAandWLANstandards.Withtheconvergence of communications, broadcasting and computing, future mobile terminal or handset must be highly programmable to accommodate any emerging standards. A high performance analogue filter system with a reconfigurable architecture and tunable parameterswillthusbeneeded.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 144 7. Design and Simulation of MLF OTA-C Filters for Wireless Communication Receivers

7.1 Introduction

Aswasdiscussedinlastchapter,thecontinuoustimefilter(CTF)isoneofthemost important building blocks in analogue domain. It plays a very important role in modern wireless communication systems. In receivers, very demanding highperformanceanaloguefiltersaretypicallyusedtoblockinterferersandprovide antialias filtering before the subsequent analogue to digital conversion stage. However, it is challenging to design analogue filters with low power consumption, highspeedandlargedynamicrange[24]. There are three types of filter, which have been widely developed: switchedcapacitor, activeRC, and OTAC filters. Switchedcapacitor filters are popularowingtoexcellentaccuracy,buttheswitchingnoiseandclockfeedthrough degrades the performance of the filter considerably in high frequency range. The signalbandwidthofnextgenerationwirelesscommunicationssuchasWiMax,802.11 exceed 30MHz. For this frequency range, OTAC solutions are generally preferred due to the more efficient operation of wideband OTA. On the other hand, the performances of the OTAC filter not only rely on the OTA, but also rely on the methodologies of filter design. There are three different methods to implement analoguefilters:cascade,LCladdersimulation,andmultipleloopfeedback(MLF). The cascade method is not normally used for elliptic filter design due to high sensitivity. The LC ladder simulation method has been widely used for analogue ellipticfilterdesign.However,asdiscussedinpreviousChapter,LCladdersimulation approach requires some good knowledge of passive RLC filters and the active simulationprocess,whilsttheMLFapproachinvolvesnontrivialmatrixmanipulation; althoughithaslowersensitivitiescomparedwithcascademethod.Ontheotherhand, LC laddersimulation approach needs toconvert passive components into OTA and

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 145 connectedhighimpedancenodeswithfloatingcapacitors.Themainconcernsarethat the floating capacitors have higher sensitivity comparing with grounded ones. Moreover,thefloatingcapacitorsalsooccupymorediearea.Ithasbeenprovedthat theMLFstructurehaslowersensitivitythanthecascadeandlesscomplexitythanLC laddersimulations.Theyachievegoodperformanceathighfrequencywithreduced parasiticeffectsandsimpledesignmethodologies[4]. Although both Chebyshev and elliptic approximation have been realized for wireless communication applications in the literature, the order of the Chebyshev filterisalwayshigherthantheorderofthecorrespondingellipticfilter.Thusthemost economical filter will be the elliptic filter. However, MLF OTAC based configurations have not so far been used for design of elliptic filters for wireless communicationsintheliterature.Therefore,anumberoffifthorderellipticOTAC lowpass filters for next generation wireless communication receivers are firstly presented in this Chapter, based on currentmode MLF FLF and LF configurations and voltagemode IFLF and LF configurations. This Chapter is organized in the followingway:ThedesignoftheOTAisdiscussedinSection7.2.Thefiltersynthesis andarchitectureisdescribedinSection7.3.Thesimulationresultsandconclusions aregiveninSection7.4and7.5,respectively.

7.2 Transistor Level OTA Design

Ingeneral,thebandwidthoftheOTAusedinthefiltermustbemuchlargerthanthe filter cutoff frequency. The OTA must also have with linearity in order to achieve acceptable low distortion levels. For high frequency filters, single stage OTAs are preferred,becausetheinternalnodesofmultistagedesignsresultinadditionalexcess phase shift, as well as increased power consumption. Source degeneration OTAs become popular due to their favourable tradeoffs between linearity and power consumption.AlargesourcedegenerationfactorincreasesthelinearityoftheOTA. However,italsoreducestheoveralltransconductance.TheCMOSOTAstructurein Figure5.1waschosenforthefilterdesigninthissectiontooptimizethelinearityand

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 146 powerconsumption.DetailedanalysisofthisOTAhasbeengiveninChapter5.The mainnoisesourcesofthepresentedOTAareshowninFigure7.1.

Figure7.1NoisesourceofthepresentedOTA

The transistors M 36, are not in the output signal path, thus they have only commonmode noise. Similarly, the noise from M7 and M 8 should give rise to negligiblenoiseduetothefullybalancedstructureoftheOTA.Asaconsequence,the mainnoisesourcesarefromM1,2 ,M 9,10 ,andthetworesistors’R.Forlongchannel devices,theoutputnoiseofeachcellcanbereadilyexpressedas, 8 V 2 = 2⋅γ ⋅[ K ⋅T ⋅ B ⋅G ⋅ R2 ](7.1) n 3 m out where KistheBoltzmannconstant, Tistheabsolutetemperatureand Bisthechannel bandwidth.G misthesmallsignaltransconductanceofeachinputMOStransistorsof the M 1, M 2 and R out is the output impedance of OTA. The noise power is doubled becausetherearetwobranches.Notethattheconstantγis1forlongchanneldevices DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 147 withnoiselessloading.However,theoutputloadingwillintroduceitsownnoise,and ifshortchanneleffects,likethehotelectroneffectaretakenintoaccount,thevalueof γcanbeuptofour. On the other hand, the output impedance of the single stage OTA is quite low, which leads to low dc gain. The limited dc gain will result in deviations of filter performancefromthedesiredtransferfunction.AnexampleisshowninFigure7.2; thefifthorderellipticfilterusingidealVCCSandtheOTAinFigure5.1issimulated. As can be seen, both passband ripple and stopband attenuation are out of the specifications.

Figure7.2Comparisonbetweenthefilter’sidealtransferfunctionandtherealonedue tolimitedoutputimpedanceofOTA TheoutputimpedanceoftheOTAmustbethereforeenhanced.Thiswillmovethe lowfrequencypoleascloseaspossibletodc,makingitresembleanidealintegrator. One popular method to increase output impedance without introducing unwanted parasiticpolesistouseanegativeresistanceload.Thisideacanbeillustratedusing thesmallsignalmodelofanOTAshowninFigure7.3.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 148 Figure7.3SmallsignalmodelofOTAwithnegativeresistanceload TheoveralltransferfunctionofFigure7.3isexpressedas: R ⋅ R g ( out L ) m − V out = Rout R L V R ⋅ R in 1 + sC ( out L ) out − Rout R L (7.2)

Fromequation(7.2),itcanbeseenthatincreasingthenegativeresistance–RLwill resultinincreasedDCgain,withDCgainreachinginfinitywhenR L=R out .However,

RLmustbelessthanR out toensurethatthelowfrequencypoleliesinthelefthalf plane.ToenhancetheoutputimpedanceoftheOTA,thenegativeresistancecircuit canbeimplementedusinganadditionalOTA,g L,asshowninFigure7.4.

Figure7.4ThediagramofsimulatedOTAwithnegativeresistance

7.3 Filter Architecture and Synthesis

In this section, we present currentmode MLF FLF LF and voltagemode MLF IFLF LF configurations implementing fifthorder elliptic OTAC filters. In orderto generallyprovetheavailabilityofcurrentandvoltagemodeMLFconfigurationsfor ellipticfiltersdesign,twodifferentellipticapproximationsforeachmodeareused.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 149 7.3.1 Current-mode FLF Configuration

The circuit diagram of the presented currentmode fifthorder MLF FLF elliptic lowpassOTACfilterisshowninFigure7.5.

Figure7.5CurrentmodefifthorderLFellipticOTAClowpassfilter Thegeneralfifthorderellipticlowpasstransferfunctioncanbewrittenas:

A s 4 + A s 2 + A H (s) = 4 2 0 (7.3) 5 + 4 + 3 + 2 + + B5 s B 4 s B3 s B 2 s B1s 1 WritingthecurrenttransferfunctionforthecircuitinFigure7.5andcomparingthis functionwithequation(7.3),wecanestablishthefollowingequations: B B B B τ = B τ = 2 ,τ = 3 ,τ = 4 ,τ = 5 5 ,1 4 B 3 B 2 B 1 B 1 2 3 4 (7.4)

α = A 4 α = A 2 α = 1 , 3 , 5 A 0 (7.5) B 4 B 2

The normalized characteristic of a fifthorder elliptic OTAC lowpass filter with

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 150 50dBstopbandattenuationand0.5dBpassbandrippleisgivenby:

4 + 2 + = .0 0758 s .0 5962 s 1 H d (s) 5 4 3 2 .3 949 s + .4 58 s + .7 953 s + .5 558 s + .3 501 s + 1 (7.6) where time constants τj=C j/g j and zero parameters αj=g αj/g j, therefore, for the currentmodefifthorderFLFellipticOTAClowpassfiltercanbecalculatedasusing equation(7.4)(7.5)and(7.6)[55,106,107]: τ = τ = τ = τ = 1 .0 862 , 2 .0 576 , 3 .1 431 , 4 .1 587 , τ = α = α = α = 5 .3 5012 , 1 .0 02 , 3 .0 11 , 5 1

Thefilterisdesignedwithidenticalg jusingtheCMOSOTAcellinFigure7.1,with selected transconductance g m of 4.5mS, to improve OTA matching and facilitate designautomation.Thecutofffrequencyoftheproposedfilterischosenas30MHz.

Usingthecomputedτjandαjvalues,thecapacitorvaluesandg αjvaluesfortheoutput summationOTAscanbecalculatedas: = = = = C 1 41 .16 pF , C 2 27 5. pF , C 3 68 .33 pF , C 4 75 .77 pF , = = µ = µ = C 5 167 .17 pF , g a1 90 S , g a 3 495 S , g a 5 5.4 mS

7.3.2 Current-mode LF Configuration

The circuit diagram of the currentmode fifthorder LF elliptic OTAC lowpass filter is shown in Figure 7.6. The design formulae for the currentmode LF configuration is relatively complicated compare to those for the FLF configuration with FLF ones. There is not any iterative equation. The design formulae for currentmode fifthorder lowpass OTAC filter are shown below [Chapter 4]. The transfer function for the currentmode fifthorder elliptic OTAC lowpass filter in Figure7.6isgivenby: N (s) H (s) = D(s) = α τ τ τ τ 4 + α τ τ + τ τ + τ τ + α τ τ 2 N (s) 1 2 3 4 5 s [ 1 ( 2 3 2 5 4 5 ) 3 4 5 ]s + α + α + α ( 1 3 5 )

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 151 = τ τ τ τ τ 5 +τ τ τ τ 4 + τ τ τ +τ τ τ +τ τ τ +τ τ τ 3 D(s) 1 2 3 4 5s 2 3 4 5 s ( 1 2 3 1 2 5 1 4 5 3 4 5 )s + τ τ +τ τ +τ τ 2 + τ +τ +τ + ( 2 3 2 5 4 5 )s ( 1 3 5 )s 1

Figure7.6CurrentmodefifthorderLFellipticOTAClowpassfilter Thenthetimeconstantandzeroparameterscanbederivedas: B B B − B τ B − (B −τ )τ τ = 5 ,τ = 4 ,τ = 3 2 1 ,τ = 2 1 1 2 , 1 2 − τ 3 − −τ τ 4 −τ −τ B4 B3 B2 1 B2 (B1 1) 2 B1 1 3 τ = B −τ −τ , 5 1 1 3 (4.3) α = α = − α τ τ α = − α + α 1 A4 / B4 , 3 [ A2 2 1B2 /] 4 5 , 5 A0 ( 1 3 ) (4.5) FollowingthesameprocedureasforthecurrentmodeFLFfilterdesignandusing another fifthorder elliptic approximation with 60dB stopband rejection and 1dB passbandripple,whichisgivenby:

4 + 2 + = .0 0271 s .0 324 s 1 H d (s) 5 4 3 2 .4 692 s + .5 469 s + .9 263 s + .6 369 s + .3 839 s + 1 (7.7)

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 152 Usingequation(7.7),(4.3)and(4.5),wecancalculate: τ = τ = τ = τ = τ = 1 .0 858 , 2 .1 44 , 3 .1 829 , 4 .1 802 , 5 .1 152 , α = .0 004 ,α = .0 132 ,α = .0 864 1 3 5

Fortheidenticalg j(j=1to5)of4.5mS,wecanfurthercalculatethecapacitorand zeroparameters: = = = C 1 41 pF , C 2 68 .75 pF , C 3 87 .19 pF , = = = µ C 4 86 .01 pF , C 5 55 pF , g a1 18 S , = µ = g a 3 594 S , g a 5 9.3 mS

7.3.3 Voltage-mode IFLF Configuration

ThevoltagemodefifthorderMLFIFLFellipticlowpassfilterisshowninFigure7.7.

Figure7.7VoltagemodefifthorderIFLFellipticOTAClowpassfilter Writing the circuit voltage transfer function in Figure 7.7 and comparing this functionwithequation(7.3),thefollowingequationscanbeestablished:

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 153 τ = τ = B2 τ = B3 τ = B4 τ = B5 1 B1, 2 , 3 , 4 , 5 (7.8) B1 B2 B3 B4

β = A2 β = A4 β = 5 , 3 , 1 A0 (7.9) B2 B4

whereβj=g αj/g j, thenormalizedcharacteristicofafifthorderellipticlowpassfilter with50dBofstopbandattenuationand0.5dBofpassbandrippleisgiveninequation (7.6): Usingequations(7.6),(7.8)and(7.9),thetimeconstantτandzeroparametersβcan becalculatedas[106,107]:

τ = .0 862 , τ = .0 576 , τ = .1 431 , τ = .1 587 , 5 4 3 2 τ = β = β = β = 1 .3 5012 , 5 .0 02 , 3 .0 11 , 1 1

For the identical g j (j=1 to 5) of 4.5mS, the capacitor values and additional input distributionOTAscanbefurthercalculatedas: = = = C5 41.16 pF , C4 27 5. pF , C3 68.33pF , = = = µ C2 75.77 pF , C1 167.17 pF, g a5 90 S , = µ = g a3 495 S , g a1 5.4 mS

7.3.4 Voltage-mode LF Configuration

The voltagemode fifthorder MLF IFLF elliptic OTAC lowpass filter is shown in Figure 7.8. The detailed design formulae for the general voltagemode LF configuration were proposed in [118, 119, 127]. The transfer function for the voltagemodefifthorderellipticlowpassfilterinFigure7.8isgivenby: = β τ τ τ τ 4 + β τ τ + τ τ + τ τ + β τ τ 2 N ( s ) 1 2 3 4 5 s [ 1 ( 2 3 2 5 4 5 ) 3 4 5 ]s + β + β + β ( 1 3 5 ) = τ τ τ τ τ 5 + τ τ τ τ 4 + τ τ τ + τ τ τ + D ( s ) 1 2 3 4 5 s 2 3 4 5 s ( 1 2 3 1 2 5 τ τ τ + τ τ τ 3 + τ τ + τ τ + τ τ 2 + 1 4 5 3 4 5 ) s ( 2 3 2 5 4 5 ) s τ + τ + τ + ( 1 3 5 ) s 1 Comparingwithequation(7.3),thefollowingvaluescanbeobtained:

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 154 B B B − B τ B − (B −τ )τ τ = 5 ,τ = 4 ,τ = 3 2 5 ,τ = 2 1 5 4 ,τ = B −τ −τ , 5 B 4 B − B τ 3 B − (B −τ )τ 2 B −τ −τ 1 1 5 3 4 3 2 5 2 1 5 4 1 5 3 A A − 2β B β = 4 ,β = 2 5 2 ,β = A − (β + β ) 5 3 τ τ 1 0 3 5 B4 2 1 (7.10)

Figure7.8VoltagemodefifthorderLFellipticOTAClowpassfilter Thenormalizedcharacteristicofa60dBstopbandrejection,1dBpassbandripple fifthorderellipticlowpassfilterisgivenbyequation(7.7): Using equation (7.7) and (7.10), time constant τ and zero parameters can be calculatedas: τ = τ = τ = τ = τ = 5 .0 858, 4 .1 44, 3 .1 829 , 2 .1 802 , 1 .1 152 , β = β = β = 5 .0 004 , 3 .0 132 , 1 .0 864

Foridenticalg j(j=1to5)of4.5mS,wecanfurthercalculate: = = = C 5 41 pF , C 4 68 .75 pF , C 3 87 .33 pF , = = = µ = µ C 2 86 .01 pF , C 1 55 pF , g a 5 18 S , g a 3 594 S , = g a1 9.3 mS

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 155 7.4 Simulation Results

7.4.1 Simulation Results of Current-mode Elliptic OTA-C Lowpass

Filters

The circuits were simulated using BSIM 3v3 Spice models for a TSMC 0.18 µm CMOSprocessavailablefromMOSIS[112,113].Figure7.9showstheopencircuit DCgainofpresentedOTAwithandwithoutoutputresistancecompensation.Ascan beseen,theDCgainoftheOTAwithnegativeresistanceloadisabout72dB,while withoutnegativeresistanceload,itisonlyabout22dB.

Figure7.9SimulatedopencircuitDCgainofOTAwithandwithoutoutputresistance compensation Figure 7.10 and 7.11 show the magnitude responses of the FLF and LF filter, respectively.ThepassbandrippleofbothfiltersisinFigures7.12(FLF)and7.13(LF). The passband ripple of FLF and LF configurations is about 0.5dB and 0.7dB respectively.ThestopbandattenuationofFLFandLFconfigurationsisabout50dB and65dB,respectively,matchingtheexpectedgoals.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 156 Figure7.10Simulatedmagnitudefrequencyresponseofthecurrentmodefifthorder FLFellipticlowpassfilter

Figure7.11Simulatedmagnitudefrequencyresponseofthecurrentmodefifthorder LFellipticlowpassfilter

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 157 Figure7.12SimulatedthepassbandripplesofthecurrentmodefifthorderFLF ellipticlowpassfilter

Figure7.13SimulatedthepassbandripplesofthecurrentmodefifthorderLFelliptic lowpassfilter ThetotalRMSoutputnoisecurrentintegratedover30MHzoftheLFandFLFfilter isabout300nA RMS and280nA RMS ,respectively.AsalsocanbeseenfromFigure7.14 and7.15,theTHDofbothfilterscanbeguaranteedlessthan1%at670uAdifferential DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 158 inputcurrent.

1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 250 300 350 400 450 500 550 600 670 Differential input current [uA] Figure7.14SimulatedTHDversusthedifferentialinputcurrentofthecurrentmode fifthorderLFellipticlowpassfilter

1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 250 300 350 400 450 500 550 600 670 Differential input current [uA] Figure7.15SimulatedTHDversusthedifferentialinputcurrentofthecurrentmode fifthorderFLFellipticlowpassfilter

Thedynamicrangeisabout67dBat fc=30MHz.Thecutofffrequenciesofboth filter configurations can be tuned from 28MHz to 44MHz. The total power consumptionofbothfiltersisabout67mWat30MHzcut −offfrequencyforasingle

1.8Vpowersupply. DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 159 7.4.2 Simulation Results of Voltage-mode Elliptic OTA-C Lowpass

Filters

The circuits for the voltagemode elliptic OTAC lowpass filter implementations werealsosimulatedusingtheBSIM3v3SpicemodelsforthesameTSMC0.18 µm CMOSprocess.AscanbeseenfromFigures7.16and7.17,themagnituderesponses ofthevoltagemodefifthorderOTACellipticlowpassfiltershavesimilarfeaturesto theircurrentmodecounterparts.

Figure7.16Simulatedmagnitudefrequencyresponseofthevoltagemodefifthorder IFLFellipticlowpassfilter

Figure7.17Simulatedmagnitudefrequencyresponseofthevoltagemodefifthorder LFellipticlowpassfilter DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 160 Figure7.18SimulatedthepassbandripplesofthevoltagemodefifthorderIFLF ellipticlowpassfilter ThepassbandrippleoftheIFLFandLFvoltagemodefiltersarepresentedinFigure 7.18and7.19,respectively.Figure7.18showsthepassbandrippleoftheIFLFfilteris about0.9dB.InFigure7.19,thepassbandrippleoftheLFfilterisabout1.5dB.

Figure7.19SimulatedthepassbandripplesofthevoltagemodefifthorderLFelliptic lowpassfilter

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 161 1.4

1.2

1

0.8

THD [%] THD 0.6

0.4

0.2

0 120 130 140 150 160 170 180 190 200 Differential input voltage [mV] Figure7.20SimulatedTHDversusthedifferentialinputvoltageofthevoltagemode fifthorderLFellipticlowpassfilter

1.2

1

0.8

0.6 THD [%] THD

0.4

0.2

0 100 105 110 115 120 125 130 Differential input voltage [mV] Figure7.21SimulatedTHDversusthedifferentialinputvoltageofthevoltagemode fifthorderFLFellipticlowpassfilter The output noise voltage spectrum of the voltagemode LF and IFLF filters at the cutofffrequencyisabout14.5uV RMS /√Hzand18uV RMS /√Hz,respectively.Ityields that the input referred noise is 280uV RMS and 350uV RMS , respectively. The comparison of the simulated currentmode LF and FLF filters with target

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 162 specificationsaresummarizedintheTable7.1and7.2,respectively.

Table7.1ComparisonofthesimulatedcurrentmodeLFfilterwithtarget specifications

Specification Dynamic Power Cutoff Passband Stopband forLF range consumption frequency ripple rejection

Target 60dB 80mW 30MHz 1dB 60dB

Simulation 67dB 67mW 2844MHz 0.7dB 65dB

Table7.2ComparisonofthesimulatedcurrentmodeFLFfilterwithtarget specifications

Specification Dynamic Power Cutoff Passband Stopband forFLF range consumption frequency ripple rejection

Target 60dB 80mW 30MHz 0.5dB 50dB

Simulation 62dB 67mW 2844MHz 0.5dB 50dB

7.5 Conclusions

ThefullydifferentialfifthordercurrentandvoltagemodeMLFOTACelliptic lowpassfilterconfigurationshasbeenpresented.Themodelpresentedisalsosuitable for realization of any arbitrary zeros by adding either voltage, current input distributionorvoltage,currentoutputsummationOTAnetworkstoit.Itisinteresting to note that the general currentmode fullybalanced model based on current integrators and current amplifiers have the same form of transfer function as that based on voltage integrators and voltage amplifiers. This can also be explained by noting that voltagemode OTAC filters and currentmode OTAC filters in this chapterareadjointofeachother.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 163 TwoCMOS30MHzcurrentmodefifthorderellipticlowpassfilterbasedonMLF FLFLFconfigurationshavebeenfirstlydescribedinthisChapter.AlinearOTAwith atransconductanceof4.5mShasbeenusedforallthedesigns.Simulationresultsin 1.8V0.18 µmCMOShaveshownthefrequencyrangeof2844MHz,dynamicrange of 67dB, 62dB and 280nA RMS , 300nA RMS total output noise with 67mW of total powerconsumptionat30MHzofcutofffrequencyforcurrentmodeellipticOTAC MLF LF FLF lowpass filters, respectively. Simulation results have also shown the voltagemode elliptic OTAC MLF LF IFLF lowpass filters have the similar performance as the currentmode ones. Therefore, it has demonstrated that MLF configurationsareeasytodesignellipticfiltersandtheresultsalsohaveshownthat theproposedfilterscanbeusedforadvancedwirelessreceivers.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 164 8. Conclusions

This thesis has investigated design, performance analysis and comparison of CMOS MLF OTAC filters. Chapter 1 has generally introduced the research background.Chapter2hasreviewedandsummarizedthedevelopmentsinanalogue filter design for computer HDD read channels. Chapter 3 has been concerned with designandperformanceanalysisofcurrentmodeFLFandvoltagemodeIFLFVHF OTAC linear phase filters for hard disk read channels, including design of a high performance OTA. The synthesis and design of LF OTAC filters have been thoroughly investigated in Chapter 4. In Chapter 5, we have designed two UHF fifthorder current and voltagemode LF OTAC hard disk read channel filters; 750MHz cutoff frequency with relatively low power consumption for both filters have been achieved. Chapter 6 overviewed the recent developments of analogue filtersdesignforwirelesscommunicationreceiverswithfocusonthemultistandard application. The design details of fifthorder current and voltagemode HF elliptic OTACfiltersbasedonLF,FLFandIFLFstructuresforwidebandwirelessbaseband applicationshavebeengiveninChapter7.Thischapterwillsummarytheworkinthe thesis(Section8.1)andproposesomefurtherresearchtopics(Section8.2).

8.1 Summary of the Work

InChapter2,thedesignconsiderationsforhighperformanceanaloguefiltersfor HDD systems have been presented. The choices of OTAs, filter orders, filter approximations, and filter architectures by considering their advantages and disadvantages have been addressed. Design tradeoffs in relation to power consumption,speed,groupdelayripplesandlargetuningrangehavealsobeengiven. The design considerations presented in this chapter can serve as useful practical guidelines for engineers to design low cost, compact, low power, highly integrated and high performance analogue filters. This Chapter has provided the HDD applicationbackgroundandrequirementsforthesubsequentChapter3toChapter5.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 165 In Chapter 3, the synthesis and derived formulae of currentmode OTAC filters havebeenpresented.Thetransmissionzeroscanbeimplementedusingeitheraninput distribution network or output summation network. The input distribution networks havebeenimplementedwithvoltagemodeIFLFandLFconfigurationspreviously. Therefore,theoutputsummationnetworkshavebeenchoseninthisChapter.Wehave proposed an OTA based on source degeneration topology, which can balance the tradeoffs between power consumption and linearity. The proposed OTA also has typicalhighfrequencyandlargetransconductancefeatures.Thedesigndetailsofthe seventhordercurrentmodeFLFandvoltagemodeIFLF0.05°equiripplelinearphase lowpassOTACfiltersandthefifthordercurrentmodeFLF0.05°equiripplelinear phaselowpassOTACfilterhavebeengiven.Thedetailedperformanceanalysesof thesecurrentandvoltagemodefiltershavebeenincludedaswell.Simulationresults inastandardTSMC0.18 µmCMOSprocesswitha2/2.5Vpowersupplyhaveshown that the proposed fullydifferential FLF and IFLF OTAC lowpass filters have low power consumption, although the group delay ripple is slightly higher than the specification of computer HDD read channels. Therefore the FLF and IFLF configurationscanbeoneofthefilteringsolutionsfornextgenerationcomputerHDD readsystems. InChapter4wehavefirstlypresentedthesynthesisandexplicitdesignformulas forcurrentmodeLFOTACfilters.Thesynthesisandexplicitdesignformulasofthe LF filters are based on an alternative iterative approach. We have formulated the circuit transfer functions and iterative design formulas of allpole and transmission zero(withbothinputdistributionOTAnetworkandoutputsummationOTAnetwork) LF filters. In this chapter, we have also presented the design of a CMOS 650MHz seventhorder0.05 o equiripplelinearphaseLFlowpassfilterforcomputerHDDread channel. The simulation results of the CMOS OTA and the LF filter in a standard TSMC0.18 µmCMOSprocesshavealsobeenpresented.Simulationsresultswitha single 2.5V supply voltage have shown that the filter has attractive high frequency performance with reasonable group delay ripples, which is the key point for next DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 166 generation HDD read channels. However, the power consumption of the proposed filter is relatively high. Therefore, more research has been carried in Chapter 5 to balancethetradeoffbetweenpowerconsumptionandhighfrequencyperformance.. InChapter5,wehavepresentedtwohighperformanceLFlowpassOTACfilters; voltage and currentmode fifthorder 0.05° equiripple linear phase lowpass filters. Thevoltagemodefilterhasthecutofffrequencyof790MHzandpowerconsumption of240mW.Thegroupdelayrippleisaround4%withandwithoutgainboost.The frequencytuningrangeisfrom455MHzto790MHz.Theprogrammablegainboost of 6dB has also been achieved. The currentmode filter has also achieved the relativelysimilarperformances.Boththeoreticalandtransistorlevel(conductedwith a standard TSMC 0.18 µm CMOS process) results have shown that the LF configurationcanalsobeoneofthefilteringsolutionsfornextgenerationHDDread channels.Inthechapter,theperformanceanalysisincludingDCresponse,frequency performancesandsecondordereffectsofatunablefullydifferentialCMOShasalso beenpresentedindetails.SimulationresultsoftheOTAinthesameCMOSprocess witha1.8Vpowersupplyhavebeengiven. InChapter6,wehavesummarizedthedesignconsiderationsofanaloguebaseband lowpass filters for use in multistandard receivers based on the direct conversion architecture.Designtradeoffsinrelationtopowerconsumption,linearity,siliconarea, andlargetuningrangehavebeendiscussed.AlthoughactiveRCstructureshavebeen widelyusednowadays,OTACfilterstructureswillattractmoreattentioninthenear future, especially for wideband wireless applications due to their high frequency capability. The limited linearity can be further improved by integrated resistors or other OTA linearization techniques. Although suitable lowpass filters can be implementedbyBiCMOS,SiGeoracombinationofthesetechnologies,monolithic implementations using pure CMOS technology remains highly desirable for future communication systems design. A CMOS MLF fourthorder currentmode Butterworth OTAC lowpass filter was designed as an illustrative example for analoguebasebandfiltering.Thesimulationresultswellmatchthedesiredgoalsfor DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 167 operationwiththeBluetooth,WCDMAandWLANstandards.Withtheconvergence of communications, broadcasting and computing, future mobile terminal or handset must be highly programmable to accommodate any emerging standards. A high performance analogue filter system with a reconfigurable architecture and tunable parameterswillthusbeneeded.

Recentwirelessstandardsrequirethebandwidthofanaloguebasebandtobeinthe rangeof3040MHz.OTACfiltersaremoresuitableforthisHFrangethanactiveRC filters.Therefore,wehavedesignedLF,IFLFandFLFOTAClowpassfiltersof40 MHz in Chapter 7. These filters have realized the fifthorder elliptic characteristic withthetunablecutofffrequencyof2842MHz.Simulationresultsin1.8V0.18 µm CMOShaveshownthedynamicrangeof67dB,62dBand54pA/√Hz,47pA/√Hztotal outputnoisewith67mWoftotalpowerconsumptionat30MHzcutofffrequencyfor currentmodeellipticOTACMLFLFFLFlowpassfilters,respectively.Simulation results have also shown the voltagemode elliptic OTAC MLF LF IFLF lowpass filtershavethesimilarfrequencyanddynamicrangeperformanceasthecurrentmode ones. AlthoughtheextraOTAshavebeenconnectedwiththeOTAoutputasnegative resistancetoenhancetheDCgain,thetotalpowerconsumptionisstilllowerthanthe mostfiltersproposedintheliterature.TheLF,IFLFandFLFconfigurationscanalso beappliedforevenhigherfrequencyapplications,suchasUWBreceivers,sinceall highimpedancenodesareconnectedwithgroundedcapacitors,theparasiticeffects canbesignificantlyreduced.

8.2 Topics of Further Research

8.2.1 MLF OTA-C Equalisers with High Gain Boost for Computer

HDD Systems

Inthisthesiswehaveinvestigatedthedesignof OTACreadchannelequalizers basedontheMLFtopology. AsmentionedinChapter2,theselowpasslinearphase filtersnotonlyneedtoachieveUHF/VHF,butalsoahighgainboost.Themaximum

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 168 gainboostachievedsofaris24dB.MostOTACequalizercanachieve12dBofgain boostusingthecascademethod.However,themaximumgainboostofMLFbased filtersachievedisonly9dB.Therefore,thefutureresearchneedstofocusonthegain boost enhancement. Although the 24dB of gain boost has been realized in the literature,thegroupdelayrippleismuchhigherthan5%.Itisagreatchallengeto achievebothlinearphaseandhighgainboostatUHFfrequencyrangewithminimum power consumption. Also, note that onchip automatic tuning is important to overcome filter performance degradation due to parasitics, process variations, tolerances, temperature, and environmental changes. Thus, the design of the equalizersshouldalsoincorporatetuningcircuitry.

8.2.2 Multi-standard MLF Lowpass OTA-C Filters for Mobile

Communication and Television Systems

Other important application areas of OTAC filters are in telecommunication systems. So far most reported fullyintegrated OTAC filters are based on the LC simulationapproach.Motivatedbytheworkinthisthesis,thedesignofOTACfilters based on the MLF approach for such applications should be further investigatedto fullyutilizetheiradvantages.Severalpracticaldesignsforvarioustelecommunication systemsanddigitalTVsystemsmaybeinvestigated.Examplesmayincludedesignof CMOS polyphase (complex) MLF OTAC channel filters (with high image band rejection) for Bluetooth transceivers, CMOS channelselect MLF OTAC filters for GSM/DECT/UMTS multistandard receivers, CMOS MLF OTAC filters for satellite/GPS receivers, and CMOS lowpass video signal smoothing/antialiasing filtersfordigitalTVsystems.Again,designofonchiptuningcircuitryfortheabove fullyintegratedfiltersisnecessaryandlowvoltageandlowpoweroperationshould bepursued.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 169 8.2.3 Comparison between Voltage- and Current-mode MLF OTA-C

Filters

Filterdesignersandresearchersoftenarguethatcurrentmodecircuitsofferhigher performances than their voltagemode counterparts. However, it has been reported thatthereisnoclearborderlinebetweenthevoltagemodeandcurrentmodecircuits andthatvoltagemodeandcurrentmodeOTACfiltersshowthesameperformance [129].Toverifyandjustifytheargument,wemayinvestigateandcomparepractically the performances of both voltage and currentmode OTAC filters. Comparison of performances between voltagemode and currentmode OTAC filters has not been well investigated [130, 131]. The work in [130, 131] was only concerned with secondorder voltagemode and currentmode OTAC filters, which may not be suitable for highorder filters. Thus, we may compare all performances including sensitivity,distortion,noise,dynamicrange,andOTAnonidealityeffectsoftypical highordervoltagemodeandcurrentmodeMLFOTACfilters.Asanexample,we may compare the voltagemode IFLF filter with the equivalent currentmode FLF filter,andthevoltagemodeLFfilterwiththecurrentmodeLFfilter.

8.2.4 Design of MLF OTA-C Bandpass Filters for Wireless

Communications

In wireless communications transceivers, the bottleneck for a single chip implementation is to bring the RF/IF bandpass channel filters onto the silicon. However, designing very high frequency high Q bandpass filters is extremely challenging[24,67,68].Nosolutionshavebeenfoundsofar.Theresearchwilllook at thealternatives to the methods already triedin the literature. We propose to use multipleloopfeedbackbiquadbasedOTACfiltersinthisdemandingapplication.In highfrequencyandhighQbandpassfilters,bothfrequencyandQtuningarerequired. ThefrequencytuningmethodforLFandIFLFconfigurationscanbefoundin[2,3,9, and 68]. Although some Q tuning methods for cascade and LC ladder simulation DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 170 OTAC filters have been proposed in the literature [2, 3, 9, 65, 67], the Q tuning methodforMLFOTACfiltershasnotbeenfoundsofar.Thus,thefutureworkon high Q bandpass filter design using MLF OTAC filter will also investigate the Q tuningissues.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 171 References

[1] T. Deliyannis, Y. Sun, and J. K. Fidler: Continuoustime active filter design , CRCpress,Florida,USA,1999.

[2] Y.Sun,Ed.: Designofhighfrequencyintegratedanaloguefilters ,IEE,London, UK,2002.

[3] Y.Sun,Ed.:Wirelesscommunicationcircuitsandsystems ,IEE,London,UK, 2004.

[4] Y. Sun, Guest Editor: Special issue on highfrequency integrated analogue filters ,IEEProc.CircuitsDevicesSyst.,Vol.147,No.1,February2000.

[5] R. Schaumann, M. S. Ghausi, and K. R. Laker: Design of analog filters: passive, activeRC, and switched capacitor , PrenticeHall, Englewood Cliffs, NJ,1990.

[6] M.S.Ghausi,andK.R.Laker: Modernfilterdesign–activeRCandswitched capacitor ,PrenticeHall,EnglewoodCliffs,NJ,1981.

[7] Y. P. Tsividis and J. O. Voorman, Eds.: Integrated continuoustime filters: principles,designandapplications ,IEEEPress,USA,1993.

[8] R. Schaumann and M. E. Van Valkenburg: Design of analog filters , Oxford UniversityPress,NewYork,USA,2001.

[9] D.A.JohnsandK.Martin: Analogintegratedcircuitdesign ,JohnWilleyand Sons,1997.

[10] K. R. Laker and W. M. C. Sansen: Design of analog integrated circuits and systems ,McGrawHill,NewYork,USA,1994.

[11] E. SanchezSinencio and A. G. Andreou, Eds.: Lowvoltage/lowpower integratedcircuitsandsystems ,IEEEPress,NewYork,USA,1999.

[12] A.S.SedraandP.O.Brackett: Filtertheoryanddesign:activeandpassive , Matrix,Portland,OR,1978.

[13] H.Y.F.Lam: Analoganddigitalfilters:designandrealisation ,PrenticeHall, NJ,1979.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 172 [14] M.E.VanValkenburg: Analogfilterdesign ,Holt,ReinehartandWinston,NY, 1982.

[15] E.Christian: LCfilters:design,testingandmanufacturing ,Wiley&Sons,NY, 1983.

[16] W.K.Chen: Passiveandactivefilters–theoryanimplementation ,Wiley,New York,USA,1986.

[17] L. P. Huelsman: Active and passive analog filter design an introduction , McGrawHill,1993.

[18] K.L.Su: Analogfilters ,Chapman&Hall,London,UK,1996.

[19] W.HeinleinandH.Holmes: Activefiltersforintegratedcircuits ,Oldenbourg Verlag,Vienna,1974.

[20] L.T.Bruton: RCactivecircuits:theoryanddesign ,PrenticeHall,NJ,1980.

[21] S.K.MitraandC.F.Hurth: Miniaturedandintegratedfilters ,JohnWiley& Sons,NewYork,1989.

[22] J. E. Kardontchik: Introduction to the design of transconductorcapacitor filters ,KluwerAcademicPublishers,Boston,1992.

[23] R. J. van de Plassche, W. M. C. Sansen, and J. H. Huijsing: Analog circuit design: lowpower, lowvoltage, integrated filters and smart power , Norwell, MA:Kluwer,1995.

[24] R.Schaumann:“Designofcontinuoustimefullyintegratedfilters:areview”, IEEProc.,Pt.G,Vol.136,No.4,pp.184190,1989.

[25] Y.P.Tsividis:“Integratedcontinuoustimefilterdesignanoverview”,IEEEJ. SolidStateCircuits,Vol.29,No.3,pp.166176,1994.

[26] G. A. De Veirman and R. G. Yamasaki: “Design of a Bipolar 10MHz programmable continuoustime 0.05° equiripple linear phase filter”, IEEE J. SolidStateCircuits,Vol.27,No.3,pp.324331,March1992.

[27] N. Rao, V. Balan, and R. Contreras: “A 3V 10100MHz continuoustime seventhorder0.05 °equiripplelinearphasefilter”,IEEEJ.SolidStateCircuits, Vol.34,No.11,pp.16761682,Nov.1999. DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 173 [28] C. A. Laber and P. R. Gray: “A 20MHz sixthorder BiCMOS parasiticinsensitive continuoustime filter and secondorder equalizer optimizedfordiskdrivereadchannels”,IEEEJ.SolidStateCircuits,Vol.28, No.4,pp.462470,April1993.

[29] R.A.Philpott,R.A.Kertis,R.A.Richetta,T.J.SchmerbeckandD.J.Schulte, “A7Mbyte/s(65MHz),mixedsignal,magneticrecordingchannelDSPusing partial response signaling with maximum likelihood detection,” IEEE J. SolidStateCircuits,Vol.29,No.3,pp.177–184,Mar1994.

[30] F. Rezzi, A. Baschirotto, and R. Castello, “A 3V 1255 MHz BiCMOS pseudodifferential continuoustime filter,” IEEE Trans. Circ. Syst.I, Vol.42, No.11,pp.896903,November1995.

[31] W.Abbott,D.Choi,W.Giolma,V.Gopinathan,K.Johnson,W.Krenik,O.Lee, G. Mayfield, V. Pawar, R. Pierson, I. Ranmuthu, B. Sheahan, F. Trafton and S.Venkatraman, “An analog frontend signal processor for a 64 Mb/s PRML harddisk drive channel,” Digest of Technical Papers, In 41st ISSCC., IEEE InternationalSolidStateCircuitsConference,1618Feb1994,pp.282–283.

[32] F.Rezzi,I.Bietti,M.Cazzaniga,andR.Castello, “A70mWseventhorder filter with 750 MHz cutoff frequency and programmable boost and group delay equalization,” IEEE J. SolidState Circuits, Vol. 32, No. 12, pp. 19871999,Dec.1997.

[33] G. Bollati, S. Marchese, M. Demicheli, and R. Castello, “An eighthorder CMOS lowpass filter with 30120 MHz tuning range and programmable boost,”IEEEJournalofSolidStateCircuit,Vol.36,No7,July2001.

[34] P.R.Gray,J.C.Rudell,G.T.UeharaandC.S.H.Wong,“A50MHzeighttap adaptiveequalizerforpartialresponsechannels,”IEEEJ.SolidStateCircuits, Vol.30,No.3,pp.228–234,Mar.1995.

[35] A. N. Mohieldin, E. SanchezSinencio, and J. SilvaMartinez, “ A fully balanced pseudodifferential OTA with commonmode feedforward and

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 174 inherent commonmode feedback detector,” IEEE J. SolidState Circuits, Vol.38,No.4,pp.663668,April2003.

[36] H.W.SuandY.Sun,“ACMOS100MHzcontinuoustimeseventhorder0.05 ° equiripple linear phase leap frog multiple loop feedback GmC filter,” IEEE Proc.ISCAS,Vol.2,pp.1720,May2002.

[37] M.HasanandY.Sun, “A2V0.25 µmCMOS fullydifferentialseventhorder equiripplelinearphaseLFfilter,”IEEEProc.ISCAS,Japan,May2005.

[38] W. Dehaene, M. S. J. Steyaert, and W. Sansen, “A 50MHz standardCMOS pulse equalizer for hard disk read channels,” IEEE J. SolidState Circuits, Vol.32,No.7,pp.977988,July1997.

[39] J. S. Martinez, J. Adut, M. Robinson and Rokhsaz, “A 60mW 200MHz continuoustimeseventhorderlinearphasefilterwithonchipautomatictuning system,”IEEEJ.SolidStateCircuits,Vol.38,No.2,pp.216225,Feb.2003.

[40] I.MehrandD.R.Welland,“ACMOScontinuoustimeGmCfilterforPRML readchannelapplicationsat150Mb/sandbeyond,”IEEEJ.SolidStateCircuits, Vol.32,No.4,pp.499513,April1997.

[41] P. Pandey, J. S. Martinez, and X. Liu, “A CMOS 140mW fourthorder continuoustime lowpass filter stabilized with a class AB commonmode feedbackoperatingat550MHz,”IEEEJ.SolidStateCircuits,Vol.53,No.4, pp.811820,April,2006

[42] D. H. Chiang and R. Schaumann, “A CMOS fullybalanced continuoustime IFLF filter design for read/write channels,” IEEE Proc. ISCAS, Vol.1, pp. 167170,May1996

[43] H.W.SuandY.Sun:“Performanceanalysisandcomparisonofmultipleloop feedback GmC filters,” International Journal of Circuits, Systems and Computers,Vol.14,No.4,2005.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 175 [44] H. W. Su and Yichuang Sun, “A 2.5V 0.25um COMS multipleoutput fullybalanced OTA for VHF filtering applications,” Proc. European ConferenceonCircuitTheoryandDesign,August2003.

[45] H.Thapar,S.S.Lee,C.Conroy,R.Contreras,A.Yeung,J.G.Chern,T.Pan, andS.M.Shih,“HDDreadchannels:technologyandtrends”,IEEECustom IntegratedCircuitsConference,pp.309316,1998.

[46] V. Gopinathan, M. Tarsia and D. Choi, “Design considerations and implementationofaprogrammablehighfrequencycontinuoustimefilterand variablegainamplifierinsubmicrometerCMOS,”IEEEJ.SolidStateCicurits, Vol.34,No.12,pp.16981707,1999.

[47] D.Sun,A.Xotta,andA.A.Abidi,“A1GHzCMOSanaloguefrontendfora generalized PRML read channel,” IEEE J. SolidState Circuits, Vol. 40, No.11,pp.22752285,Nov.2005.

[48] P.K.D.Pai,A.D.Brewster,andA.A.Abidi,“A160MHzanaloguefrontend ICforEPRIVPRMLmagneticstoragereadchannels,” IEEEJ.SolidState Circuits,Vol.31,No.11,pp.18031816,Nov.1996.

[49] M. Gambhir, V. Dhanasekaran, J. SilvaMartinez, and E. SancchezSinencio, “Lowpower architecture and circuit techniques for highboost wideband GmCfilters,”IEEETrans.Circ.Syst.I,Vol.54,No.3,pp.458468,March 2007.

[50] M.Chen,J.SilvaMartinez,S.Rokhsaz,andM.Robinson,“A2Vpp80200 MHzfourthordercontinuoustimelinearphasefilterwithautomaticfrequency tuning,” IEEE J. SolidState Circuits, Vol.38, No.10, pp. 17451749, Oct 2003

[51] J.M.Khoury,“Designofa15MHzCMOScontinuoustimefilterwithonchip tuning,” IEEE J. SolidState Circuits, Vol. 26, No. 12, pp.19881997, Dec. 1991.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 176 [52] S. Dosho, T. Morie, and H. Fujiyama, “A 200MHz seventhorder equiripple continuoustimefilterbydesignpfnonlinearitysuppressionin0.25umCMOS process,” IEEE J. SolidState Circuits, Vol. 37, No. 5, pp. 559565, May 2002.

[53] D. H. Chiang and R. Schaumann: ‘Design of a CMOS fullydifferential continuoustimetenthorderfilterbasedonIFLFtopology’,Proc.IEEEISCAS, Vol.1,pp.123126,1998.

[54] M.Hassan,“DesignandtestofhighfrequencyCMOSintegratedGmCfilter,” PhD thesis, University of Hertfordshire, UK, Dec. 2006. (VM IFLF and LF, andcomparisonoflinearphasefiltersbasedonthem)

[55] Y. Sun and X. Zhu, “Explicit design formulas for currentmode Leapfrog GmC filters and 300MHz CMOS seventhorder linear phase filter,” Int. J. CircuitTheoryandApplications,accepted.

[56] X.Zhu,Y.Sun,andJ.Moritz,“A0.18 µmCMOS300MHzCurrent −ModeLF Seventh −order Linear Phase Filter for Hard Disk Read Channels,” Proc. IEEEISCAS,NewOrleans,May2007.

[57] X.Zhu,Y.Sun,andJ.Moritz,“ACMOSFifthOrder400MHzCurrentMode LF Linear Phase Filter for Hard Disk Read Channels,” Proc. IEEE ECCTD, Seville,August2007.

[58] X. Zhu, Y. Sun, and J. Moritz, “A CMOS 650 MHz Seventhorder CurrentMode 0.05° Equiripple Linear Phase Filter,” Proc. IEEE MWSCAS, Montreal,August2007.

[59] X. Zhu, Y. Sun, and J. Moritz, “A 0.18m CMOS 9mW Current Mode FLF linearphasefilterwithgainboost”Proc.IEEEMWSCAS,Montreal,August 2007.

[60] Y.Sun,“SynthesisofLeapfrogmultipleloopfeedbackGmCfilters,”IEEE Trans.Circ.Syst.II,Vol.53,No.9,pp.961965,Sep.2006.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 177 [61] D. H. Chiang and R. Schaumann, “ Performance comparison of highorder IFLF and cascade analogue integrated lowpass filter, ” IEE Proc. Circuits DevicesSyst.,Vol.147,No.1,pp.1927,Jan.2000.

[62] Y. Sun and J. K. Fidler: “Synthesis and performance analysis of universal minimum component integratorbased IFLF OTAgrounded capacitor filter”, IEEProc.CircuitsDevicesSyst.,Vol.143,No.2,pp.107114,April1996.

[63] P.SirinamaratanaandN.Wongkomet:“A0.7µmCMOSantialiasingfilterfor nonoversampledvideosignalapplications”,ProcIEEEISCAS,Thailand,May 2003.

[64] P. I. Mak, U. S. Pan, and R. P. Martins, “Transceiver architecture selection: Reivew, stateoftheart survey and case study,” IEEE Circuits and Systems Magazine,pp.625,SecondQuarter2007.

[65] J. Moritz and Y. Sun, “100MHz, 6thorder leapfrog GmC high Q bandpass filterandonchiptuningscheme,”Proc.IEEEISCAS,Greece,May2006.

[66] C. Hung, K. A. I. Halonen, M. Ismail, V. Porra, A. Hyogo, “A lowvoltage, lowpower CMOS fifthorder elliptic GmC filter for baseband mobile, wirelesscommunication,”IEEETrans.Circ.Syst.ForVidaoTechnology,Vol.7, No.4,pp.584593,August1997.

[67] Y.W.ChoiandH.Luong,“AhighQandwidedynamicrange70MHzCMOS bandpassfilterwirelessreceivers,”IEEETrans.CircuitsSyst.II,Vol.48,No.5, pp.433440,May,2001.

[68] J. R. Moritz, Y. Sun, “Automatic tuning of high frequency, highQ, multiple loopfeedbackbandpassfilters”,IEEEProc.ISCAS,Vol.5,pp.605608.May 2002.

[69] Adiseno,M.Ismail,andH.Olsson,“AwidebandRFfrontendformultiband multistandard highlinearity lowIF wireless receivers,” IEEE J. Solid State Circuits,Vol.37,No.9,pp.1162–1168,Sep.2002.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 178 [70] A.Baschirotto,F.Campi,R.Castello,G.Cesura,R.Guerrieri,L.Lavagno,A. Lodi, P. Malcovati, and M. Toma, “Baseband analogue frontend and digital backend for reconfogurable multistandard terminals,” IEEE Circuits and SystemsMagazine,pp.828,FirstQuarter2006.

[71] K. Muhammad, R.B. Staszewski, and D. Leipold, “Digital RF processing: Towardlowcostreconfigurableradios,”IEEECommunicationsMagazine,pp. 105–113,Aug.2005.

[72] J.Ryyännen,S.Lindfors,K.Stadius,andK.A.I.Halonen,“Integratedcircuits for multiband receivers,”IEEECircuitsandSystemsMagazine,pp.516, SecondQuarter2006.

[73] H.A. Alzaher, H.O. Elwan, and M. Ismail, “A CMOS highly linear channelselectfilterfor3Gmultistandardintegratedwirelessreceivers,”IEEE J.SolidStateCircuits,Vol.37,No.1pp.27–37,July2001.

[74] V.Giannini,J.Craninckx,S.D’Amico,andA.Baschirotto,“Flexiblebaseband analog circuits for softwaredefined radio frontends” IEEE J. SolidState Circuits,Vol.42,No.7pp.1501–1512,July2007.

[75] Y.J.Jung,H.Jeong,E.Song,J.Lee,S.W.Lee,D.Seo,I.Song,S.Jung,J. Park, D.K. Jeong, S.I. Chae, and W. Kim, “A 2.4GHz 0.25 um CMOS dualmode directconversion receiver for Bluetooth and 802.11b,” IEEE J. SolidStateCircuits,Vol.39,pp.1185–1190,July2004.

[76] H.Khorramabadi,M.Tarsia,andN.Woo,“BasebandfiltersforIS95CDMA receiver applications featuring digital automatic frequency tuning,” in Proc. IEEEISSCCConf.,pp.172–173,SanFrancisco,CA,Feb.1996.

[77] J.H.Hwang,M.Y.Lee,C.Y.Jeong,andC.Yoo,“ActiveRCchannelselection filter tunable from 6kHz to 18MHz for softwaredefined radio,” Proc. IEEE ISCAS,pp.48034806,May2005.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 179 [78] S. D’amico, V. Giannini, and A. Baschirotto, “A 4thorder activeGmRC reconfigurable (UMTS/WLAN) filter,” IEEE J. SolidState Circuits, Vol. 41, No.7pp.1630–1637,July2006.

[79] A. Yoshizawa, and Y. P. Tsividis, “Antiblocker design techniques for MOSFETC filters for direct conversion receivers,” IEEE J. SolidState Circuits,Vol.37,No.3pp.357–364,March2002.

[80] M. I. Younus, A. Savla, A. Ravindran and M. Ismail, “A reconfigurable baseband chain for 3G wireless receivers,” Y. Sun, Edited: Wireless communicationcircuitsandsystems ,IEE,London,UK,2004.

[81] T. Hollman, S. Lindfors, M. Länsirinne, J. Jussila, and K.A.I. Halonen, “A 2.7V CMOS dualmode baseband filter for PDC and WCDMA,” IEEE J. SolidStateCircuits,Vol.36,pp.1148–1153,July2001.

[82] J. Ryynänen, K. Kivekäs, J. Jussila, A. Pärssinen, and K. Halonen, “A singlechip multimode receiver for GSM900, DCS1800, PCS1900, and WCDMA,”IEEEJ.SolidStateCircuits,Vol.38,pp.594–602,Apr.2003.

[83] S. D’amico, V. giannini and A. Baschirotto, “A LowPower Reconfigurable Analogue Filter for UMTS/WLAN Receivers,” Analogue Integrated Circuit andSignalProc.,Vol.46,pp.6572,2006.

[84] Y. Sun and C. Hill, “Lowpower fully differential CMOS filter for video frequencies,” IEEE Trans. Circuits and Systems –II, Vol. 48, No.12, pp.11441148,2001.

[85] S. D’Amico, V. Giannini, and A. Baschirotto, “A 1.2 V –21 dBm OIP3 4th Order ActivegmRC reconfigurable (UMTS/WLAN) Filter with Onchip Tuningwithanautomatictool,”Proc.IEEEESSCIRC2005,pp.315–318,Sep. 2005.

[86] H.Khorramabadi,M.Tarsia,andN.Woo,“BasebandfiltersforIS95CDMA receiver applications featuring digital automatic frequency tuning,” in Proc. IEEEISSCCConf.,pp.172–173,SanFrancisco,CA,Feb.1996.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 180 [87] S. Pavan and Y. Tsividis, and K. Nagaraj, “A 60–350 MHz programmable analogue filter in a digital CMOS process,” Proc. IEEE ESSCIRC 1999, pp. 4649,Sep.1999.

[88] S. Pavan, Y. Tsividis, “TimeScaled Electrical Networks—Properties and Applications in the Design of Programmable Analogue Filters,” IEEETrans. Circ. Syst. II: analogue and digital signal processing, Vol. 47, No. 2, pp. 161165,Feb.2000.

[89] H. Alzaher, H. Elwan and M. Ismail, “CMOS baseband filter for WCDMA integratedwirelessreceivers,”Electron.Lett,Vol.36,No.18,pp.15151516, August2000.

[90] H.Alzaher,H.O.Elwan,andM.Ismail,“ACMOShighlylinearchannelselect filterfor3Gmultistandardintegratedwirelessreceivers,”IEEEJ.SolidState Circuits,Vol.37,pp.27–37,July2001.

[91] S. Hori, T. Maeda, N. Matsuno, and H. Hida, “Lowpower widely tunable GmC filter with an adaptive DCblocking, triodebiased MOSFET transconductor,”Proc.IEEEESSCIRC2004,pp.99–102,Sep.2004.

[92] S.Hori,T.Maeda,H.Yano,N.Matsuno,K.Numata,N.Yoshida,Y.Takahashi, T.Yamase,R.Walkington,andH.Hida,“AwidelytunableCMOSGmCfilter withanegativesourcedegenerationresistor,”Proc.IEEEESSCIRC2003,pp. 449452,Sep.2003.

[93] D.Chamla,A.Kaiser,A.Cathelin,andD.Belot,“AGmClowpassfilterfor zeroIF mobile applications with a very wide tuning range,” IEEE J. SolidStateCircuits,Vol.40,no.7,pp.1443–1450,July2005.

[94] A.A.Emira,A.ValdesGarcia,B.Xia,A.N.Mohiedin,A.ValeroLopez,S.T. Moon, C. Xin, and E. SanchezSinencio, “A DualMode 802.11b/Bluetooth Receiver in 0.25 μm BiCMOS,” ISSCC Digest of Technical Papers, pp. 270–271,Feb.2004.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 181 [95] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun, “A field programmable analogue array for CMOS continuoustime GmC filter applications, ” IEEE J. SolidState Circuits, Vol. 37, No. 2, pp. 125136, February,2002.

[96] S.Lindfors,J.Jussila,K.Halonen,L.Siren,“A3Vcontinuoustimefilterwith on chip tuning for IS95, ” IEEE J. SolidState Circuits, Vol. 34, No. 8, pp. 11501154,August,1999.

[97] J. Rogin, I. Kouchev, and Q. Huang, “A 1.5 V 45 mW direct conversion WCDMAreceiverICin0.13umCMOS,”inProc.IEEEISSCC,Feb.2003.

[98] M. Hassan, Y. Sun, and Y. Zhu, “Secondorder GmC filters using a single OTA,”Proc.IEEEECCTD,August,2005.

[99] B. Guthrie, T. Sayers, A. Spencer, and J. Hughes, “A CMOS gyrator lowIF FilterforadualmodeBluetooth/ZigBeereceiver,”IEEEJ.SolidStateCircuits, Vol.40,pp.1872–1879,Sep.2005.

[100] CH. Heng, M. Gupta, SH. Lee, D. Kang, and BS. Song, “A CMOS TV /Demodulator IC with Digital Image Rejection,” IEEE J. SolidState Circuits,Vol.40,pp.2536–46,Dec.2005.

[101] G. Faria, J. A. Heniksson, E. Stare, P. Talmola, “DVBH: Digital Broadcast ServicestoHandheldDevices,”Proc.IEEE,Vol.94,No.1,pp.198–209,Jan. 2006.

[102] A.J.Lewinski,andJ.SilvaMartinez,“A30MHzfifthorderellipticlowpass CMOSfilterwith65dBspuriousfreedynamicrange,”IEEETrans.Circ.Syst. I:regularpaper,Vol.54,No.3,March2007.

[103] V.Saari,etc.,“A1.2V240MHzCMOScontinuoustimelowpassfilterfora UWB radio receiver,” ISSCC Digest of Technical Papers, pp. 589–591, Feb. 2007.

[104] C. Toumazou, F. J. Lidgey, D. G. Haigh, (eds.) Analogue IC Design: The Current Mode Approach , Peter Peregrinusltd., Stevenage, 1990. Chapter 15,

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 182 “IntegratedCurrentConveyor”,pp535–557.

[105] Y. Sun and J. K. Fidler, “Currentmode multiple loop feedback filters using dual output OTAs and grounded capacitors,” Int. J. Circuit Theory and Applications,Vol.25,No.2,pp.6980,1997.

[106] Y.SunandJ.K.Fidler,“GeneralcurrentmodeMLFMOGmCfilters,”Proc. IEEEECCTD,Vol.2,pp.803805,Italy,Aug.1999.

[107] Y. Sun and J. K. Fidler, “Currentmode GmC realization of arbitrary filter characteristics,”ElectronicsLetters,Vol.32,No.13,20thJune1996.

[108] J. RamirezAngulo and E. SanchezSinencio, “Currentmode continuoustime filters:twodesignapproaches,”IEEETrans.Circ.Syst.II,Vol.39,No.6,pp. 337341,June1992

[109] F.KrummenacherandN.Joehl,“A4MHzCMOScontinuoustimefilterwith onchipautomatictuning,”IEEEJ.SolidStateCircuits,Vol.23,No.16,June 1988.

[110] E.SanchezSinencio,J.SilvaMartinez,“CMOSTransconductanceAmplifiers, Architectures and Active Filters: A Tutorial” IEE Proceedings: Circuits, DevicesandSystemsVol147No1,pp3–13,February2000.

[111] Y.P.Tsividis,OperationandmodellingoftheMOStransistor,McGrawHill, NewYork,2ndedition1999,pp.370–372.

[112] The MOSIS Service, “Wafer Electrical Test Date and SPICE Model Parameters”http://www.mosis.org/test/

[113] TheMOSISOrganization,“Tipsforconvertinglevel49HSPICE modelsto level7PSpicemodels”, www.mosis.org/Faqs/pspice.pdf

[114] J. RamirezAngulo and E. SanchezSinencio: “High frequency compensated currentmode ladder filters using multiple output OTAs”, IEEE Trans. Circ. Syst.II,Vol.41,No.9,pp.581586,Sept.1994.

[115] C.S.Kim,Y.H.Kim,andS.B.Park,“NewCMOSLinearTransconductor,” Electron.Lett.,Vol.28,No.21,pp.1962–1964,Oct.1992.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 183 [116] H. W. Su and Y. Sun, “High frequency linear multiple output CMOS transconductance amplifier for currentmode filters”, International Journal of Circuits,SystemsandComputers,vol.15,no.5,pp.701717,2006.

[117] J.Glinianowicz,S.SzczepanskiandY.Sun“HighfrequencytwoinputCMOS OTAforcontinuoustimefilterapplications,”IEEProc.CircuitsDevicesSyst., Vol.147,No.1,pp.1318,Feb.2000.

[118] Y. Sun: ‘GmC filter design using substitution and Bruton transformation methods’, Electron. Lett., Vol. 34, No. 22, pp. 20822083, 1998.

[119] Y. Sun and J. K. Fidler: ‘Structure generation and design of multiple loop feedbackOTAgroundedcapacitorfilters’,IEEETrans.CircuitsSyst.I,Vol.44, No.1,pp.111,Jan.1997.

[120] R. Nawrocki, “Electronically tunable allpole lowpass leapfrog ladder filter with operational transconductance amplifier”, Int. J. Electron., Vol. 62, pp. 667672,1987.

[121] A. C. M. de Queiroz, L. P. Caloba, and E. SanchezSinencio: ‘Signal flow graphGmCintegratedfilters’,Proc.IEEEISCAS,pp.21652168,1988.

[122] R.Schaumann:‘SimulatinglosslessladderswithtransconductanceCcircuits’, IEEETrans.CircuitsSyst.II,Vol.45,No.3,pp.407410,1998.

[123] Y. Sun and J. K. Fidler: ‘GmC realization of general highorder transfer functions’,Electron.Lett.,Vol.29,No.12,pp.10571058,1993.

[124] Y. Sun and J. K. Fidler: ‘Synthesis and performance analysis of universal minimum component integratorbased IFLF OTAgrounded capacitor filter’, IEEProc.CircuitsDevicesSyst.,Vol.143,No.2,pp.107114,April1996.

[125] Y. Sun and J. K. Fidler: ‘Currentmode multipleloop feedback filters using dualoutput OTAs and grounded capacitors’, Int. J. of Circuit Theory and Applications,Vol.25,pp.6980,1997.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 184 [126] Y.SunandJ.K.Fidler:‘SomedesignmethodsofGmCandCCIIRCactive filters’,Proc.IEESaragaColloqon.DigitalandAnalogueFiltersandFiltering Systems,pp.7/17/8,1993.(FLFandIFLF)

[127] Y.Sun,“SynthesisofLeapfrogmultipleloopfeedbackOTACfilters,”IEEE Trans.Circ.Syst.II,Vol.53,No.9,pp.961965,Sep. 2006.

[128] A.I.Zverev:Handbookforfiltersynthesis,Wiley,NewYork,1967.

[129] H.Schmid:“Whytheterms‘currentmode’and‘voltagemode’neitherdivide norqualifycircuits”,IEEEProc.ISCAS,Vol.2,pp.2932,May2002.

[130] S. Koziel and S. Szczepanski: “Dynamic range comparison of voltagemode

andcurrentmodestatespaceG mCbiquadfilters”,Proc.IEEEISCAS,Vol.2, pp.819822,2001.

[131] J.MahattanakulandC.Toumazou:“CurrentmodeversusvoltagemodeG mC biquadfilters:whatthetheorysays”,IEEETrans.Circ.Syst.II,Vol.45,No.2, pp.173186,Feb.1998.

[132] J.D.Coker,R.L.Galbraith,G.L.Kerwin,J.W.RaeandP.A. Ziperorich: “ImplmentationofPRMLinarigiddiskdrive”,IEEETrans.Magnetics,Vol. 27,No.6,pp.45384543,Nov.1991.

[133] P. Kabal and S. Pasupathy: “Partialresponse signaling”, IEEE Trans. Communication,Vol.23,No.9,pp.921934,Sep.1975.

[134] R. C. Schneider: “An improved pulseslimming method for magnetic recording”,IEEETrans.Magnetics,Vol.Mag11,No.5,pp.12401241,Sep. 1975.

[135] D. G. Haigh: “GaAs MESFET active resonant circuit for microwave filter applications”,IEEETransMTTVol.42,No7,pp1419–1423,July1994.

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 185 Appendix

.MODELCMOSN2NMOS( VOFF =0.0759061 LEVEL =7 NFACTOR=2.3433592 TNOM =27 CIT=0 TOX =4E9 CDSC =2.4E4 XJ=1E7 CDSCD =0 NCH =2.3549E17 CDSCB =0 VTH0 =0.3469417 ETA0 =4.938514E5 K1 =0.5824648 ETAB =1.936318E3 K2 =2.675158E3 DSUB =0.0952747 K3 =0.0152228 PCLM =3.0632837 K3B=10 PDIBLC1=0.9823911 W0 =7.540113E6 PDIBLC2=1.275381E3 NLX =1.661475E7 PDIBLCB=0.1 DVT0W=0 DROUT =0.9393639 DVT1W =0 PSCBE1 =1E8 DVT2W =0 PSCBE2 =7.673156E10 DVT0 =1.6323269 PVAG =2.3385508 DVT1 =0.4647698 DELTA =0.01 DVT2 =0.0450965 RSH =6.7 U0 =260.3005546 MOBMOD =1 UA =1.314002E9 PRT=0 UB =2.099332E18 UTE =1.5 UC =3.819093E11 KT1 =0.11 VSAT =1.052288E5 KT1L =0 A0 =2 KT2 =0.022 AGS =0.3695786 UA1 =4.31E9 B0 =1.798439E8 UB1 =7.61E18 B1 =1E7 UC1 =5.6E11 KETA =0.0162254 AT =3.3E4 A1 =9.488078E4 WL=0 A2 =1 WLN=1 RDSW=150 WW =0 PRWG =0.5 WWN=1 PRWB =0.2 WWL=0 WR=1 LL =0 WINT =8.920936E9 LLN=1 LINT =2.370607E9 LW=0 DWG =2.221299E9 LWN =1 DWB =6.313837E9 LWL=0 DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 186 CAPMOD =2 Nlx=9.5035e8 XPART =0.5 W0=1e6 CGDO =7.2E10 Vsat=1.496e5 CGSO =7.2E10 Ua=1.594e9 CGBO =1E12 Ub=1.125e21 CJ =9.908001E4 Uc=1e10 PB =0.7382604 Prwb=0.1249 MJ =0.3578423 Prwg=0.5 CJSW =2.417604E10 Wr=1.0000000 PBSW =0.5261825 U0=116.67 MJSW =0.1199858 A0=1.6385 CF=0 Keta=0.02125 PVTH0 =1.232879E3 A1=0.4245 PRDSW =5 A2=0.4836 PK2 =1.180394E3 Ags=0.3897 WKETA =3.479546E3 B0=1.536e6 LKETA =7.451244E4 B1=4.912e6 PVSAT =2E3 Voff=0.09768 PETA0 =1E4 NFactor=1.997 PKETA =1.888841E4 ) Cit=0.00 *$ Cdsc=2.4e4 Cdscb=0.00 Cdscd=0.00 .modelMbreakPX10PMOS Eta0=0.1387 LEVEL =7 Etab=0.2049 TNOM =27 Dsub=1.245 TOX =4E9 Pclm=2.297 XJ =1E7 Pdiblc1=8.033e4 NCH =4.1589E17 Pdiblc2=0.01373 VTH0 =0.4018217 Pdiblcb=1e3 K1 =0.5542041 Drout=0 K2 =0.0344339 Pscbe1=2.444e9 K3 =0 Pscbe2=7.06e10 K3B =10.2986 Pvag=12.65 Dwg=2.6442e8 Delta=1.0000000E02 Dwb=5.4435e8 kt1=0.11 rsh=7.5 kt2=0.022 Dvt0=0.5159 At=3.3E+04 Dvt1=0.2828 Ute=1.5 Dvt2=0.1 Ua1=4.31e9 Dvt0w=0.00 Ub1=7.61e18 Dvt1w=0.00 Uc1=5.6e11 Dvt2w=0.00 Kt1l=0

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 187 Prt=0.00 Cj=1.182e3 Mj=0.4163 Pb=0.8684 Cjsw=1.922e10 Mjsw=0.3 Cgdo=6.73e10 Cgso=6.73e10 Cgbo=1e12 Capmod=2 Xpart=0.5 Cf=0.00 mobmod=1 pbsw=0.6322 rdsw=354.7 wint=1.17e8 lint=2.17e8 pbsw=0.6322 pvth0=2.703e3 PRDSW =0.6067904 PK2 =3.126202E3 WKETA =0.0406736 LKETA =2.070108E3 *$

DesignofHighfrequencyCMOSIntegratedFiltersforComputerHardDiskDriveandWirelessCommunicationSystems 188